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It is known that there are no local scalar Lie fields in more than two dimensions. Bilocal fields,
however, which naturally arise in conformal operator product expansions, do generate infinite Lie
algebras. It is demonstrated that these Lie algebras of local observables admit (highly reducible)
unitary positive energy representations in a Fock space. The multiplicity of their irreducible
components is governed by a compact gauge group. The mutually commuting observable algebra
and gauge group form a dual pair in the sense of Howe. In a theory of local scalar fields of
conformal dimension two in four space-time dimensions the associated dual pairs are constructed
and classified.

1. Introduction

We review results of [1–7] on 4D conformal field theory (CFT) models, which can be
summed up as follows. The requirement of global conformal invariance (GCI) in compactified
Minkowski space together with the Wightman axioms [8] implies the Huygens principle
(3.6) and rationality of correlation functions [1]. A class of 4D GCI quantum field theory
models gives rise to a (reducible) Fock space representation of a pair consisting of an infinite-
dimensional Lie algebraL and a commuting with its compact Lie groupU. The state space F
splits into a direct sum of irreducible L ×U modules, so that each irreducible representation
(IR) ofL appears with a multiplicity equal to the dimension of an associated IR ofU. The pair
(L, U) illustrates a interconnects two independent developments: (i) it appears as a reductive
dual pair [9, 10], within (a central extension of) an infinite-dimensional symplectic Lie algebra;
(ii) it provides a representation theoretic realization of the Doplicher-Haag-Roberts’ (DHR)
theory of superselection sectors and compact gauge groups, [11, 12]. I will first briefly recall
Howe’s and DHR’s theories, then (in Section 2) I will explain how some 2D CFT technics
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can be extended to four space-time dimensions (in spite of persistent doubts that this is at all
possible). After these preliminaries we will proceed with our survey of 4D CFT models and
associated infinite-dimensional Lie algebras which relate the two independent developments.

1.1. Reductive Dual Pairs

The notion of a (reductive) dual pair was introduced by RogerHowe in an influential preprint
of the 1970s that was eventually published in [10]. It was previewed in two earlier papers of
Howe [9, 13], highlightening the role of the Heisenberg group and the applications of dual
pairs to physics. For Howe a dual pair, the counterpart for groups and for Lie algebras of
the mutual commutants of von Neumann algebras [12] is a (highly structured) concept that
plays a unifying role in such widely different topics as Weil’s metaplectic group approach
[14, 15] to θ functions and automorphic forms (an important chapter in number theory) and
the quantum mechanical Heisenberg group along with the description of massless particles
in terms of the ladder representations of U(2, 2) [16], among others (in physics).

Howe begins in [9]with a 2n-dimensional real symplectic manifoldW = V +V′ where
V is spanned by n symbols ai, i = 1, . . . , n, called annihilation operators and V′ is spanned by
their conjugate, the creation operators a∗

i satisfying the canonical commutation relations (CCR)

[
ai, aj

]
= 0 =

[
a∗
i , a

∗
j

]
,

[
ai, a

∗
j

]
= δij . (1.1)

The commutator of two elements of the real vector space W being a real number it defines
a (nondegenerate, skew-symmetric) bilinear form on it which vanishes on V and on V′

separately and for which V′ appears as the dual space to V (the space of linear functionals
on V). The real symplectic Lie algebra sp(2n,R) spanned by antihermitean quadratic
combinations of ai and a∗

j acts by commutators on W preserving its reality and the above
bilinear form. This action extends to the Fock space F (unitary, irreducible) representation
of the CCR. It is, however, only exponentiated to the double cover of Sp(2n,R), the
metaplectic group Mp(2n) (that is not a matrix group, i.e., has no faithful finite-dimensional
representation; we can view its Fock space, called by Howe [9] oscillator representation as
the defining one). Two subgroups G and G′ of Mp(2n) are said to form a (reductive) dual
pair if they act reductively on F (that is automatic for a unitary representation like the one
considered here) and each of them is the full centralizer of the other inMp(2n). The oscillator
representation of Mp(2n) displays a minimality property, [17, 18] that keeps attracting the
attention of both physicists and mathematicians, see, for example, [19–21].

1.2. Local Observables Determine a Compact Gauge Group

Observables (unlike charge carrying fields) are left invariant by (global) gauge transforma-
tions. This is, in fact, part of the definition of a gauge symmetry or a superselection rule as
explained byWick et al. [22]. It required the nontrivial vision of Rudolf Haag to predict in the
1960s that a local net of obsevable algebras should determine the compact gauge group that
governs the structure of its superselection sectors (for a review and references to the original
work see [12]). It took over 20 years and the courage and dedication of Haag’s (then) young
collaborators, Doplicher and Roberts [11], to carry out this program to completion. They
proved that all superselection sectors of a local QFT A with a mass gap are contained in the
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vacuum representation of a canonically associated (graded local) field extension E, and they
are in a one-to-one correspondence with the unitary irreducible representations (IRs) of a
compact gauge group G of internal symmetries of E, so that A consists of the fixed points of
E under G. The pair (A,G) in E provides a general realization of a dual pair in a local quantu
theory.

2. How Do 2D CFT Methods Work in Higher Dimensions?

A number of reasons are given why 2-dimensional conformal field theory is, in a way,
exceptional so that extending its methods to higher dimensions appears to be hopeless.

(1) The 2D conformal group is infinite-dimensional. It is the direct product of the
diffeomorphism groups of the left and right (compactified) light rays. (In the
euclidean picture it is the group of analytic and antianalytic conformal mappings.)
By contrast, forD > 2, according to the Liouville theorem, the quantummechanical
conformal group in D space-time dimensions is finite (in fact, (D + 1)(D + 2)/2)-
dimensional. It is (a covering of) the spin group Spin (D, 2).

(2) The representation theory of affine Kac-Moody algebras [23] and of the Virasoro
algebra [24] is playing a crucial role in constructing soluble 2Dmodels of (rational)
CFT. There are, on the other hand, no local Lie fields in higher dimensions. After
an inconclusive attempt by Robinson [25] (criticized in [26]) this was proven for
scalar fields by Baumann [27].

(3) The light cone in two dimensions is the direct product of two light rays. This
geometric fact is the basis of splitting 2D variables into right- and left-movers’ chiral
variables. No such splitting seems to be available in higher dimensions.

(4) There are chiral algebras in 2D CFT whose local currents satisfy the axioms of vertex
algebras (As amathematical subject vertex algebras were anticipated by Frenkel and
Kac [28] and introduced by Borcherds [29]; for reviews and further references see,
e.g., [30, 31].) and have rational correlation functions. It was believed for a long
time that they have no physically interesting higher-dimensional CFT analogue.

(5) Furthermore, the chiral currents in a 2D CFT on a torus have elliptic correlation
functions [32], the 1-point function of the stress energy tensor appearing as a
modular form (these can be also interpreted as finite temperature correlation
functions and a thermal energy mean value on the Riemann sphere). Again, there
seemed to be no good reason to expect higher-dimensional analogues of these
attractive properties.

We will argue that each of the listed features of 2D CFT does have, when properly
understood, a higher-dimensional counterpart.

(1) The presence of a conformal anomaly (a nonzero Virasoro central charge c) tells us
that the infinite conformal symmetry in 1 + 1 dimension is, in fact, broken. What is actually
used in 2D CFT are the (conformal) operator product expansions (OPEs) which can be derived
for any D and allow to extend the notion of a primary field (e.g., with respect to the stress-
energy tensor).
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(2) For D = 4, infinite-dimensional Lie algebras are generated by bifields Vij(x1, x2)
which naturally arise in the OPE of a (finite) set of (say, hermitean, scalar) local fields φi of
dimension d(> 1):

(
x2
12

)d
φi(x1)φj(x2) = Nij + x2

12Vij(x1, x2) +O

((
x2
12

)2
)
, (2.1)

x12 = x1 − x2, x2 = x2 − x02, Nij = Nji ∈ R, (2.2)

where Vij are defined as (infinite) sums of OPE contributions of (twist two) conserved local
tensor currents (and the real symmetric matrix (Nij) is positive definite). We say more on this
in what follows (reviewing results of [2–7]).

(3) We will exhibit a factorization of higher-dimensional intervals by using the
following parametrization of the conformally compactified space-time ([33–36]):

M =

{

zα = eituα, α = 1, . . . , D; t, uα ∈ R; u2 =
D∑

α=1

u2
α = 1

}

=
S
D−1 × S

1

{1,−1} . (2.3)

The real interval between two points z1 = eit1u1, z2 = eit2u2 is given by

z212

(
z21z

2
2

)−1/2
= 2(cos t12 − cosα) = −4 sin t+ sin t−, z12 = z1 − z2, (2.4)

t± =
1
2
(t12 ± α), u1 · u2 = cosα, t12 = t1 − t2. (2.5)

Thus t+ and t− are the compact picture counterparts of “left” and “right” chiral variables (see
[36]). The factorization of 2D cross-ratios into chiral parts again has a higher-dimensional
analogue [37]:

s :=
x2
12x

2
34

x2
13x

2
24

= u+u−, t :=
x2
14x

2
23

x2
13x

2
24

= (1 − u+)(1 − u−), xij = xi − xj , (2.6)

which yields a separation of variables in the d’Alembert equation (cf. equation (2.1)). One
should, in fact, be able to derive the factorization (2.6) from (2.4).

(4) It turns out that the requirement of global conformal invariance (GCI) in Minkowski
space together with the standard Wightman axioms of local commutativity and energy
positivity entails the rationality of correlation functions in any even number of space-
time dimensions [1]. Indeed, GCI and local commutativity of Bose fields (for space-like
separations of the arguments) imply the Huygens principle and, in fact, the strong (algebraic)
locality condition

(
x2
12

)n[
φi(x1), φj(x2)

]
= 0 for n sufficiently large, (2.7)

a condition only consistent with the theory of free fields for an even number of space time
dimensions. It is this Huygens locality condition which allows the introduction of higher-
dimensional vertex algebras [35, 36, 38].
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(5) Local GCI fields have elliptic thermal correlation functions with respect to the
(differences of) conformal time variables in any even number of space-time dimensions; the
corresponding energy mean values in a Gibbs (KMS) state (see, e.g., [12]) are expressed as
linear combinations of modular forms [36].

The rest of the paper is organized as follows. In Section 3 we reproduce the general
form of the 4-point function of the bifield V and the leading term in its conformal partial wave
expansion. The case of a theory of scalar fields of dimension d = 2 is singled out, in which
the bifields (and the unit operator) close a commutator algebra. In Section 4 we classify the
arising infinite-dimensional Lie algebrasL in terms of the three real division rings F = R,C,H.
In Section 5 we formulate the main result of [6, 7] on the Fock space representations of the Lie
algebra L(F) coupled to the (dual, in the sense of Howe [9]) compact gauge group U(N,F),
where N is the central charge of L.

3. Four-Point Functions and Conformal Partial Wave Expansions

The conformal bifields V (x1, x2) of dimension (1, 1) which arise in the OPE (2.2) (as sums of
integrals of conserved tensor currents) satisfy the d’Alembert equation in each argument [3];
we will call them harmonic bifields. Their correlation functions depend on the dimension d of
the local scalar fields φ. For d = 1 one is actually dealing with the theory of a free massless
field. We will, therefore, assume d > 1. A basis {fνi, ν = 0, 1, . . . , d − 2, i = 1, 2} of invariant
amplitudes F(s, t) such that

〈0 | V1(x1, x2)V2(x3, x4) | 0〉 =
1

ρ13ρ24
F(s, t),

ρij = x2
ij + i0x0

ij , x2 = x2 −
(
x0
)2

(3.1)

is given by

(u+ − u−)fν1(s, t) =
uν+1
+

(1 − u+)ν+1
− uν+1

−
(1 − u−)ν+1

,

(u+ − u−)fν2(s, t) = (−1)ν
(
uν+1
+ − uν+1

−
)
, ν = 0, 1, . . . , d − 2,

(3.2)

where u± are the “chiral variables” (2.6)

f01 =
1
t
, f02 = 1; f11 =

1 − s − t

t2
, f12 = t − s − 1

f21 =
(1 − t)2 − s(2 − t) + s2

t3
, fν2(s, t) =

1
t
fν1

(
s

t
,
1
t

)
,

(3.3)
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fν,i, i = 1, 2, corresponding to single pole terms [5] in the 4-point correlation functions
wνi(x1, . . . , x4) = fνi(s, t)/ρ13ρ24:

w01 =
1

ρ14ρ23
, w02 =

1
ρ13ρ24

,

w11 =
ρ13ρ24 − ρ14ρ23 − ρ12ρ34

ρ214ρ
2
23

, w12 =
ρ14ρ23 − ρ13ρ24 − ρ12ρ34

ρ213ρ
2
24

,

w21 =

(
ρ13ρ24 − ρ14ρ23

)2 − ρ12ρ34
(
2ρ13ρ24 − ρ14ρ23

)
+ ρ212ρ

2
34

ρ314ρ
3
23

,

w22 =

(
ρ14ρ23 − ρ13ρ24

)2 − ρ12ρ34
(
2ρ14ρ23 − ρ13ρ24

)
+ ρ212ρ

2
34

ρ313ρ
3
24

.

(3.4)

We have wν2 = P34wν1(= P12wν1) where Pij stands for the substitution of the arguments xi

and xj . Clearly, for x1 = x2 (or s = 0, t = 1) only the amplitudes f0i contribute to the 4-
point function (3.1). It has been demonstrated in [4] that the lowest angular momentum (�)
contribution to fνi corresponds to � = ν. The corresponding OPE of the bifield V starts with
a local scalar field φ of dimension d = 2 for ν = 0, with a conserved current jμ (of d = 3)
for ν = 1, with the stress energy tensor Tλμ for ν = 2. Indeed, the amplitude fν1 admits an
expansion in twist two (the twist of a symmetric traceless tensor is defined as the difference
between its dimension and its rank. All conserved symmetric tensors in 4D have twist two.)
conformal partial waves β�(s, t) [39] starting with (for a derivation see [4, Appendix B])

βν(s, t) =
Gν+1(u+) −Gν+1(u−)

u+ − u−
, Gμ(u) = uμF

(
μ, μ; 2μ;u

)
. (3.5)

Remark 3.1. Equations (3.2) and (3.5) provide examples of solutions of the d’Alambert
equation in any of the arguments xi, i = 1, 2, 3, 4. In fact, the general conformal covariant
(of dimension 1 in each argument) such solution has the form of the right-hand side of (3.1)
with

F(s, t) =
f(u+) − f(u−)

u+ − u−
. (3.6)

Remark 3.2. We note that albeit each individual conformal partial wave is a transcendental
function (like (3.5)) the sum of all such twist two contributions is the rational function
fν1(s, t).

It can be deduced from the analysis of 4-point functions that the commutator algebra
of a set of harmonic bifields generated by OPE of scalar fields of dimension d can only close
on the V ’s and the unit operator for d = 2. In this case the bifields V are proven, in addition,
to be Huygens bilocal [5].

Remark 3.3. In general, irreducible positive energy representations of the (connected)
conformal group are labeled by triples (d; j1, j2) including the dimension d and the Lorentz
weight (j1, j2)(2ji ∈ N), [40]. It turns out that for d = 3 there is a spin-tensor bifield of
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weight ((3/2; 1/2, 0), (3/2; 0, 1/2)) whose commutator algebra does close; for d = 4 there
is a conformal tensor bifield of weight ((2; 1, 0), (2; 0, 1)) with this property. These bifields
may be termed lefthanded. They are analogues of chiral 2D currents; a set of bifields invariant
under space reflections would also involve their righthanded counterparts (of weights
((3/2; 0, 1/2), (3/2; 1/2, 0)), and ((2; 0, 1), (2; 1, 0)), resp.).

4. Infinite-Dimensional Lie Algebras and Real Division Rings

Our starting point is the following result of [5].

Proposition 4.1. The harmonic bilocal fields V arising in the OPEs of a (finite) set of local hermitean
scalar fields of dimension d = 2 can be labeled by the elementsM of an unital algebraM ⊂ Mat(L,R)
of real matrices closed under transposition, M→ tM, in such a way that the following commutation
relations (CR) hold:

[VM1(x1, x2), VM2(x3, x4)] = Δ13VtM1M2(x2, x4) + Δ24VM1
tM2(x1, x3)

+ Δ23VM1M2(x1, x4) + Δ14VM2M1(x3, x2)

+ tr(M1M2)Δ12,34 + tr
(tM1M2

)
Δ12,43,

(4.1)

here Δij is the free field commutator, Δij := Δ+
ij − Δ+

ji, and Δ12,ij = Δ+
1iΔ

+
2j − Δ+

i1Δ
+
j2, where Δ

+
ij =

Δ+(xi − xj) is the 2-point Wightman function of a free massless scalar field.

We call the set of bilocal fields closed under the CR (4.1) a Lie system. The types of
Lie systems are determined by the corresponding t-algebras, that is, real associative matrix
algebras M closed under transposition. We first observe that each such M can be equipped
with a Frobenius inner product

〈M1,M2〉 = tr
(tM1M2

)
=
∑

ij

(M1)ij(M2)ij , (4.2)

which is symmetric, positive definite, and has the property 〈M1M2,M3〉 = 〈M1,M3
tM2〉.

This implies that for every right ideal I ⊂ M its orthogonal complement is again a right
ideal while its transposed tI is a left ideal. Therefore, M is a semisimple algebra so that every
module over M is a direct sum of irreducible modules.

Let nowM be irreducible. It then follows from the Schur’s lemma (whose real version
[41] is richer but less popular than the complex one) that its commutant M′ in Mat(L,R)
coincides with one of the three real division rings (or not necessarily commutative fields): the
fields of real and complex numbers R and C, and the noncommutative division ring H of
quaternions. In each case the Lie algebra of bilocal fields is a central extension of an infinite-
dimensional Lie algebra that admits a discrete series of highest weight representations.
Finite dimensional simple Lie groups G with this property have been extensively studied
by mathematicians (for a review and references, see [42]); for an extension to the infinite-
dimensional case, see [43]. If Z is the centre of G and K is a closed maximal subgroup of G
such that K/Z is compact then G is characterized by the property that (G,K) is a hermitean
symmetric pair. Such groups give rise to simple space-time symmetries in the sense of [44] (see
also earlier work—in particular by Günaydin—cited there).
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It was proven, first in the theory of a single scalar field φ (of dimension two) [2], and
eventually for an arbitrary set of such fields [5], that the bilocal fields VM can be written as
linear combinations of normal products of free massless scalar fields ϕi(x):

VM(x1, x2) =
L∑

i,j=1

Mij : ϕi(x1)ϕj(x2). (4.3)

For each of the above types of Lie systems VM has a canonical form, namely,

R : V (x1, x2) =
N∑

i=1

: ϕi(x1)ϕi(x2),

C : W(x1, x2) =
N∑

j=1

: ϕ∗
j (x1)ϕj(x2),

H : Y (x1, x2) =
N∑

m=1

: ϕ+
m(x1)ϕm(x2),

(4.4)

where ϕi are real, ϕj are complex, and ϕm are quaternionic valued fields (corresponding to
(3.2) with L = N, 2N, and 4N, resp.). We will denote the associated infinite-dimensional Lie
algebra by L(F), F = R, C, or H.

Remark 4.2. We note that the quaternions (represented by 4 × 4 real matrices) appear both
in the definition of Y—that is, of the matrix algebra M, and of its commutant M′, the two
mutually commuting sets of imaginary quaternionic units �i and rj corresponding to the
splitting of the Lie algebra so(4) of real skew-symmetric 4 × 4 matrices into a direct sum
of “a left and a right” so(3) Lie subalgebras:

�1 = σ3 ⊗ ε, �2 = ε ⊗ 1, �3 = �1�2 = σ1 ⊗ ε,

(
�j
)
αβ

= δα0δjβ − δαjδ0β − ε0jαβ, α, β = 0, 1, 2, 3, j = 1, 2, 3,

r1 = ε ⊗ σ3, r2 = 1 ⊗ ε, r3 = r1r2 = ε ⊗ σ1,

(4.5)

where σk are the Pauli matrices, ε = iσ2, εμναβ is the totally antisymmetric Levi-Civita tensor
normalized by ε0123 = 1. We have

Y (x1, x2) = V0(x1, x2)1 + V1(x1, x2)�1 + V2(x1, x2)�2 + V3(x1, x2)�3

= Y (x2, x1)+
(
�+i = −�i,

[
�i, rj

]
= 0

)
,

Vκ(x1, x2) =
N∑

m=1

: ϕα
m(x1)(�κ)αβϕ

β
m(x2), �0 = 1.

(4.6)

In order to determine the Lie algebra corresponding to the CR (4.1) in each of the three
cases (4.5)we choose a discrete basis and specify the topology of the resulting infinite matrix
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algebra in such a way that the generators of the conformal Lie algebra (most importantly, the
conformal Hamiltonian H) belong to it. The basis, say (Xmn) where m,n are multi-indices,
corresponds to the expansion [34] of a free massless scalar field ϕ in creation and annihilation
operators of fixed energy states

ϕ(z) =
∞∑

�=0

(�+1)2∑

μ=1

((
z2
)−�−1

ϕ�+1,μ + ϕ−�−1,μ

)
h�μ(z), (4.7)

where (h�μ(z), μ = 1, . . . , (� + 1)2) form a basis of homogeneous harmonic polynomials of
degree � in the complex 4-vector z (of the parametrization (2.3) of M). The generators of the
conformal Lie algebra su(2, 2) are expressed as infinite sums in Xmn with a finite number of
diagonals (cf. Appendix B in [6]). The requirement su(2, 2) ⊂ L thus restricts the topology of
L implying that the last (c-number) term in (4.1) gives rise to a nontrivial central extension
of L.

The analysis of [6, 7] yields the following.

Proposition 4.3. The Lie algebras L(F), F = R,C,H are 1-parameter central extensions of
appropriate completions of the following inductive limits of matrix algebras:

R : sp(∞,R) = lim
n→∞

sp(2n,R),

C : u(∞,∞) = lim
n→∞

u(n, n),

H : so∗(4∞) = lim
n→∞

so∗(4n).

(4.8)

In the free field realization (4.4) the suitably normalized central charge coincides with the positive
integerN.

5. Fock Space Representation of the Dual Pair L(F) ×U(N,F)

To summarize the discussion of the last section, there are three infinite-dimensional
irreducible Lie algebras,L(F), that are generated in a theory of GCI scalar fields of dimension
d = 2 and correspond to the three real division rings F (Proposition 4.3). For an integer central
chargeN they admit a free field realization of type (4.3) and a Fock space representation with
(compact) gauge group U(N,F):

U(N,R) = O(N), U(N,C) = U(N), U(N,H) = Sp(2N)
(
= USp(2N)

)
. (5.1)

It is remarkable that this result holds in general.

Theorem 5.1. (i) In any unitary irreducible positive energy representation (UIPER) of L(F) the
central charge N is a positive integer.

(ii) All UIPERs of L(F) are realized (with multiplicities) in the Fock space F ofNdimRF free
hermitean massless scalar fields.
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(iii) The ground states of equivalent UIPERs in F form irreducible representations of the
gauge group U(N,F) (5.1). This establishes a one-to-one correspondence between UIPERs of L(F)
occurring in the Fock space and the irreducible representations ofU(N,F).

The proof of this theorem for F = R, C is given in [6] (the proof of (i) is already
contained in [2]); the proof for F = H is given in [7].

Remark 5.2. Theorem 5.1 is also valid—and its proof becomes technically simpler—for a
2-dimensional chiral theory (in which the local fields are functions of a single complex
variable). For F = C the representation theory of the resulting infinite-dimensional Lie algebra
u(∞,∞) is then essentially equivalent to that of the vertex algebra W1+∞ studied in [45] (see
the introduction in [6] for a more precise comparison).

Theorem 5.1 provides a link between two parallel developments, one in the study
of the highest weight modules of reductive Lie groups (and of related dual pairs—see
Section 1.1) [42, 43, 46, 47] (and [9, 10]), the other in the work of Doplicher and Roberts
[11] and Haag [12] on the theory of (global) gauge groups and superselection sectors—see
Section 1.2. (They both originate—in the paper of Irving Segal and Rudolf Haag, resp.—
at the same Lille 1957 conference on mathematical problems in quantum field theory.)
Albeit the settings are not equivalent the results match. The observable algebra (in our
case, the commutator algebra generated by the set of bilocal fields VM) determines the
(compact) gauge group and the structure of the superselection sectors of the theory.
(For a more careful comparison between the two approaches, see [6, Sections 1 and
4].)

The infinite-dimensional Lie algebra L(F) and the compact gauge group U(N,F)
appear as a rather special (limit-) case of a dual pair in the sense of Howe [9, 10]. It
would be interesting to explore whether other (inequivalent) pairs would appear in the
study of commutator algebras of (spin)tensor bifields (discussed in Remark 3.3) and of their
supersymmetric extension (e.g., a limit as m,n → ∞ of the series of Lie superalgebras
osp(4m∗ | 2n) studied in [48]).
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