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We translate in semigroup theory our result (Léandre, 1990) giving a necessary condition so that
the law of a Markov process with jumps could have a strictly positive density. This result express,
that we have to jump in a finite number of jumps in a “submersive” way from the starting point
x to the end point y if the density of the jump process p1(x, z) is strictly positive in (x, y). We use
theMalliavin Calculus of Bismut type of (Léandre, (2008;2010)) translated in semi-group theory as
a tool, and the interpretation in semi-group theory of some classical results of the stochastic analy-
sis for Poisson process as, for instance, the formula giving the law of a compound Poisson process.

1. Introduction

We are interested in this paper in the following problem.

Problem*. Let X be a random variable given by the solution of a stochastic differential
equation, with law p(dy). For what y p(dy) is bounded below by q(y)dy, where q(·) is strictly
positive continuous near y?

This problem was solved by using the Malliavin Calculus. See the survey paper of
Léandre [1] on that. For various applications of the Malliavin Calculus on heat kernels, we
refer to the review of Kusuoka [2], Léandre [3], and Watanabe [4].

Let us explain the state of the art in the case of a diffusion. We consider m + 1 smooth
vectors fields with bounded derivatives at each order Xi on �d and the diffusion generator
L = 1/2

∑
i>0 X

2
i + X0. It generates a linear semigroup Pt acting on differentiable bounded

functions f on �d :

∂

∂t
Ptf(x) = LPtf(x). (1.1)
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It is a semigroup in probability measures. It has a probabilistic representation [5]. Let wi
t be

a �m valued Brownian motion. Let us use the notation of formal path integrals of physics.
The law of the Brownian motion is given formally as the Gaussian measure

dμ =
1
Z

exp

[

−
∑

i>0

∫1

0

∣
∣d/dswi

s

∣
∣2

2ds

]

dD(w.), (1.2)

where dD(w.) is a kind of formal Lebesgue measure. We introduce the stochastic differential
equation in the Stratonovitch case issued from x:

dxt(x) =
∑

i>0

Xi(xt(x))dwi
t +X0(xt(x))dt. (1.3)

Then,

Ptf(x) = E
[
f(xt(x))

]
. (1.4)

If w. → x1(x) is a submersion in some sense in w, then we can apply in some sense the
implicit function theorem in order to get a lower bound of the law of x1(x) by a measure
having a strictly positive density in the values of x1(x) in w with respect of the Lebesgue
measure on �d . The problem is that the solution of the stochastic differential equation (1.3)
is only almost surely defined. So the use of the implicit theorem leds to some difficulties
which were overcome by Bismut in [6]. The use of Bismut’s procedure allows to [7] to solve
Problem∗. See [8] for a translation of the proof of [7] in semigroup theory.

Plenty of the standard tools of stochastic analysis were translated recently by Léandre
in semigroup theory. See the review [9, 10] on that. Problem∗ was solved for a diffusion by
using the Malliavin Calculus of Bismut type in semigroup theory in [8].

We are interested in solving Problem∗ in the case of a jump process. Let us consider
a generator of Lévy type. If f is a differentiable function

Lf(x) =
∫

�d

(
f(x + z) − f(x)

)
μ(dz), (1.5)

it generates a linear semigroup Pt satisfying the parabolic equation

∂

∂t
Ptf(x) = LPtf(x). (1.6)

It is a semigroup in probability measures [11–13]. It is represented by a jump process with
independent increments zt:

Ptf(x) = E
[
f(x + zt)

]
. (1.7)
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Tortrat [14] studied the support S of the law of zt: if y1 ∈ S and y2 ∈ S, then y1 + y2 belong
to S. If μ has a finite mass λ, then the process z. has the law of a compound Poisson process:
zt is sum of his jumps. There is only a finite number of jumps. The jumps are all independents
with law μ(dz)/λ and the times where the jumps occur follow the law of a standard Poisson
process with parameter λ. We will give a proof, uniquely based upon algebraic computations
on semi groups, of this fact in the paper.

Problem∗ was solved in [1] by using the Malliavin Calculus for jump processes (see
[15–17] for related works). μ is called the Lévy measure. For that we need some regularity on
the Lévy measure μ(dz). Under regularity assumption on μ(dz), [1] used another time the
implicit function theorem, when we can jumps in a finite number of jumps in a “submersive”
way between the starting point and the end point. Recently we have translated in semigroup
theory plenty of tools of the stochastic analysis for Poisson processes [18–23]. Our goal is to
translate in semigroup theory the result of [1].

For material on stochastic differential equations driven by jump processes, we refer to
the books [13, 24, 25]. For the analytic side of the theory of Markov processes with jumps, we
refer to the books [11–13].

This paper enters in a general programwhich would like that stochastic analysis tools
become available for partial differential equation different of the parabolic equations whose
generators satisfy the maximum principle [26, 27].

2. Statement of the Main Theorems

The goal of this paper is to give the proof of the two next theorems originally proved by [1]
by using stochastic analysis and the Malliavin Calculus of Bismut type for jump processes of
[28].

Let us consider m functions gj(z) positive with compact support on � continuous
except in 0 equal to |z|−1−αj near 0 with αj ∈]0, 1[.

Let us introduce m functions γj(z) with bounded derivatives at each order, equal to 0
in 0 with values in �d .

We consider the Markov generator

Lf(x) =
∑∫

�

(
f
(
x + γj(z)

) − f(x)
)
gj(z)dz. (2.1)

We do the following hypothesis.

Hypothesis 2.1. There exists an r such that the family of vectors {⋃j,k≤r(d
k/dzk)γj(0)}

generates �d .

L generates a convolution linear semigroup Pt in probability measures acting on
differentiable bounded functions f . Pt satisfies the parabolic equation

∂

∂t
Ptf(x) = LPtf(x). (2.2)
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Under Hypothesis 2.1, [20, 29, 30] proved that P1 has a smooth heat kernel p1(x, y):

P1f(x) =
∫

�d

f
(
y
)
p1
(
x, y
)
dy. (2.3)

We denote

Fk,j.(z.) =
∑

γjl(zl), (2.4)

where j. = {j1, . . . , jk}.

Theorem 2.2. If p1(x, y) > 0, then there exists k, jl, z0l /= 0 such that gjl(z
0
l
) > 0 such that,

(i) Fk,j.(z
0
. ) = y − x,

(ii) (z.) → Fk,j.(z.) is a submersion in z0i .

Remark 2.3. Let us explain heuristically the theorem. Let zjt be the process with independent
increments associated to the generator

Ljf
(
y
)
=
∫

�

(
f
(
y + z

) − f
(
y
))
gj(z)dz, (2.5)

where y ∈ �. The processes zj. are independents, and the time of their jumps are disjoints. We
put

xt(x) = x +
∑

s≤t,j
γj
(
Δz

j
s

)

. (2.6)

Then,

Ptf(x) = E
[
f(xt(x))

]
. (2.7)

The theorem explains that we have to jump in a finite numbers of jumps in a submersive
way from x to y if we want p1(x, y) > 0. Let us give some explanations what we mean about
this fact, because the jump process has in fact an infinite number of jumps because the Lévy
measure is of infinite mass. We take

z
j,ε
t =
∑

s≤t
�[−ε,ε]c

(
Δz

j
s

)
Δz

j
s. (2.8)

z
j,ε
t has generator

Lε
j f
(
y
)
=
∫

|z|>ε

(
f
(
y + z

) − f
(
y
))
gj(z)dz. (2.9)
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The jump process

xε
t (x) = x +

∑

s≤t,j
γj
(
Δz

j,ε
s

)

(2.10)

has only a finite number of jumps because its Lévy measure is of finite mass and its law gives
a good approximation of the law of xt(x) if ε is small enough!

We consider some vectors ej and a smooth vector fields X0 with bounded derivatives
at each order. We consider the generator

Lf(x) =
∑
∫

�

(
f
(
x + ejz

) − f(x)
)
gj(z)dz +

〈
df(x), X0(x)

〉
. (2.11)

It generates a Markov semigroup Pt,

∂

∂t
Ptf(x) = LPtf(x) (2.12)

if is bounded differentiable. If gj(z) = |z|1−αj , the L is classically related to fractional powers
of the Laplacian [31].

We do the following Hypothesis.

Hypothesis 2.4. Consider infx∈�d,|ξ|=1
∑

j |〈ξ, ej〉| + |〈ξ, (∂/∂x)X0(x)ej〉| > 0.

In such a case, [19, 29, 30] has proven that there exists a smooth heat kernel p1(x, y):

P1f(x) =
∫

�d

f
(
y
)
p1
(
x, y
)
dy. (2.13)

We consider t1 < t2 < · · · < tk < 1 and we denote by t. = {t1, . . . , tk}. We introduce the
differential impulsive equation starting from x:

dxs

(
j., t., z.

)
(x) = X0

(
xs

(
j., t., z.

)
(x)
)
ds, Δxtl

(
j., t., z.

)
(x) = ejlzl. (2.14)

We denote

Fk,j.,t.(z.) = x1
(
j., t., z.

)
(x). (2.15)

Theorem 2.5. The condition p1(x, y) > 0 implies that there exists j., k, t., and z0
l /= 0, gjl(z

0
l
) > 0

such that:

(i) Fk,j.,t.(z
0
. ) = y,

(ii) z → Fk,j.,t.(z.) is a submersion in z0. .
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Remark 2.6. Let us explain heuristically this theorem. We consider the processes with inde-
pendent increments zjt . We consider the stochastic differential equation

xt(x) = x +
∑

z
j
tej +

∫ t

0
X0(xs(x))ds. (2.16)

Then,

Ptf(x) = E
[
f(xt(x))

]
. (2.17)

It has since
∫
�
gj(z) = ∞ an infinite number of jumps. We take

z
j,ε
t =
∑

s≤t
�[−ε,ε]c

(
Δz

j
s

)
Δz

j
s. (2.18)

z
j,ε
t has a finite number of jumps and has generator

Lε
j f
(
y
)
=
∫

|z|>ε

(
f
(
y + z

) − f
(
y
))
gj(z)dz. (2.19)

We consider the stochastic differential equation

xε
t (x) = x +

∑
z
j,ε
t ej +

∫ t

0
X0(xε

s(x))ds. (2.20)

The law of xε
1(x) is a good approximation of the law of x1(x) if ε is small enough. This express

the fact that by a finite number of jumps, xε
s(x) has to pass from x to y in a submersive way

if p1(x, y) > 0.

3. Two Results on Jump Processes Translated in Semigroup Theory

We consider �d̂ , x̂ ∈ �d̂ , ẑ ∈ �d̂ , and μ̂ a positive measure on �d̂ such that λ̂ =
∫
μ̂(dẑ) < ∞.

We introduce the expression

Ĝnf̂(x̂) = λ̂−n
∫

(�d̂)n
f̂

(

x̂ +
∑

i

ẑi

)
∏

dμ̂(ẑi). (3.1)

We consider the generator

L̂
(
f̂
)
(x̂) =

∫

�hatd

(
f̂(x̂ + ẑ) − f̂(x̂)

)
dμ̂(ẑ). (3.2)

It is a bounded operator on the space of continuous bounded functions endowed with
the uniform norm. It generates therefore a semigroup P̂t.
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Theorem 3.1 (compound Poisson process). We have the formula

P̂tf̂(x̂) = exp
[
−λ̂t
]∑

n

(
λ̂t
)n

n!
Ĝnf̂(x̂). (3.3)

Proof. In order to simplify the exposition, we suppose λ̂ = 1.
We have the recursion formula

Ĝnf̂(x̂) − Ĝn−1f̂(x̂) = L̂Ĝn−1f̂(x̂) (3.4)

such that

Ĝn =
(
I + L̂
)n

(3.5)

But L̂ is a bounded operator on the set of continuous functions endowed with the uniform
norm. Therefore, the semigroup P̂t satisfies to

P̂tf̂(x̂) =
∑

n≥0
tn/n!

(
L̂
)n

f̂(x̂). (3.6)

We write

(
L̂
)n

=
(
L̂ + I − I

)n
(3.7)

such that

(
L̂
)n

=
∑

p

(−1)pCp
nĜ

n−p. (3.8)

Therefore,

P̂tf̂(x̂) =
∑

n≥0,p≤n
tn/n!(−1)pCp

nĜ
n−pf̂(x, V ) =

∑
tn/n!Ĝn,εf̂(x̂) exp[−t]. (3.9)

Let us consider now a generator

L̂
(
f̂
)
(x̂) =

∫

�d̂

(
f̂(x̂ + ẑ) − f̂(x̂)

)
dμ̂x̂(ẑ) +

〈
df̂(x̂), X̂0(x̂)

〉
. (3.10)

We suppose that the total mass of μ̂x̂ is finite and is equal to the constant quantity λ̂ and that
μ̂x̂ depends continuously of x̂ for the strong topology. L̂ generates a semigroup on the space
of continuous functions endowed with the uniform norm.
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Let L̂1 be the generator

L̂1
(
f̂
)
(x̂) =

〈
df̂(x̂), X̂0(x̂)

〉
. (3.11)

It generates a semigroup P̂ 1
t . We suppose that P̂ 1

t (1) = 1. It is the same to suppose that the
solution of the ordinary differential equation

dx̂1
s = X̂0

(
x̂1
s

)
ds (3.12)

does not blow up

L̂2
(
f̂
)
(x̂) =

∫

�d̂

(
f̂(x̂ + ẑ) − f̂(x̂)

)
dμ̂x̂(ẑ). (3.13)

It is a bounded operator on the set of uniformly bounded functions endowed with the
uniform topology. Therefore it generates a semigroup on the set of bounded continuous
functions. We get the following translation of (2.20) in semigroup theory.

Theorem 3.2. We have if f̂ is bounded continuous

P̂t

(
f̂
)
(x̂) = f̂(x̂) + exp

[
−λ̂t
]
×
∫

0<s1<s2<···<sr<t
P̂ 1
s1
Ĝ2 · · · Ĝ2P̂ 1

t−sr f̂(x̂)ds1 · · ·dsr. (3.14)

Proof. We suppose to simplify that λ̂ = 1. By the classical Volterra expansion, we get

P̂t

(
f̂
)
(x̂) = f̂(x̂) +

∫

0<s1<s2<···<sr<t
P̂ 1
s1
L̂2 · · · L̂2P̂ 1

t−sr f̂(x̂)ds1 · · ·dsr. (3.15)

We write

L̂2 = Ĝ2 − I. (3.16)

The previous Volterra expansion can be written as

P̂t

(
f̂
)
(x̂) = f̂(x̂) +

∫

0<s1<s2<···<sr<t
P̂ 1
s1

(
Ĝ2 − I

)
· · ·
(
Ĝ2 − I

)
P̂ 1
t−sr f̂(x̂)ds1 · · ·dsr. (3.17)

We distribute in the last expression, and we use the two formulas

P̂ 1
s1
P̂ 1
s2
= P̂ 1

s1+s2 , (3.18)
∫

t1<s2<···sr<t2
ds1 · · ·dsr = (t2 − t1)r

r!
. (3.19)
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We recognize

P̂t = I +
∑

r

∑

n1,...,nr

(−1)
∑

ni ×
∫

0<s1<···<sr<t

sn1
1

n1!
P̂ 1
s1
Ĝ2 (s2 − s1)n2

n2!
· · · Ĝ2P̂ t−sr

1
(t − sr)nr

nr !
ds1 · · ·dsr

= I +
∑

r

∫

0<s1<···<sr<t
× exp[−s1]Ĝ2P̂ 1

s1 exp [−(s2 − s1)] · · ·

× Ĝ2P̂ 1(t − sr) exp[−(t − sr)]ds1 · · ·dsr.
(3.20)

The result follows from the fact that

exp[−t] = exp[−s1] exp[−(s2 − s1)] · · · exp[−(t − sr)]. (3.21)

4. Proof of Theorem 2.2

Let L̂ the Malliavin generator acting on smooth function on �d × � d , where � d is the space
of symmetric matrices on �d :

L̂f̂(x, V ) =
∑∫

�

(

f̂

(

x + γj(z), V + ν(z)
〈
·, γ ′j(z)

〉2
)

− f̂(x, V )
)

gj(z)dz. (4.1)

ν(z) is a smooth positive function with compact support equal to z4 on a neighborhood of 0.
V is called the Malliavin matrix. L̂ generates a semigroup P̂t called the Malliavin semigroup.
Under Hypothesis 2.1, we have for all p [20]

P̂1
[
V −p](x, 0) < ∞. (4.2)

Let g be a smooth positive function equals to 1 if |V | < 1 and equal to 0 if |V | > 2. We consider
the measure μK

f −→ P̂1

[

g

(
V −1

K

)

f

]

(x, 0). (4.3)

Proposition 4.1. The measure μK has a smooth density pK(x, y), and, when K → ∞, pK(x, y) →
p1(x, y) uniformly.
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Proof. We follow the argument of [20]. We put � l = �d×� d×�d2×· · ·×�dr xl = (x1, v, x2, . . . , xr).
We consider a bounded map g, g(0) = 0, from �m into � l . Its values in �d is γ(z) =

∑
γj(zj)

and its values in � d is
∑

ν(zj)〈·, γ ′j(zj)〉2. dμ(z) =
∑

gj(zj)dzj . We consider the generator

Llf
(
xl
)
=
∫

�m

(
fl
(
xl + g(z)

)
− fl
(
xl
))

dμ(z). (4.4)

This generates a semigroup Pl
t . We put gK(V ) = g(V/K). By using the integration by parts

formulas of [20],

P̂1

[(
1 − gK

(
V −1
))

Dαf
]
(x, 0) = Pl

1

[
fθ
]
(x, 0, . . .), (4.5)

where Pl
t is a semi group of the previous type, θ a polynomial in the components, V −1, and of

valuation 1 in (1 − gK)(V −1) and the derivatives of gK(V −1). α is a multi-index. By Theorem 3
of [20], we deduce that

∣
∣
∣P̂1

[(
1 − gK

(
V −1
))

Dαf
]
(x, 0)

∣
∣
∣ ≤ C(K)

∥
∥f
∥
∥
∞ (4.6)

when C(K) → 0 when K → ∞. Therefore the result is obtained.

Let ε > 0. Let

L̂εf̂(x, V ) =
∑
∫

|z|>ε

(

f̂

(

x + γj(z), V + ν(z)
〈
·, γ ′j(z)

〉2
)

− f̂(x, V )
)

gj(z)dz. (4.7)

By the same procedure, we define analog generators Ll
ε. We deduce several semigroups P̂ ε

t

and Pε,l
t . We consider the measure με

K

f −→ P̂ ε
1

[
gK
(
V −1
)
f
]
(x, 0). (4.8)

Proposition 4.2. με
K has a density pε,K1 (x, y), and, when ε → 0, pε,K1 (x, y) tends uniformly to

pK1 (x, y).

Proof. Let (α) be a multi-index. We have

μK

[
Dαf
] − με

K

[
Dαf
]
= Pl

1

[
fθ
]
(x, 0, . . .) − Pl,ε

1

[
fθ
]
(x, 0, . . .), (4.9)

where θ is a polynomial in ul, V −1 and of valuation 1 in gK(V −1) and its derivatives. The result
will come from the next lemma.

Lemma 4.3. Let θ be a polynomial in ul, V −1 and of valuation 1 in gK(V −1) and its derivatives. Then
when ε → 0

Pl,ε
1

[
fθ
]
(x, 0, . . .) −→ Pl

1

[
fθ
]
(x, 0, . . .). (4.10)
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Proof. If θ is smooth bounded, we have by Duhamel formula

Pl
1

[
fθ
]
(x, 0) = Pl,ε

1

[
fθ
]
(x, 0, . . .) +

∫1

0
Pl,ε
s

(
Ll − Ll

ε

)
P1−s
[
fθ
]
(x, 0, . . .), (4.11)

and the result goes. It remains to remark that under the previous condition (Ll −
Ll
ε)P1−s[fθ](x, 0, . . .) has a polynomial behaviour whose component tends to zero and to

apply Theorem 3 of [20]. This comes from the fact that Pt−s[fθ)] is a polynomial in x1, . . . xd

and is differentiable bounded in v because we keep only bounded values of V −1 due to the
apparition of g(V −1/K).

Proof of Theorem 2.2. If p1(x, y) > 0, there exists aK, ε such that pε,K(x, y) > 0.
Let us introduce ε > 0. We put

L̂εf(x, V ) =
∫

|z|>ε

(
f
(
(x, V ) + γ̂(z)

) − f(x, V )
)
dμ(z). (4.12)

To simplify the exposition, we suppose that
∫
|z|>ε dμ(z) = 1.

We put

Ĝn,εf̂(x, V ) =
∫

|zi|>ε
f
(
F̂n

(
z1, . . . , zn;x, V

))∏
dμ
(
zi
)
, (4.13)

where F̂ is defined as in (2.4) but with γ̂ . By Theorem 3.1,

P̂ ε
t f(x, V ) =

∑
tn/n!Ĝn,εf̂(x, V ) exp[−t]. (4.14)

Since pε,K(x, y) > 0, the measure f → Ĝn,ε(f(·)g(V −1/K)) has a strictly positive
density in y for some n. This measure is equal to the measure

f −→
∑

j1,...,jn

∫

· · ·
∫

|zl|>0
f
(
Fn,j.

)
g

⎛

⎝
V −1
n,j.

K

⎞

⎠
∏

gjl(zl)dzl. (4.15)

One of the measure in the above sum has a stricly positive density in y, and, therefore, nearby
y. So there exists for y′ close from yn, jl, |zl| > ε, gjl(zl) > 0 such that

(i) Fn,j.(z.) = y′ − x,

(ii) The matrix Vn,j.(z.) =
∑

ν(zl)〈·, γ ′jl(zl)〉
2 has an inverse bounded by K.

It remains to remark that the Gram matrix associated to Fn,j.(z.) is equal to
∑ 〈·, γ ′jl(zl)〉

2 is larger to CVn,ε.(z.) and to apply the implicit function theorem.
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5. Proof of Theorem 2.5

Let us consider the Malliavin generator

L̂f̂(x,U, V ) =
∑
∫

�

(

f̂

(

x + zej ,U, V + ν(z)
〈
·, U−1ej

〉2
)

− f̂(x,U, V )
)

gj(z)dz

+
〈
dxf̂(x,U, V ), X0(x)

〉
+
〈

dUf̂(x,U, V ),
∂

∂x
X0(x)U

〉

.

(5.1)

U belong to � d , the space of invertible matrices, and V belong to � d . V is called theMalliavin
matrix.

As in the previous part, we approximate L̂ by a generator whose Lévy measure is of
finite mass. We get for ε > 0,

L̂εf̂(x,U, V ) =
∑∫

|z|>ε

(

f̂

(

x + zej ,U, V + ν(z)
〈
·, U−1ej

〉2
)

− f̂(x,U, V )
)

gj(z)dz

+
〈
dxf̂(x,U, V ), X0(x)

〉
+
〈

dUf̂(x,U, V ),
∂

∂x
X0(x)U

〉

.

(5.2)

L̂ and L̂ε generate Markov semigroup P̂t and P̂ ε
t .

We repeat with some algebraic modifications due to [19] the considerations of the
previous part. LetK > 0. We consider the measure με

K

f −→ P̂ ε
1

[

g

(
V −1

K

)

f

]

(x, I, 0). (5.3)

It has a density pε,K(x, y). When K → ∞ the density p0,K(x, z) of μ0
K tends uniformly to

p1(x, z) in z. When ε → ∞, the density pε,K(x, z) tends uniformly in z to p0,K(x, z). Therefore,
if p1(x, y) > 0, we can find ε andK such that pε,K(x, y) > 0.

Let Ps be the semi group generated by L:

Lf̂(x,U, V ) =
〈
dxf̂(x,U, V ), X0(x)

〉
+
〈

dUf̂(x,U, V ),
∂

∂x
X0(x)U

〉

. (5.4)

Let L̂ε defined by:

L̂1
εf̂(x,U, V ) =

∑
∫

|z|>ε

(

f̂

(

x + zej ,U, V + ν(z)
〈
·, U−1ej

〉2
)

− f̂(x,U, V )
)

gj(z)dz. (5.5)

We suppose to simplify the exposition that
∑∫

|z|>ε gj(z)dz = 1.
We put

Ĝεf̂(x,U, V ) =
∑∫

|z|>ε

(

f̂

(

x + zej ,U, V + ν(z)
〈
·, U−1ej

〉2
))

gj(z)dz. (5.6)
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Let us use Theorem 3.2. If pε,K(x, y) > 0, then there exists a k such that the mesure

f −→
∫

0<s1<···<sk<1
Ps1Ĝε · · · ĜεP 1−sk

[

g

(
V −1

K

)

f

]

(x, I, 0)ds1 · · ·dsk (5.7)

has a density pε,K
k

(x, y) > 0. Therefore, there exist 0 < t1 < · · · tk < 1 such that the measure

f −→ Pt1Ĝε · · · ĜεP tk

[

g

(
V −1

K

)

f

]

(x, I, 0) (5.8)

has a strictly positive density near y. We consider the system of impulsive equation issued
from (x, I, 0):

dxs

(
j., t., z.

)
(x) = X0

(
xs

(
j., t., z.

)
(x)
)
ds; Δxtl

(
j., t., z.

)
(x) = ejlzl,

dUs

(
j., t., z.

)
=

∂

∂x
X0
(
xs

(
j., t., z.

)
(x)
)
Us

(
j., t., z.

)
ds,

ΔVtl

(
j., t., z.

)
= ν(zl)

〈
·, U−1

tl
ejl

〉2
.

(5.9)

We remark that

f −→ Pt1Ĝε · · · ĜεP tk

[

g

(
V −1

K

)

f

]

(x, I, 0)

=
∑

j1,...,jk

∫

· · ·
∫

|zjl |>ε
f

(

x1
(
j., t., z.

)
g

(
V1
(
j., t., z.

)

K

))
∏

gjl(zl)dzl.

(5.10)

Therefore, the density of one of the measure

f −→
∫

· · ·
∫

|zjl |>ε
f

(

x1
(
j., t., z.

)
g

(
V1
(
j., t., z.

)

K

))
∏

gjl(zl)dzl (5.11)

is strictly positive in y!
From (5.11), we see that there exists j. t. such that, for some |zj | > ε, gjl(zk) > 0 we

have for y′ close from y

(i) x1(j., t., z.)(x) = y′,

(ii) V1(j., t., z.)−1 is bounded by K.

But the Gram matrix associated to x1(j., t., z.)(x) is equal to
∑ 〈·, U1U

−1
tl
ejl〉

2
. It has

therefore an inverse bounded by CK. The result arises by the implicit function theorem.
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[24] D. Applebaum, Lévy Processes and Stochastic Calculus, vol. 93 of Cambridge Studies in Advanced
Mathematics, Cambridge University Press, Cambridge, UK, 2004.



Advances in Difference Equations 15
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