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This article is a review on Berezin-Toeplitz operator and Berezin-Toeplitz deformation quantization
for compact quantizable Kähler manifolds. The basic objects, concepts, and results are given. This
concerns the correct semiclassical limit behaviour of the operator quantization, the unique Berezin-
Toeplitz deformation quantization (star product), covariant and contravariant Berezin symbols,
and Berezin transform. Other related objects and constructions are also discussed.

1. Introduction

For quantizable Kähler manifolds the Berezin-Toeplitz (BT) quantization scheme, both
the operator quantization and the deformation quantization, supplies canonically defined
quantizations. Some time ago, in joint work with Martin Bordemann and Eckhard
Meinrenken, the author of this review showed that for compact Kähler manifolds it is a well-
defined quantization scheme with correct semiclassical limit [1].

What makes the Berezin-Toeplitz quantization scheme so attractive is that it does
not depend on further choices and that it does not only produce a formal deformation
quantization, but one which is deeply related to some operator calculus.

From the point of view of classical mechanics, compact Kähler manifolds appear as
phase space manifolds of restricted systems or of reduced systems. A typical example of its
appearance is given by the spherical pendulum which after reduction has as phase-space the
complex projective space.

Very recently, inspired by fruitful applications of the basic techniques of the Berezin-
Toeplitz scheme beyond the quantization of classical systems, the interest in it revived
considerably.



2 Advances in Mathematical Physics

For example, these techniques show up in a noncommutative geometry. More
precisely, they appear in the approach to noncommutative geometry using fuzzy manifolds.
The quantum spaces of the BT quantization of level m, defined in Section 3 further down,
are finite-dimensional, and the quantum operator of level m constitutes finite-dimensional
noncommutative matrix algebras. This is the arena of noncommutative fuzzy manifolds and
gauge theories over them. The classical limit, the commutative manifold, is obtained as limit
m → ∞. The name fuzzy sphere was coined by Madore [2] for a certain quantized version of
the Riemann sphere. It turned out to be a quite productive direction in the noncommutative
geometry approach to quantum field theory. It is impossible to give a rather complete list
of people working in this approach. The following is a rather erratic and random choice of
[3–10].

Another appearance of Berezin-Toeplitz quantization techniques as basic ingredients
is in the pioneering work of Jørgen Andersen on the mapping class group (MCG) of surfaces
in the context of Topological Quantum Field Theory (TQFT). Beside other results, he was able
to prove the asymptotic faithfulness of the mapping group action on the space of covariantly
constant sections of the Verlinde bundle with respect to the Axelrod-Witten-de la Pietra and
Witten connection [11, 12]; see also [13]. Furthermore, he showed that theMCGdoes not have
Kazhdan’s property T . Roughly speaking, a group which has property T says that the identity
representation is isolated in the space of all unitary representations of the group [14]. In these
applications, the manifolds to be quantized are the moduli spaces of certain flat connections
on Riemann surfaces or, equivalently, the moduli space of stable algebraic vector bundles
over smooth projective curves. Here further exciting research is going on, in particular, in the
realm of TQFT and the construction of modular functors [15–17].

In general, quite often moduli spaces come with a Kähler structure which is
quantizable. Hence, it is not surprising that the Berezin-Toeplitz quantization scheme is of
importance in moduli space problems. Noncommutative deformations and a quantization
being a noncommutative deformation, yield also information about the commutative
situation. These aspects clearly need further investigations.

There are a lot of other applications on which work has already been done, recently
started, or can be expected. As the Berezin-Toeplitz scheme has become a basic tool, this
seems the right time to collect the techniques and results in such a review. We deliberately
concentrate on the case of compact Kähler manifolds. In particular, we stress the methods
and results valid for all of them. Due to “space-time” limitations, we will not deal with
the noncompact situation. In this situation, case by case studies of the examples or class of
examples are needed. See Section 3.7 for references to some of them. Also we have to skip
presenting recent attempts to deal with special singular situations, like orbifolds, but see at
least [18–20].

Of course, there are other reviews presenting similar quantization schemes. A very
incomplete list is the following [21–25].

This review is self-contained in the following sense. I try to explain all notions and
concepts needed to understand the results and theorems only assuming some background
in modern geometry and analysis. And as such it should be accessible for a newcomer to
the field (both for mathematicians as for physicists) and help him to enter these interesting
research directions. It is not self-contained in the strict sense as it does supply only those
proofs or sketches of proofs which are either not available elsewhere or are essential
for the understanding of the statements and concepts. The review does not require a
background in quantum physics as only mathematical aspects of quantizations are touched
on.
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2. The Set-Up of Geometric Quantization

In the following, I will recall the principal set-up of geometric quantization which is usually
done for symplectic manifolds in the case when the manifold is a Kähler manifold.

2.1. Kähler Manifolds

We will only consider phase-space manifolds which carry the structure of a Kähler manifold
(M,ω). Recall that in this case M is a complex manifold and ω, the Kähler form, is a
nondegenerate closed positive (1, 1)-form.

If the complex dimension ofM is n, then the Kähler formω can be written with respect
to local holomorphic coordinates {zi}i=1,...,n as

ω = i
n∑

i,j=1

gij(z)dzi ∧ dzj , (2.1)

with local functions gij(z) such that the matrix (gij(z))i,j=1,...,n is hermitian and positive
definite.

Later on we will assume thatM is a compact Kähler manifold.

2.2. Poisson Algebra

Denote by C∞(M) the algebra of complex-valued (arbitrary often) differentiable functions
with the point-wise multiplication as an associative product. A symplectic form on a
differentiable manifold is a closed nondegenerate 2-form. In particular, we can consider our
Kähler form ω as a symplectic form.

For symplectic manifolds, we can introduce on C∞(M) a Lie algebra structure, the
Poisson bracket Poisson bracket {·, ·}, in the following way. First we a assign to every f ∈
C∞(M) its Hamiltonian vector field Xf , and then to every pair of functions f and g the Poisson
bracket {·, ·} via

ω
(
Xf, ·

)
= df(·), {

f, g
}
:= ω

(
Xf,Xg

)
. (2.2)

One verifies that this defines a Lie algebra structures and that furthermore, we have the
Leibniz rule

{
fg, h

}
= f

{
g, h

}
+
{
f, h

}
g, ∀f, g, h ∈ C∞(M). (2.3)

Such a compatible structure is called a Poisson algebra.
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2.3. Quantum Line Bundles

A quantum line bundle for a given symplectic manifold (M,ω) is a triple (L, h,∇), where L is
a complex line bundle, h a Hermitian metric on L, and ∇ a connection compatible with the
metric h such that the (pre)quantum condition

curvL,∇(X,Y ) := ∇X∇Y − ∇Y∇X − ∇[X,Y ] = −iω(X,Y ),
resp., curvL,∇ = −iω

(2.4)

is fulfilled. A symplectic manifold is called quantizable if there exists a quantum line bundle.
In the situation of Kähler manifolds, we require for a quantum line bundle to be

holomorphic and that the connection is compatible both with the metric h and the complex
structure of the bundle. In fact, by this requirement ∇ will be uniquely fixed. If we choose
local holomorphic coordinates on the manifold and a local holomorphic frame of the bundle,
the metric h will be represented by a function ĥ. In this case, the curvature in the bundle can
be given by ∂∂ log ĥ and the quantum condition reads as

i∂∂ log ĥ = ω. (2.5)

2.4. Example: The Riemann Sphere

The Riemann sphere is the complex projective line P
1(C) = C ∪ {∞} ∼= S2. With respect to the

quasiglobal coordinate z, the form can be given as

ω =
i

(1 + zz)2
dz ∧ dz. (2.6)

For the Poisson bracket, one obtains

{
f, g

}
= i(1 + zz)2

(
∂f

∂z
· ∂g
∂z

− ∂f

∂z

∂g

∂z

)
. (2.7)

Recall that the points in P
1(C) correspond to lines in C

2 passing through the origin. If we
assign to every point in P

1(C) the line it represents, we obtain a holomorphic line bundle,
called the tautological line bundle. The hyper plane section bundle is dual to the tautological
bundle. It turns out that it is a quantum line bundle. Hence P

1(C) is quantizable.
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2.5. Example: The Complex Projective Space

Next we consider the n-dimensional complex projective space P
n(C). The example above can

be extended to the projective space of any dimension. The Kähler form is given by the Fubini-
Study form

ωFS := i

(
1 + |w|2

)∑n
i=1 dwi ∧ dwi −

∑n
i,j=1wiwjdwi ∧ dwj

(
1 + |w|2

)2
. (2.8)

The coordinates wj , j = 1, . . . , n, are affine coordinates wj = zj/z0 on the affine chart U0 :=
{(z0 : z1 : · · · : zn) | z0 /= 0}. Again, P

n(C) is quantizable with the hyper plane section bundle
as a quantum line bundle.

2.6. Example: The Torus

The (complex-) one-dimensional torus can be given as M = C/Γτ , where Γτ := {n + mτ |
n,m ∈ Z} is a lattice with Im τ > 0. As Kähler form, we take

ω =
iπ
Im τ

dz ∧ dz, (2.9)

with respect to the coordinate z on the covering space C. Clearly this form is invariant under
the lattice Γτ and hence well defined onM. For the Poisson bracket, one obtains

{
f, g

}
= i

Im τ

π

(
∂f

∂z
· ∂g
∂z

− ∂f

∂z

∂g

∂z

)
. (2.10)

The corresponding quantum line bundle is the theta line bundle of degree 1, that is, the
bundle whose global sections are scalar multiples of the Riemann theta function.

2.7. Example: The Unit Disc and Riemann Surfaces

The unit disc

D := {z ∈ C | |z| < 1} (2.11)

is a noncompact Kähler manifold. The Kähler form is given by

ω =
2 i

(1 − zz)2
dz ∧ dz. (2.12)
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Every compact Riemann surface M of genus g ≥ 2 can be given as the quotient of the unit
disc under the fractional linear transformations of a Fuchsian subgroup of SU(1, 1). If R =
((a/b) (b/a))with |a|2 − |b|2 = 1 (as an element of SU(1, 1)), then the action is

z �−→ R(z) :=
az + b

bz + a
. (2.13)

The Kähler form (2.12) is invariant under the fractional linear transformations. Hence it
defines a Kähler form onM. The quantum bundle is the canonical bundle, that is, the bundle
whose local sections are the holomorphic differentials. Its global sections can be identified
with the automorphic forms of weight 2 with respect to the Fuchsian group.

2.8. Consequences of Quantizability

The above examples might create the wrong impression that every Kähler manifold is
quantizable. This is not the case. For example, only those higher-dimensional tori complex
tori are quantizable which are abelian varieties, that is, which admit enough theta functions.
It is well known that for n ≥ 2 a generic torus will not be an abelian variety. Why this implies
that they will not be quantizable, we will see in a moment.

In the language of differential geometry, a line bundle is called a positive line bundle
if its curvature form (up to a factor of 1/i) is a positive form. As the Kähler form is positive,
the quantum condition (2.4) yields that a quantum line bundle L is a positive line bundle.

2.9. Embedding into Projective Space

In the following, we assume thatM is a quantizable compact Kähler manifold with quantum
line bundle L. Kodaira’s embedding theorem says that L is ample, that is, that there exists a
certain tensor power Lm0 of L such that the global holomorphic sections of Lm0 can be used
to embed the phase space manifold M into the projective space of suitable dimension. The
embedding is defined as follows. Let Γhol(M,Lm0) be the vector space of global holomorphic
sections of the bundle Lm0 . Fix a basis s0, s1, . . . , sN . We choose local holomorphic coordinates
z for M and a local holomorphic frame e(z) for the bundle L. After these choices, the basis
elements can be uniquely described by local holomorphic functions ŝ0, ŝ1, . . . , ŝN defined via
sj(z) = ŝj(z)e(z). The embedding is given by the map

M ↪→ P
N(C), z �−→ φ(z) = (ŝ0(z) : ŝ1(z) : · · · : ŝN(z)). (2.14)

Note that the point φ(z) in projective space neither depends on the choice of local coordinates
nor on the choice of the local frame for the bundle L. Furthermore, a different choice of basis
corresponds to a PGL(N,C) action on the embedding space and hence the embeddings are
projectively equivalent.

By this embedding, quantizable compact Kähler manifolds are complex submanifolds
of projective spaces. By Chow’s theorem [26], they can be given as zero sets of homogenous
polynomials, that is, they are smooth projective varieties. The converse is also true. Given
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a smooth subvarietyM of P
n(C), it will become a Kähler manifold by restricting the Fubini-

Study form. The restriction of the hyper plane section bundle will be an associated quantum
line bundle.

At this place a warning is necessary. The embedding is only an embedding as complex
manifolds are not an isometric embedding as Kähler manifolds. This means that in general
φ−1(ωFS)/=ω. See Section 7.6 for results on an “asymptotic expansion” of the pullback.

A line bundle, whose global holomorphic sections will define an embedding into
projective space, is called a very ample line bundle. In the following, we will assume that L
is already very ample. If L is not very ample, we choose m0 ∈ N such that the bundle Lm0 is
very ample and take this bundle as quantum line bundle with respect to the rescaled Kähler
formm0ω onM. The underlying complex manifold structure will not change.

3. Berezin-Toeplitz Operators

In this section, wewill consider an operator quantization. This says that wewill assign to each
differentiable (differentiable will always mean differentiable to any order) function f on our
Kähler manifoldM (i.e., on our “phase space”) the Berezin-Toeplitz (BT) quantum operator
Tf . More precisely, we will consider a whole family of operators T (m)

f
. These operators are

defined in a canonical way. As we know from the Groenewold-van Howe theorem, we cannot
expect that the Poisson bracket onM can be represented by the Lie algebra of operators if we
require certain desirable conditions see [27] for further details. The best we can expect is that
we obtain it at least “asymptotically”. In fact, this is true.

In our context also the operator of geometric quantization exists. At the end of this
section, we will discuss its relation to the BT quantum operator. It will turn out that if we take
for the geometric quantization the Kähler polarization then they have the same asymptotic
behaviour.

3.1. Tensor Powers of the Quantum Line Bundle

Let (M,ω) be a compact quantizable Kähler manifold and (L, h,∇) a quantum line bundle.
We assume that L is already very ample. We consider all its tensor powers

(
Lm, h(m),∇(m)

)
. (3.1)

Here Lm := L⊗m. If ĥ corresponds to the metric h with respect to a local holomorphic frame e
of the bundle L, then ĥm corresponds to the metric h(m) with respect to the frame e⊗m for the
bundle Lm. The connection ∇(m) will be the induced connection.

We introduce a scalar product on the space of sections. In this review, we adopt the
convention that a hermitian metric (and a scalar product) is antilinear in the first argument
and linear in the second argument. First we take the Liouville form Ω = (1/n!)ω∧n as a
volume form onM and then set for the scalar product and the norm

〈
ϕ, ψ

〉
:=

∫

M

h(m)(ϕ, ψ
)
Ω,

∥∥ϕ
∥∥ :=

√〈
ϕ, ϕ

〉
, (3.2)
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on the space Γ∞(M,Lm) of global C∞-sections. Let L2(M,Lm) be the L2-completion of
Γ∞(M,Lm), and Γhol(M,Lm) its (due to the compactness of M) finite-dimensional closed
subspace of global holomorphic sections. Let

Π(m) : L2(M,Lm) −→ Γhol(M,Lm) (3.3)

be the projection onto this subspace.

Definition 3.1. For f ∈ C∞(M), the Toeplitz operator T (m)
f (of levelm) is defined by

T
(m)
f := Π(m)(f ·) : Γhol(M,Lm) −→ Γhol(M,Lm). (3.4)

In words, one takes a holomorphic section s and multiplies it with the differentiable
function f . The resulting section f · s will only be differentiable. To obtain a holomorphic
section, one has to project it back on the subspace of holomorphic sections.

The linear map

T (m) : C∞(M) −→ End(Γhol(M,Lm)), f −→ T
(m)
f

= Π(m)(f ·), m ∈ N0 (3.5)

is the Toeplitz or Berezin-Toeplitz quantization map (of level m). It will neither be a Lie algebra
homomorphism nor an associative algebra homomorphism as in general

T
(m)
f

T
(m)
g = Π(m)(f ·)Π(m)(g·)Π(m)

/=Π(m)(fg·)Π = T (m)
fg

. (3.6)

Furthermore, on a fixed levelm, it is a map from the infinite-dimensional commutative
algebra of functions to a noncommutative finite-dimensional (matrix) algebra. The finite-
dimensionality is due to the compactness ofM. A lot of classical information will get lost. To
recover this information, one has to consider not just a single levelm but all levels together.

Definition 3.2. The Berezin-Toeplitz quantization is the map

C∞(M) −→
∏

m∈N0

End
(
Γhol

(
M,L(m)

))
, f −→

(
T
(m)
f

)

m∈N0
. (3.7)

We obtain a family of finite-dimensional (matrix) algebras and a family of maps. This
infinite family should in some sense “approximate” the algebra C∞(M).

3.2. Approximation Results

Denote for f ∈ C∞(M) by |f |∞, the supnorm of f onM and by

∥∥∥T (m)
f

∥∥∥ := sup
s∈Γhol(M,Lm)

s /= 0

∥∥∥T (m)
f

s
∥∥∥

‖s‖ , (3.8)
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the operator norm with respect to the norm (3.2) on Γhol(M,Lm). The following theorem was
shown in 1994.

Theorem 3.3 (Bordemann et al. [1]). (a) For every f ∈ C∞(M), there exists a C > 0 such that

∣∣f
∣∣
∞ − C

m
≤

∥∥∥T (m)
f

∥∥∥ ≤ ∣∣f
∣∣
∞. (3.9)

In particular, limm→∞‖T (m)
f ‖ = |f |∞.

(b) For every f, g ∈ C∞(M),

∥∥∥m i
[
T
(m)
f , T

(m)
g

]
− T (m)

{f,g}
∥∥∥ = O

(
1
m

)
. (3.10)

(c) For every f, g ∈ C∞(M),

∥∥∥T (m)
f

T
(m)
g − T (m)

f ·g
∥∥∥ = O

(
1
m

)
. (3.11)

These results are contained in Theorems 4.1, 4.2, and in Section 5 in [1]. We will
indicate the proof for (b) and (c) in Section 5. It will make reference to the symbol calculus
of generalised Toeplitz operators as developed by Boutet de Monvel and Guillemin [28].
The original proof of (a) was quite involved and required Hermite distributions and related
objects. On the basis of the asymptotic expansion of the Berezin transform [29], a more direct
proof can be given. I will discuss this in Section 7.3.

Only on the basis of this theorem, we are allowed to call our scheme a quantizing
scheme. The properties in the theorem might be rephrased as the BT operator quantization has
the correct semiclassical limit.

3.3. Further Properties

From Theorem 3.3 (c), we have the following proposition.

Proposition 3.4. Let f1, f2, . . . , fr ∈ C∞(M); then

∥∥∥T (m)
f1...fr

− T (m)
f1

· · · T (m)
fr

∥∥∥ = O
(
m−1

)
(3.12)

follows directly.

Proposition 3.5.

lim
m→∞

∥∥∥
[
T
(m)
f

, T
(m)
g

]∥∥∥ = 0. (3.13)
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Proof. Using the left side of the triangle inequality, from Theorem 3.3 (b), it follows that

∣∣∣m
∥∥∥
[
T
(m)
f , T

(m)
g

]∥∥∥ −
∥∥∥T (m)

{f,g}
∥∥∥
∣∣∣ ≤

∥∥∥m i
[
T
(m)
f , T

(m)
g

]
− T (m)

{f,g}
∥∥∥ = O

(
1
m

)
. (3.14)

By part (a) of the theorem ‖T (m)
{f,g}‖ → |{f, g}|∞, and it stays finite. Hence ‖[T (m)

f
, T

(m)
g ]‖ has to

be a zero sequence.

Proposition 3.6. The Toeplitz map

C∞(M) −→ End
(
Γhol

(
M,L(m)

))
, f −→ T

(m)
f

, (3.15)

is surjective.

For a proof, see [1, Proposition 4.2].
This proposition says that for a fixed m every operator A ∈ End(Γhol(M,L(m))) is the

Toeplitz operator of a function fm. In the language of Berezin’s co- and contravariant symbols,
fm will be the contravariant symbol of A. We will discuss this in Section 6.2.

Proposition 3.7. For all f ∈ C∞(M),

T
(m)
f

∗
= T (m)

f
. (3.16)

In particular, for real valued functions f the associated Toeplitz operator is self-adjoint.

Proof. Take s, t ∈ Γhol(M,Lm); then

〈
s, T

(m)
f

t
〉
=

〈
s,Π(m)(f · t)

〉
=

〈
s, f · t〉 =

〈
f · s, t

〉
=

〈
T
(m)

f
s, t

〉
. (3.17)

The opposite of the last statement of the above proposition is also true in the following
sense.

Proposition 3.8. Let A ∈ End(Γhol(M,L(m))) be a self-adjoint operator; then there exists a real
valued function f , such that A = T (m)

f
.

Proof. By the surjectivity of the Toeplitz map A = T
(m)
f with a complex-valued function f =

f0 + i f1 with real functions f0 and f1. As T (m)
f

= A = A∗ = T
(m)

f
, it follows that Tf−f = 0 and

hence T (m)
f1

= 0. From this we conclude that A = T (m)
f

= T (m)
f1

.

We like to stress the fact that the Toeplitz map is never injective on a fixed level m.
Only if ‖T (m)

f−g‖ → 0 form → 0, we can conclude that f = g.
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Proposition 3.9. Let f ∈ C∞(M) and n = dimCM. Denote the trace on End(Γhol(M,Lm)) by
Tr(m), then

Tr(m)
(
T
(m)
f

)
= mn

(
1

vol(Pn(C))

∫

M

f Ω +O
(
m−1

))
. (3.18)

See [1], respectively [30] for a detailed proof.

3.4. Strict Quantization

The asymptotic results of Theorem 3.3 say that the BT operator quantization is a strict
quantization in the sense of Rieffel [31] as formulated in the book by Landsman [32]. We
take as base space X = {0} ∪ {1/m | m ∈ N}, with its induced topology coming from R.
Note that {0} is an accumulation point of the set {1/m | m ∈ N}. As C∗ algebras above the
points {1/m}, we take the algebras End(Γhol(M,L(m))) and above {0} the algebra C∞(M).
For f ∈ C∞(M), we assign 0 �→ f and 1/m �→ T

(m)
f

. Now the property (a) in Theorem 3.3
is called in [32] Rieffel’s condition, (b) Dirac’s condition, and (c) von Neumann’s condition.
Completeness is true by Propositions 3.6 and 3.8.

This definition is closely related to the notion of continuous fields of C∗-algebras; see
[32].

3.5. Relation to Geometric Quantization

There exists another quantum operator in the geometric setting, the operator of geometric
quantization introduced by Kostant and Souriau. In a first step, the prequantum operator
associated to the bundle Lm for the function f ∈ C∞(M) is defined as

P
(m)
f := ∇(m)

X
(m)
f

+ i f · id. (3.19)

Here ∇(m) is the connection in Lm, and X
(m)
f the Hamiltonian vector field of f with respect

to the Kähler form ω(m) = m · ω, that is, mω(X(m)
f , ·) = df(·). This operator P (m)

f acts on the
space of differentiable global sections of the line bundle Lm. The sections depend at every
point on 2n local coordinates and one has to restrict the space to sections covariantly constant
along the excessive dimensions. In technical terms, one chooses a polarization. In general such
a polarization is not unique. But in our complex situation, there is a canonical one by only
taking the holomorphic sections. This polarization is called Kähler polarization. The operator
of geometric quantization is then defined by the following proposition.

Q
(m)
f := Π(m)P

(m)
f . (3.20)

The Toeplitz operator and the operator of geometric quantization (with respect to the Kähler
polarization) are related by the following.
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Proposition 3.10 (Tuynman Lemma). LetM be a compact quantizable Kähler manifold; then

Q
(m)
f

= i · T (m)
f−(1/2m)Δf , (3.21)

where Δ is the Laplacian with respect to the Kähler metric given by ω.

For the proof, see [33, 34] for a coordinate independent proof.
In particular, theQ(m)

f
and the T (m)

f
have the same asymptotic behaviour. We obtain for

Q
(m)
f similar results as in Theorem 3.3. For details see [35]. It should be noted that for (3.21)

the compactness ofM is essential.

3.6. Lα Approximation

In [34] the notion of Lα, respectively, gl(N), respectively, su(N) quasilimit were introduced.
It was conjectured in [34] that for every compact quantizable Kähler manifold, the Poisson
algebra of functions is a gl(N) quasilimit. In fact, the conjecture follows from Theorem 3.3;
see [1, 35] for details.

3.7. The Noncompact Situation

Berezin-Toeplitz operators can be introduced for noncompact Kähler manifolds. In this case
the L2 spaces are the space of bounded sections and for the subspaces of holomorphic sections
one can only consider the bounded holomorphic sections. Unfortunately, in this context the
proofs of Theorem 3.3 do not work. One has to study examples or classes of examples case
by case in order to see whether the corresponding properties are correct.

In the following, we give a very incomplete list of references. Berezin himself studied
bounded complex-symmetric domains [36]. In this case the manifold is an open domain in
C
n. Instead of sections one studies functions which are integrable with respect to a suitable

measure depending on �. Then 1/� corresponds to the tensor power of our bundle. Such
Toeplitz operators were studied extensively by Upmeier in a series of works [37–40]. See also
the book of Upmeier [41]. For C

n see Berger and Coburn [42, 43]. Klimek and Lesniewski
[44, 45] studied the Berezin-Toeplitz quantization on the unit disc. Using automorphic forms
and the universal covering, they obtain results for Riemann surfaces of genus g ≥ 2. The
names of Borthwick, Klimek, Lesniewski, Rinaldi, and Upmeier should be mentioned in the
context of BT quantization for Cartan domains and super Hermitian spaces.

A quite different approach to Berezin-Toeplitz quantization is based on the asymptotic
expansion of the Bergman kernel outside the diagonal. This was also used by the author
together with Karabegov [29] for the compact Kähler case. See Section 7 for some details.
Engliš [46] showed similar results for bounded pseudoconvex domains in C

N . Ma and
Marinescu [18, 19] developed a theory of Bergman kernels for the symplectic case, which
yields also results on the Berezin-Toeplitz operators for certain noncompact Kähler manifolds
and even orbifolds.
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4. Berezin-Toeplitz Deformation Quantization

There is another approach to quantization. Instead of assigning noncommutative operators
to commuting functions, one might think about “deforming” the pointwise commutative
multiplication of functions into a noncommutative product. It is required to remain
associative, the commutator of two elements should relate to the Poisson bracket of the
elements, and it should reduce in the “classical limit” to the commutative situation.

It turns out that such a deformation which is valid for all differentiable functions
cannot exist. A way out is to enlarge the algebra of functions by considering formal power
series over them and to deform the product inside this bigger algebra. A first systematic
treatment and applications in physics of this idea were given in 1978 by Bayen et al. [47, 48].
There the notion of deformation quantization and star productswere introduced. Earlier versions
of these concepts were around due to Berezin [49], Moyal [50], and Weyl [51]. For a
presentation of the history, see [24].

We will show that for compact Kähler manifoldsM, there is a natural star product.

4.1. Definition of Star Products

We start with a Poisson manifold (M, {·, ·}), that is, a differentiable manifold with a Poisson
bracket for the function such that (C∞(M), ·, {·, ·}) is a Poisson algebra. Let A = C∞(M)[[ν]]
be the algebra of formal power series in the variable ν over the algebra C∞(M).

Definition 4.1. A product � on A is called a (formal) star product for M (or for C∞(M)) if it
is an associative C[[ν]]-linear product which is ν-adically continuous such that

(1) A/νA ∼= C∞(M), that is, f � g mod ν = f · g,
(2) (1/ν)(f � g − g � f) mod ν = −i{f, g},

where f, g ∈ C∞(M).

Alternatively, we can write

f � g =
∞∑

j=0

Cj

(
f, g

)
νj , (4.1)

with Cj(f, g) ∈ C∞(M) such that the Cj are bilinear in the entries f and g. The conditions (1)
and (2) can be reformulated as

C0
(
f, g

)
= f · g, C1

(
f, g

) − C1
(
g, f

)
= −i{f, g}. (4.2)

By the ν-adic continuity, (4.1) fixes � on A. A (formal) deformation quantization is given by a
(formal) star product. I will use both terms interchangeable.

There are certain additional conditions for a star product which are sometimes useful.

(1) We call it “null on constants” if 1 � f = f � 1 = f , which is equivalent to the fact that
the constant function 1 will remain the unit in A. In terms of the coefficients, it can
be formulated as Ck(f, 1) = Ck(1, f) = 0 for k ≥ 1. In this review, we always assume
this to be the case for star products.
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(2) We call it self-adjoint if f � g = g � f , where we assume ν = ν.

(3) We call it local if

suppCj

(
f, g

) ⊆ supp f ∩ supp g, ∀f, g ∈ C∞(M). (4.3)

From the locality property, it follows that the Cj are bidifferential operators and
that the global star product defines for every open subsetU ofM a star product for
the Poisson algebra C∞(U). Such local star products are also called differential star
products.

4.2. Existence of Star Products

In the usual setting of deformation theory, there always exists a trivial deformation. This is not
the case here, as the trivial deformation of C∞(M) to A, which is nothing else as extending
the point-wise product to the power series, is not allowed as it does not fulfil Condition
(2) in Definition 4.1 (at least not if the Poisson bracket is nontrivial). In fact, the existence
problem is highly nontrivial. In the symplectic case, different existence proofs, from different
perspectives, were given by Marc De Wilde and Lecomte [52], Omori et al. [53, 54], and
Fedosov [55, 56]. The general Poisson case was settled by Kontsevich [57].

4.3. Equivalence and Classification of Star Products

Definition 4.2. Given a Poisson manifold (M, {·, ·}). Two star products � and �′ associated to
the Poisson structure {·, ·} are called equivalent if and only if there exists a formal series of
linear operators

B =
∞∑

i=0

Biν
i, Bi : C∞(M) −→ C∞(M), (4.4)

with B0 = id such that

B
(
f
)
�′B

(
g
)
= B

(
f � g

)
. (4.5)

For local star products in the general Poisson setting, there are complete classification
results. Here I will only consider the symplectic case.

To each local star product �, its Fedosov-Deligne class

cl(�) ∈ 1
i ν

[ω] +H2
dR(M)[[ν]] (4.6)

can be assigned. Here H2
dR(M) denotes the 2nd deRham cohomology class of closed 2-

forms modulo exact forms and H2
dR(M)[[ν]] the formal power series with such classes as
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coefficients. Such formal power series are called formal deRham classes. In general we will use
[α] for the cohomology class of a form α.

This assignment gives a 1 : 1 correspondence between the formal deRham classes and
the equivalence classes of star products.

For contractible manifolds, we haveH2
dR(M) = 0 and hence there is up to equivalence

exactly one local star product. This yields that locally all local star products of a manifold are
equivalent to a certain fixed one, which is called the Moyal product. For these and related
classification results, see [58–62].

4.4. Star Products with Separation of Variables

For our compact Kähler manifolds, we will have many different and even nonequivalent star
products. The question is the following: is there a star product which is given in a natural
way? The answer will be yes: the Berezin-Toeplitz star product to be introduced below. First
we consider star products respecting the complex structure in a certain sense.

Definition 4.3 (Karabegov [63]). A star product is called star product with separation of variables
if and only if

f � h = f · h, h � g = h · g, (4.7)

for every locally defined holomorphic function g, antiholomorphic function f , and arbitrary
function h.

Recall that a local star product � forM defines a star product for every open subset U
ofM. We have just to take the bidifferential operators defining �. Hence it makes sense to talk
about �-multiplying with local functions.

Proposition 4.4. A local � product has the separation of variables property if and only if in the
bidifferential operators Ck(·, ·) for k ≥ 1 in the first argument only derivatives in holomorphic and
in the second argument only derivatives in antiholomorphic directions appear.

In Karabegov’s original notation the rôles of the holomorphic and antiholomorphic
functions are switched. Bordemann and Waldmann [64] called such star products star
products of Wick type. Both Karabegov and Bordemann-Waldmann proved that there exist
for every Kähler manifold star products of separation of variables type. In Section 4.8, we
will give more details on Karabegov’s construction. Bordemann and Waldmann modified
Fedosov’s method [55, 56] to obtain such a star product. See also Reshetikhin and Takhtajan
[65] for yet another construction. But I like to point out that in all these constructions the
result is only a formal star product without any relation to an operator calculus, which will
be given by the Berezin-Toeplitz star product introduced in the next section.

Another warning is in order. The property of being a star product of separation of
variables type will not be kept by equivalence transformations.
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4.5. Berezin-Toeplitz Star Product

Theorem 4.5. There exists a unique (formal) star product �BT forM

f�BTg :=
∞∑

j=0

νjCj

(
f, g

)
, Cj

(
f, g

) ∈ C∞(M), (4.8)

in such a way that for f, g ∈ C∞(M) and for everyN ∈ N we have with suitable constantsKN(f, g)
for allm

∥∥∥∥∥∥
T
(m)
f

T
(m)
g −

∑

0≤j<N

(
1
m

)j

T
(m)
Cj (f,g)

∥∥∥∥∥∥
≤ KN

(
f, g

)( 1
m

)N

. (4.9)

The star product is null on constants and self-adjoint.

This theorem has been proven immediately after [1] was finished. It has been
announced in [66, 67] and the proof was written up in German in [35]. A complete proof
published in English can be found in [30].

For simplicity we might write

T
(m)
f · T (m)

g ∼
∞∑

j=0

(
1
m

)j

T
(m)
Cj (f,g)

(m −→ ∞), (4.10)

but we will always assume the strong and precise statement of (4.9). The same is assumed
for other asymptotic formulas appearing further down in this review.

Next we want to identify this star product. Let KM be the canonical line bundle of
M, that is, the nth exterior power of the holomorphic 1-differentials. The canonical class δ is
the first Chern class of this line bundle, that is, δ := c1(KM). If we take inKM the fibre metric
coming from the Liouville formΩ, then this defines a unique connection and further a unique
curvature (1, 1)-form ωcan. In our sign conventions, we have δ = [ωcan].

Together with Karabegov the author showed the following theorem.

Theorem 4.6 (see [29]). (a) The Berezin-Toeplitz star product is a local star product which is of
separation of variable type.

(b) Its classifying Deligne-Fedosov class is

cl(�BT) =
1
i

(
1
ν
[ω] − δ

2

)
(4.11)

for the characteristic class of the star product �BT.
(c) The classifying Karabegov form associated to the Berezin-Toeplitz star product is

−1
ν
ω +ωcan. (4.12)



Advances in Mathematical Physics 17

The Karabegov form has not yet defined here.Wewill introduce it below in Section 4.8.
Using K-theoretic methods, the formula for cl(�BT) was also given by Hawkins [68].

4.6. Star Product of Geometric Quantization

Tuynman’s result (3.21) relates the operators of geometric quantization with Kähler
polarization and the BT operators. As the latter define a star product, it can be used to give
also a star product �GQ associated to geometric quantization. Details can be found in [30].
This star product will be equivalent to the BT star product, but it is not of the separation of
variables type. The equivalence is given by the C[[ν]]-linear map induced by

B
(
f
)
:= f − νΔ

2
f =

(
id − νΔ

2

)
f. (4.13)

We obtain B(f)�BTB(g) = B(f�GQg).

4.7. Trace for the BT Star Product

From (3.18) the following complete asymptotic expansion for m → ∞ can be deduced [30,
69]:

Tr(m)
(
T
(m)
f

)
∼ mn

⎛

⎝
∞∑

j=0

(
1
m

)j

τj
(
f
)
⎞

⎠, with τj
(
f
) ∈ C. (4.14)

We define the C[[ν]]-linear map

Tr : C∞(M)[[ν]] −→ ν−nC[[ν]], Tr f := ν−n
∞∑

j=0

νjτj
(
f
)
, (4.15)

where the τj(f) are given by the asymptotic expansion (4.14) for f ∈ C∞(M) and for arbitrary
elements by C[[ν]]-linear extension.

Proposition 4.7 (see [30]). The map Tr is a trace, that is, we have

Tr
(
f � g

)
= Tr

(
g � f

)
. (4.16)

4.8. Karabegov Quantization

In [63, 70] Karabegov not only gave the notion of separation of variables type, but also a
proof of existence of such formal star products for any Kähler manifold, whether compact,
noncompact, quantizable, or nonquantizable. Moreover, he classified them completely as
individual star product not only up to equivalence.

He starts with (M,ω−1) a pseudo-Kähler manifold, that is, a complex manifold with a
nondegenerate closed (1, 1)-form not necessarily positive.
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A formal form ω̂ = (1/ν)ω−1 +ω0 +νω1 + · · · is called a formal deformation of the form
(1/ν)ω−1 if the forms ωr, r ≥ 0, are closed but not necessarily nondegenerate (1, 1)-forms on
M. It was shown in [63] that all deformation quantizations with separation of variables on the
pseudo-Kähler manifold (M,ω−1) are bijectively parameterized by the formal deformations
of the form (1/ν)ω−1.

Assume that we have such a star product (A := C∞(M)[[ν]], �). Then for f, g ∈ A
the operators of left and right multiplications Lf , Rg are given by Lfg = f � g = Rgf . The
associativity of the star-product � is equivalent to the fact that Lf commutes with Rg for all
f, g ∈ A. If a star product is differential, then Lf , Rg are formal differential operators.

Karabegov constructs his star product associated to the deformation ω̂ in the following
way. First he chooses on every contractible coordinate chart U ⊂ M (with holomorphic
coordinates {zk}) its formal potential

Φ̂ =
(
1
ν

)
Φ−1 + Φ0 + νΦ1 + · · · , ω̂ = i∂∂Φ̂. (4.17)

Then construction is done in such a way that we have for the left (right) multiplication
operators onU

L∂Φ/∂zk =
∂Φ
∂zk

+
∂

∂zk
, R∂Φ/∂zl =

∂Φ
∂zl

+
∂

∂zl
. (4.18)

The set L(U) of all left multiplication operators on U is completely described as the set of
all formal differential operators commuting with the point-wise multiplication operators by
antiholomorphic coordinatesRzl = zl and the operatorsR∂Φ/∂zl . From the knowledge ofL(U),
the star product onU can be reconstructed. The local star-products agree on the intersections
of the charts and define the global star-product � onM.

We have to mention that this original construction of Karabegov will yield a star
product of separation of variable type but with the role of holomorphic and antiholomorphic
variables switched. This says for any open subset U ⊂ M and any holomorphic function
a and antiholomorphic function b on U that the operators La and Rb are the operators of
point-wise multiplication by a and b, respectively, that is, La = a and Rb = b.

4.9. Karabegov’s Formal Berezin Transform

Given such a star products �, Karabegov introduced the formal Berezin transform I as the
unique formal differential operator onM such that for any open subsetU ⊂M, holomorphic
functions a, and antiholomorphic functions b on U, the relation I(a · b) = b � a holds (see
[71]). He shows that I = 1 + νΔ + · · · , where Δ is the Laplace operator corresponding to the
pseudo-Kähler metric onM.

Karabegov considered the following associated star products. First the dual star-
product �̃ onM is defined for f, g ∈ A by the formula

f �̃ g = I−1
(
Ig � If

)
. (4.19)

It is a star-product with separation of variables on the pseudo-Kähler manifold (M,−ω−1).
Its formal Berezin transform equals I−1, and thus the dual to �̃ is �. Note that it is not a star
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product of the same pseudo-Kähler manifold. Denote by ω̃ = −(1/ν)ω−1 + ω̃0 + νω̃1 + · · · the
formal form parameterizing the star-product �̃.

Next, the opposite of the dual star-product, �′ = �̃op, is given by the formula

f�′g = I−1
(
If � Ig

)
. (4.20)

It defines a deformation quantization with separation of variables on M, but with the roles
of holomorphic and antiholomorphic variables swapped—with respect to �. It could be
described also as a deformation quantization with separation of variables on the pseudo-
Kähler manifold (M,ω−1), whereM is the manifoldM with the opposite complex structure.
But now the pseudo-Kähler form will be the same. Indeed the formal Berezin transform I
establishes an equivalence of deformation quantizations (A, �) and (A, �′).

How is the relation to the Berezin-Toeplitz star product �BT of Theorem 4.5? There
exists a certain formal deformation ω̂ of the form (1/ν)ω which yields a star product � in the
Karabegov sense. The opposite of its dual will be equal to the Berezin-Toeplitz star product,
that is,

�BT = �̃op = �′. (4.21)

The classifying Karabegov form ω̃ of �̃will be the form (4.12). Note as � and �BT are equivalent
via I, we have cl(�) = cl(�BT); see the formula (4.11). We will identify ω̂ in Section 7.5.

5. The Disc Bundle and Global Operators

In this section, we identify the bundles Lm over the Kähler manifold M as associated line
bundles of one unique S1-bundle over M. The Toeplitz operator will appear as “modes” of
a global Toeplitz operator. A detailed analysis of this global operator will yield a proof of
Theorem 3.3 part (b) and part (c).

Moreover, we will need this set-up to discuss coherent states, Berezin symbols, and the
Berezin transform in the next sections. For a more detailed presentation, see [35].

5.1. The Disc Bundle

We will assume that the quantum line bundle L is already very ample, that is, it has enough
global holomorphic sections to embed M into projective space. From the bundle (as the
connection ∇ will not be needed anymore, I will drop it in the notation) (L, h), we pass to
its dual (U, k) := (L∗, h−1) with dual metric k. Inside of the total space U, we consider the
circle bundle

Q := {λ ∈ U | k(λ, λ) = 1}, (5.1)



20 Advances in Mathematical Physics

the (open) disc bundle, and (closed) disc bundle, respectively

D := {λ ∈ U | k(λ, λ) < 1}, D := {λ ∈ U | k(λ, λ) ≤ 1}. (5.2)

Let τ : U → M be the projection (maybe restricted to the subbundles).
For the projective space P

N(C)with the hyperplane section bundleH as quantum line
bundle, the bundleU is just the tautological bundle. Its fibre over the point z ∈ P

N(C) consists
of the line in C

N+1 which is represented by z. In particular, for the projective space the total
space ofU with the zero section removed can be identified with C

N+1 \ {0}. The same picture
remains true for the via the very ample quantum line bundle in projective space embedded
manifold M. The quantum line bundle will be the pull-back of H (i.e., its restriction to the
embedded manifold) and its dual is the pull-back of the tautological bundle.

In the following we use E \ 0 to denote the total space of a vector bundle E with the
image of the zero section removed. Starting from the real-valued function k̂(λ) := k(λ, λ)
on U, we define ã := (1/2i)(∂ − ∂) log k̂ on U \ 0 (the derivation is taken with respect to the
complex structure onU) and denote by α its restriction toQ. With the help of the quantization
condition (2.4), we obtain dα = τ∗ω (with the deRham differential d = dQ) and that in fact
μ = (1/2π)τ∗Ω∧α is a volume form onQ. Indeed α is a contact form for the contact manifold
Q. As far as the integration is concerned we get

∫

Q

(
τ∗f

)
μ =

∫

M

fΩ, ∀f ∈ C∞(M). (5.3)

Recall that Ω is the Liouville volume form onM.

5.2. The Generalized Hardy Space

With respect to μ, we take the L2-completion L2(Q,μ) of the space of functions on Q. The
generalized Hardy spaceH is the closure of the space of those functions in L2(Q,μ)which can
be extended to holomorphic functions on the whole disc bundle D. The generalized Szegö
projector is the projection

Π : L2(Q,μ
) −→ H. (5.4)

By the natural circle action, the bundle Q is an S1-bundle and the tensor powers of U can
be viewed as associated line bundles. The space H is preserved by the S1-action. It can be
decomposed into eigenspaces H =

∏∞
m=0H(m), where c ∈ S1 acts on H(m) as multiplication

by cm. The Szegö projector is S1 invariant and can be decomposed into its components, the
Bergman projectors

Π̂(m) : L2(Q,μ
) −→ H(m). (5.5)



Advances in Mathematical Physics 21

Sections of Lm = U−m can be identified with functions ψ on Q which satisfy the
equivariance condition ψ(cλ) = cmψ(λ), that is, which are homogeneous of degree m. This
identification is given via the map

γm : L2(M,Lm) −→ L2(Q,μ
)
, s �−→ ψs, where ψs(α) = α⊗m(s(τ(α))), (5.6)

which turns out to be an isometry onto its image. On L2(M,Lm), we have the scalar product
(3.2). Restricted to the holomorphic sections, we obtain the isometry

γm : Γhol(M,Lm) ∼= H(m). (5.7)

In the case of P
N(C), this correspondence is nothing else as the identification of the global

sections of the mth tensor powers of the hyper plane section bundle with the homogenous
polynomial functions of degreem on C

N+1.

5.3. The Toeplitz Structure

There is the notion of Toeplitz structure (Π,Σ) as developed by Boutet de Monvel and
Guillemin in [28, 72]. I do not want to present the general theory but only the specialization
to our situation. Here Π is the Szegö projector (5.4) and Σ is the submanifold

Σ := {tα(λ) | λ ∈ Q, t > 0} ⊂ T ∗Q \ 0 (5.8)

of the tangent bundle of Q defined with the help of the 1-form α. It turns out that Σ is a
symplectic submanifold, called a symplectic cone.

A (generalized) Toeplitz operator of order k is an operator A : H → H of the form
A = Π · R ·Π, where R is a pseudodifferential operator (ΨDO) of order k on Q. The Toeplitz
operators constitute a ring. The symbol of A is the restriction of the principal symbol of R
(which lives on T ∗Q) to Σ. Note that R is not fixed byA, but Guillemin and Boutet de Monvel
showed that the symbols are well defined and that they obey the same rules as the symbols
of ΨDOs. In particular, the following relations are valid:

σ(A1A2) = σ(A1)σ(A2), σ([A1, A2]) = i{σ(A1), σ(A2)}Σ. (5.9)

Here {·, ·}Σ is the restriction of the canonical Poisson structure of T ∗Q to Σ coming from the
canonical symplectic form on T ∗Q.

5.4. A Sketch of the Proof of Theorem 3.3

For this we need only to consider the following two generalized Toeplitz operators.

(1) The generator of the circle action gives the operator Dϕ = (1/i)(∂/∂ϕ), where ϕ is
the angular variable. It is an operator of order 1 with symbol t. It operates on H(m)

as multiplication bym.
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(2) For f ∈ C∞(M), letMf be the operator on L2(Q,μ) corresponding to multiplication
with τ∗f . We set

Tf = Π ·Mf ·Π : H −→ H. (5.10)

As Mf is constant along the fibres of τ , the operator Tf commutes with the circle
action. Hence we can decompose

Tf =
∞∏

m=0

T
(m)
f , (5.11)

where T (m)
f denotes the restriction of Tf to H(m). After the identification of H(m)

with Γhol(M,Lm), we see that these T (m)
f are exactly the Toeplitz operators T (m)

f

introduced in Section 3. We call Tf the global Toeplitz operator and the T (m)
f

the
local Toeplitz operators. The operator Tf is of order 0. Let us denote by τΣ : Σ ⊆
T ∗Q → Q → M the composition, then we obtain for its symbol σ(Tf) = τ∗Σ(f).

Now we are able to prove (3.10). First we introduce for a fixed t > 0

Σt := {t · α(λ) | λ ∈ Q} ⊆ Σ. (5.12)

It turns out that ωΣ|Σt = −tτ∗Σω. The commutator [Tf , Tg] is a Toeplitz operator of order −1.
From the above, we obtain with (5.9) that the symbol of the commutator equals

σ
([
Tf , Tg

])
(tα(λ)) = i

{
τ∗Σf, τ

∗
Σg

}
Σ(tα(λ)) = −i t−1{f, g}M(τ(λ)). (5.13)

We consider the Toeplitz operator

A := D2
ϕ

[
Tf , Tg

]
+ iDϕT{f,g}. (5.14)

Formally this is an operator of order 1. Using σ(T{f,g}) = τ∗Σ{f, g} and σ(Dϕ) = t, we see that
its principal symbol vanishes. Hence it is an operator of order 0. NowM and hence alsoQ are
compact manifolds. This implies that A is a bounded operator (ΨDOs of order 0 on compact
manifolds are bounded). It is obviously S1-invariant and we can writeA =

∏∞
m=0A

(m), where
A(m) is the restriction of A on the space H(m). For the norms we get ‖A(m)‖ ≤ ‖A‖. But

A(m) = A|H(m) = m2
[
T
(m)
f , T

(m)
g

]
+ imT (m)

{f,g}. (5.15)

Taking the norm bound and dividing it bym, we get part (b) of Theorem 3.3. Using (5.7), the
norms involved indeed coincide.

Quite similar, one can prove part (c) of Theorem 3.3 and more general the existence of
the coefficients Cj(f, g) for the Berezin-Toeplitz star product of Theorem 4.5. See [30, 35] for
the details.
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6. Coherent States and Berezin Symbols

6.1. Coherent States

Let the situation be as in the previous section. In particular, L is assumed to be already very
ample, U = L∗ is the dual of the quantum line bundle, Q ⊂ U the unit circle bundle, and
τ : Q → M the projection. In particular, recall the correspondence (5.6) ψs(α) = α⊗m(sτ(α))
ofm-homogeneous functions ψs onU with sections of Lm. To obtain this correspondence, we
fixed the section s and varied a.

Nowwe do the opposite. We fix α ∈ U\0 and vary the section s. Obviously, this yields
a linear form on Γhol(M,Lm) and hence with the help of the scalar product (3.2), we make the
following.

Definition 6.1. (a) The coherent vector (of level m) associated to the point α ∈ U \ 0 is the unique
element e(m)

α of Γhol(M,Lm) such that

〈
e
(m)
α , s

〉
= ψs(α) = α⊗m(s(τ(α))) (6.1)

for all s ∈ Γhol(M,Lm).
(b) The coherent state (of level m) associated to x ∈M is the projective class

e(m)
x :=

[
e
(m)
α

]
∈ P(Γhol(M,Lm)), α ∈ τ−1(x), α /= 0. (6.2)

Of course, we have to show that the object in (b) is well defined. Recall that 〈·, ·〉
denotes the scalar product on the space of global sections Γ∞(M,Lm). In the convention of
this review, it will be antilinear in the first argument and linear in the second argument. The
coherent vectors are antiholomorphic in α and fulfil

e
(m)
cα = cm · e(m)

α , c ∈ C
∗ := C \ {0}. (6.3)

Note that e(m)
α ≡ 0 would imply that all sections will vanish at the point x = τ(α). Hence, the

sections of L cannot be used to embedM into a projective space, which is a contradiction to
the very ampleness of L. Hence, e(m)

α /≡ 0 and due to (6.3) the class

[
e
(m)
α

]
:=

{
s ∈ Γhol(M,Lm) | ∃c ∈ C

∗ : s = c · e(m)
α

}
(6.4)

is a well-defined element of the projective space P(Γhol(M,Lm)), only depending on x =
τ(α) ∈M.

This kind of coherent states goes back to Berezin. A coordinate independent version
and extensions to line bundles were given by Rawnsley [73]. It plays an important role
in the work of Cahen et al. on the quantization of Kähler manifolds [74–77], via Berezin’s
covariant symbols. I will return to this in Section 6.5. In these works, the coherent vectors are
parameterized by the elements of L\0. The definition here uses the points of the total space of
the dual bundleU. It has the advantage that one can consider all tensor powers of L together
on an equal footing.
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Definition 6.2. The coherent state embedding is the antiholomorphic embedding

M −→ P(Γhol(M,Lm)) ∼= P
N(C), x �−→

[
e
(m)
τ−1(x)

]
. (6.5)

Here N = dimΓhol(M,Lm) − 1. In this review, in abuse of notation, τ−1(x) will
always denote a non-zero element of the fiber over x. The coherent state embedding is up to
conjugation the embedding of Section 2.9 with respect to an orthonormal basis of the sections.
In [78] further results on the geometry of the coherent state embedding are given.

6.2. Covariant Berezin Symbols

We start with the following definition.

Definition 6.3. The covariant Berezin symbol σ(m)(A) (of level m) of an operator A ∈
End(Γhol(M,L(m))) is defined as

σ(m)(A) :M −→ C, x �−→ σ(m)(A)(x) :=

〈
e
(m)
α ,Ae

(m)
α

〉

〈
e
(m)
α , e

(m)
α

〉 , α ∈ τ−1(x). (6.6)

As the factors appearing in (6.3) will cancel, it is a well-defined function onM. If the
levelm is clear from the context, I will sometimes drop it in the notation.

We consider also the coherent projectors used by Rawnsley

P
(m)
x =

∣∣∣e(m)
α

〉〈
e
(m)
α

∣∣∣
〈
e
(m)
α , e

(m)
α

〉 , α ∈ τ−1(x). (6.7)

Here we used the convenient bra-ket notation of the physicists. Recall, if s is a section, then

P
(m)
x s =

∣∣∣e(m)
α

〉〈
e
(m)
α , s

〉

〈
e
(m)
α , e

(m)
α

〉 =

〈
e
(m)
α , s

〉

〈
e
(m)
α , e

(m)
α

〉e(m)
α . (6.8)

Again the projector is well defined on M. With its help, the covariant symbol can be
expressed as

σ(m)(A) = Tr
(
AP

(m)
x

)
. (6.9)

From the definition of the symbol, it follows that σ(m)(A) is real analytic and

σ(m)(A∗) = σ(m)(A). (6.10)
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6.3. Rawnsley’s ε Function

Rawnsley [73] introduced a very helpful function on the manifoldM relating the local metric
in the bundle with the scalar product on coherent states. In our dual description, we define it
in the following way.

Definition 6.4. Rawnsley’s epsilon function is the function

M −→ C∞(M), x �−→ ε(m)(x) :=
h(m)

(
e
(m)
α , e

(m)
α

)
(x)

〈
e
(m)
α , e

(m)
α

〉 , α ∈ τ−1(x). (6.11)

With (6.3), it is clear that it is a well-defined function onM. Furthermore, using (6.1)

0/=
〈
e
(m)
α , e

(m)
α

〉
= α⊗m

(
e
(m)
α (τ(α))

)
, (6.12)

it follows that

e
(m)
α (x)/= 0, for x = τ(α), and ε(m) > 0. (6.13)

Hence, we can define the modified measure

Ω(m)
ε (x) := ε(m)(x)Ω(x) (6.14)

for the space of functions onM and obtain a modified scalar product 〈·, ·〉(m)
ε for C∞(M).

Proposition 6.5. For s1, s2 ∈ Γhol(M,Lm), we have

h(m)(s1, s2)(x) =

〈
e
(m)
α , s1

〉 〈
e
(m)
α , s2

〉

〈
e
(m)
α , e

(m)
α

〉 · ε(m)(x)

=
〈
s1, P

(m)
x s2

〉
· ε(m)(x).

(6.15)

Proof. Due to (6.13), we can represent every section s locally at x as s(x) = ŝ(x)e(m)
α with a

local function ŝ. Now

〈
e
(m)
α , s

〉
= α(m)

(
ŝ(x)e(m)

α (x)
)
= ŝ(x)α(m)

(
e
(m)
α (x)

)
= ŝ(x)

〈
e
(m)
α , e

(m)
α

〉
. (6.16)

We rewrite h(m)(s1, s2)(x) = ŝ1s2h(m)(e(m)
α , e

(m)
α )(x), and obtain

h(m)(s1, s2)(x) =

〈
e
(m)
α , s1

〉

〈
e
(m)
α , e

(m)
α

〉

〈
e
(m)
α , s2

〉

〈
e
(m)
α , e

(m)
α

〉 · h(m)
(
e
(m)
α , e

(m)
α

)
(x). (6.17)
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From the definition (6.11), the first relation follows. Obviously, it can be rewritten with the
coherent projector to obtain the second relation.

There exists another useful description of the epsilon function.

Proposition 6.6. Let s1, s2, . . . , sk be an arbitrary orthonormal basis of Γhol(M,Lm). Then

ε(m)(x) =
k∑

j=1

h(m)(sj , sj
)
(x). (6.18)

Proof. For every vector ψ in a finite-dimensional hermitian vector space with orthonormal
basis sj , j = 1, . . . , k, the coefficient with respect to the basis element sj is given by ψj =
〈sj , ψ〉. Furthermore, 〈ψ, ψ〉 = ‖ψ‖2 = ∑

j ψjψj . Using the relation (6.15)we can rewrite

k∑

j=1

h
(
sj , sj

)
(x) =

ε(m)(x)
〈
e
(m)
α , e

(m)
α

〉
k∑

j=1

〈
e
(m)
α , sj

〉〈
e
(m)
α , sj

〉
. (6.19)

Hence the claim follows.

In certain special cases, the functions ε(m) will be constant as a function of the points
of the manifold. In this case, we can apply Proposition 6.11 below for A = id, the identity
operator, and obtain

ε(m) =
dim Γhol(M,Lm)

volM
. (6.20)

Here volM denotes the volume of the manifold with respect to the Liouville measure. Now
the question arises when ε(m) will be constant, respectively, when themeasureΩ(m)

ε will be the
standard measure (up to a scalar). From Proposition 6.6, it follows that if there is a transitive
group action on the manifold and everything, for example, Kähler form, bundle, metric, is
homogenous with respect to the action this will be the case. An example is given by M =
P
N(C). By a result of Rawnsley [73], respectively, Cahen et al. [74], ε(m) ≡ const if and only if

the quantization is projectively induced. This means that under the conjugate of the coherent
state embedding, the Kähler form ω of M coincides with the pull-back of the Fubini-Study
form. Note that in general this is not the case; see Section 7.6.

6.4. Contravariant Berezin Symbols

Recall the modified Liouville measure (6.14) and modified scalar product for the functions
onM introduced in the last subsection.
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Definition 6.7. Given an operator A ∈ End(Γhol(M,L(m))), then a contravariant Berezin symbol
σ̌(m)(A) ∈ C∞(M) of A is defined by the representation of the operator A as integral

A =
∫

M

σ̌(m)(A)(x)P (m)
x Ω(m)

ε (x) (6.21)

if such a representation exists.

Proposition 6.8. The Toeplitz operator T (m)
f admits a representation (6.21) with

σ̌(m)
(
T
(m)
f

)
= f, (6.22)

that is, the function f is a contravariant symbol of the Toeplitz operator T (m)
f

. Moreover, every operator

A ∈ End(Γhol(M,L(m))), has a contravariant symbol.

Proof. Let f ∈ C∞(M) and set

A :=
∫

M

f(x)P (m)
x Ω(m)

ε (x), (6.23)

then σ̌(m)(A) = f . For arbitrary s1, s2 ∈ Γhol(M,Lm),we calculate (using (6.15))

〈s1, As2〉 =
∫

M

f(x)
〈
s1, P

(m)
x s2

〉
Ω(m)
ε (x)

=
∫

M

f(x)h(m)(s1, s2)(x)Ω(x)

=
∫

M

h(m)(s1, fs2
)
(x)Ω(x)

=
〈
s1, fs2

〉
=

〈
s1, T

(m)
f

s2
〉
.

(6.24)

Hence T (m)
f

= A. As the Toeplitz map is surjective (Proposition 3.6), every operator is a
Toeplitz operator, hence has a contravariant symbol.

Note that given an operator its contravariant symbol on a fixed levelm is not uniquely
defined.

We introduce on End(Γhol(M,L(m))) the Hilbert-Schmidt norm

〈A,C〉HS = Tr(A∗ · C). (6.25)

Theorem 6.9. The Toeplitz map f → T
(m)
f and the covariant symbol mapA → σ(m)(A) are adjoint:

〈
A, T

(m)
f

〉

HS
=

〈
σ(m)(A), f

〉(m)

ε
. (6.26)
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Proof.

〈
A, T

(m)
f

〉
= Tr

(
A∗ · T (m)

f

)
= Tr

(
A∗

∫

M

f(x)P (m)
x Ω(m)

ε (x)
)

=
∫

M

f(x)Tr
(
A∗ · P (m)

x

)
Ω(m)
ε (x).

(6.27)

Now applying Definition 6.7 and (6.10)

〈
A, T

(m)
f

〉
=

∫

M

f(x)σ(m)(A∗)Ω(m)
ε (x) =

∫

M

σ(m)(A)(x)f(x)Ω(m)
ε (x) =

〈
σ(m)(A), f(x)

〉(m)

ε
.

(6.28)

As every operator has a contravariant symbol, we can also conclude

〈A,B〉HS =
〈
σ(m)(A), σ̌(m)(B)

〉(m)

ε
. (6.29)

From Theorem 6.9 by using the surjectivity of the Toeplitz map, we get the following
proposition.

Proposition 6.10. The covariant symbol map σ(m) is injective.

Another application is the following.

Proposition 6.11.

TrA =
∫

M

σ(m)(A)Ω(m)
ε . (6.30)

Proof. We use Id = T1 and by (6.26) TrA = 〈A, Id〉HS = 〈σ(m)(A), 1〉(m)
ε .

6.5. Berezin Star Product

Under certain very restrictive conditions, Berezin covariant symbols can be used to construct
a star product, called the Berezin star product. Recall that Proposition 6.10 says that the linear
symbol map

σ(m) : End
(
Γhol

(
M,L(m)

))
−→ C∞(M) (6.31)

is injective. Its image is a subspace A(m) of C∞(M), called the subspace of covariant symbols
of level m. If σ(m)(A) and σ(m)(B) are elements of this subspace the operators, A and B will
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be uniquely fixed. Hence also σ(m)(A · B). Now one takes

σ(m)(A)�(m)σ
(m)(B) := σ(m)(A · B) (6.32)

as a definition for an associative and noncommutative product �(m) on A(m).
It is even possible to give an analytic expression for the resulting symbol. For this we

introduce the two-point function

ψ(m)(x, y
)
=

〈
e
(m)
α , e

(m)
β

〉〈
e
(m)
β
, e

(m)
α

〉

〈
e
(m)
α , e

(m)
α

〉〈
e
(m)
β , e

(m)
β

〉 (6.33)

with α = τ−1(x) = x and β = τ−1(y). This function is well defined on M ×M. Furthermore,
we have the two-point symbol

σ(m)(A)
(
x, y

)
=

〈
e
(m)
α ,Ae

(m)
β

〉

〈
e
(m)
α , e

(m)
β

〉 . (6.34)

It is the analytic extension of the real-analytic covariant symbol. It is well defined on an open
dense subset ofM ×M containing the diagonal. Using (6.15), we express

σ(m)(A · B)(x) =

〈
e
(m)
α ,A · Be(m)

α

〉

〈
e
(m)
α , e

(m)
α

〉

=

〈
A∗e(m)

α , Be
(m)
α

〉

〈
e
(m)
α , e

(m)
α

〉

=
∫

M

h(m)
(
A∗e(m)

α , Be
(m)
α

)(
y
) Ω

(
y
)

〈
e
(m)
α , e

(m)
α

〉

=
∫

M

〈
e
(m)
α ,Ae

(m)
β

〉〈
e
(m)
β
, Be

(m)
α

〉

〈
e
(m)
β , e

(m)
β

〉
ε(m)(y

)
Ω
(
y
)

〈
e
(m)
α , e

(m)
α

〉

=
∫

M

σ(m)(A)
(
x, y

)
σ(m)(B)

(
y, x

) · ψ(m)(x, y
) · ε(m)(y

)
Ω
(
y
)
.

(6.35)

The crucial problem is how to relate different levelsm to define for all possible symbols
a unique product not depending on m. In certain special situations like these studied by
Berezin himself [36] and Cahen et al. [74], the subspaces are nested into each other and the
union A =

⋃
m∈N

A(m) is a dense subalgebra of C∞(M). Indeed, in the cases considered, the
manifold is a homogenous manifold and the epsilon function ε(m) is a constant. A detailed
analysis shows that in this case a star product is given.
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For further examples, for which this method works (not necessarily compact), see
other articles by Cahen et al. [75–77]. For related results, see also work of Moreno and Ortega-
Navarro [79, 80]. In particular, also the work of Engliš [46, 81–83]. Reshetikhin and Takhtajan
[65] gave a construction of a (formal) star product using formal integrals in the spirit of the
Berezin’s covariant symbol construction.

7. Berezin Transform

7.1. The Definition

Starting from f ∈ C∞(M), we can assign to it its Toeplitz operator T (m)
f

∈ End(Γhol(M,L(m)))

and then assign to T (m)
f the covariant symbol σ(m)(T (m)

f ). It is again an element of C∞(M).

Definition 7.1. The map

C∞(M) −→ C∞(M), f �−→ I(m)(f
)
:= σ(m)

(
T
(m)
f

)
(7.1)

is called the Berezin transform (of levelm).

From the point of view of Berezin’s approach, the operator T (m)
f

has as a contravariant

symbol f . Hence I(m) gives a correspondence between contravariant symbols and covariant
symbols of operators. The Berezin transform was introduced and studied by Berezin [36] for
certain classical symmetric domains in C

n. These results were extended by Unterberger and
Upmeier [84]; see also Engliš [46, 81, 82] and Engliš and Peetre [85]. Obviously, the Berezin
transform makes perfect sense in the compact Kähler case which we consider here.

7.2. The Asymptotic Expansion

The results presented here are joint work with Karabegov [29]. See also [86] for an overview.

Theorem 7.2. Given x ∈ M, then the Berezin transform I(m)(f) evaluated at the point x has a
complete asymptotic expansion in powers of 1/m asm → ∞

I(m)(f
)
(x) ∼

∞∑

i=0

Ii
(
f
)
(x)

1
mi

, (7.2)

where Ii : C∞(M) → C∞(M) are maps with

I0
(
f
)
= f, I1

(
f
)
= Δf. (7.3)

Here the Δ is the usual Laplacian with respect to the metric given by the Kähler form
ω.
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Complete asymptotic expansion means the following. Given f ∈ C∞(M), x ∈ M, and
an r ∈ N, then there exists a positive constant A such that

∣∣∣∣∣I
(m)(f)(x) −

r−1∑

i=0

Ii(f)(x)
1
mi

∣∣∣∣∣
∞
≤ A

mr
. (7.4)

In Section 7.4, I will give some remarks on the proof but before I present you a nice
application.

7.3. Norm Preservation of the BT Operators

In [87] I conjectured (7.2) (which is now a mathematical result) and showed how such an
asymptotic expansion supplies a different proof of Theorem 3.3, part (a). For completeness, I
reproduce the proof here.

Proposition 7.3.

∣∣∣I(m)(f
)∣∣∣

∞
=

∣∣∣σ(m)
(
T
(m)
f

)∣∣∣
∞
≤

∥∥∥T (m)
f

∥∥∥ ≤ ∣∣f
∣∣
∞. (7.5)

Proof. Using Cauchy-Schwarz inequality, we calculate (x = τ(α))

∣∣∣σ(m)
(
T
(m)
f

)
(x)

∣∣∣
2
=

∣∣∣
〈
e
(m)
α , T

(m)
f

e
(m)
α

〉∣∣∣
2

〈
e
(m)
α , e

(m)
α

〉2
≤

〈
T
(m)
f

e
(m)
α , T

(m)
f

e
(m)
α

〉

〈
e
(m)
α , e

(m)
α

〉 ≤
∥∥∥T (m)

f

∥∥∥
2
. (7.6)

Here the last inequality follows from the definition of the operator norm. This shows the first
inequality in (7.5). For the second inequality, introduce the multiplication operator M(m)

f
on

Γ∞(M,Lm). Then ‖T (m)
f

‖ = ‖Π(m)M
(m)
f

Π(m)‖ ≤ ‖M(m)
f

‖ and for ϕ ∈ Γ∞(M,Lm), ϕ/= 0

∥∥∥M(m)
f ϕ

∥∥∥
2

∥∥ϕ
∥∥2

=

∫
M h(m)(fϕ, fϕ

)
Ω

∫
M h(m)

(
ϕ, ϕ

)
Ω

=

∫
M f(z)f(z)h(m)(ϕ, ϕ

)
Ω

∫
M h(m)

(
ϕ, ϕ

)
Ω

≤ ∣∣f
∣∣2
∞.

(7.7)

Hence,

∥∥∥T (m)
f

∥∥∥ ≤
∥∥∥M(m)

f

∥∥∥ = sup
ϕ/= 0

∥∥∥M(m)
f
ϕ
∥∥∥

∥∥ϕ
∥∥ ≤ ∣∣f

∣∣
∞. (7.8)

Proof (Theorem 3.3 part (a)). Choose as xe ∈ M a point with |f(xe)| = |f |∞. From the fact that
the Berezin transform has as a leading term the identity, it follows that |(I(m)f)(xe) − f(xe)| ≤
C/m with a suitable constant C. Hence, ||f(xe)| − |(I(m)f)(xe)|| ≤ C/m and

∣∣f
∣∣
∞ − C

m
=

∣∣f(xe)
∣∣ − C

m
≤

∣∣∣
(
I(m)f

)
(xe)

∣∣∣ ≤
∣∣∣I(m)f

∣∣∣
∞
. (7.9)
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Putting (7.5) and (7.9) together, we obtain

∣∣f
∣∣
∞ − C

m
≤

∥∥∥T (m)
f

∥∥∥ ≤ ∣∣f
∣∣
∞. (7.10)

7.4. Bergman Kernel

To understand the Berezin transform better, we have to study the Bergman kernel. Recall from
Section 5, the Szegö projectors Π : L2(Q,μ) → H and its components Π̂(m) : L2(Q,μ) →
H(m), the Bergman projectors. The Bergman projectors have smooth integral kernels, the
Bergman kernels Bm(α, β) defined on Q ×Q, that is,

Π̂(m)(ψ
)
(α) =

∫

Q

Bm

(
α, β

)
ψ
(
β
)
μ
(
β
)
. (7.11)

The Bergman kernels can be expressed with the help of the coherent vectors.

Proposition 7.4.

Bm

(
α, β

)
= ψ

e
(m)
β
(α) = ψe(m)

α

(
β
)
=

〈
e
(m)
α , e

(m)
β

〉
. (7.12)

For the proofs of this and the following propositions, see [29] or [86].
Let x, y ∈M and choose α, β ∈ Q with τ(α) = x and τ(β) = y, then the functions

um(x) := Bm(α, α) =
〈
e
(m)
α , e

(m)
α

〉
, (7.13)

vm
(
x, y

)
:= Bm

(
α, β

) · Bm

(
β, α

)
=

〈
e
(m)
α , e

(m)
β

〉
·
〈
e
(m)
β , e

(m)
α

〉
(7.14)

are well defined on M and on M × M, respectively. The following proposition gives an
integral representation of the Berezin transform.

Proposition 7.5.

(
I(m)(f

))
(x) =

1
Bm(α, α)

∫

Q

Bm

(
α, β

)Bm

(
β, α

)
τ∗f

(
β
)
μ
(
β
)

=
1

um(x)

∫

M

vm
(
x, y

)
f
(
y
)
Ω
(
y
)
.

(7.15)

Typically, asymptotic expansions can be obtained using stationary phase integrals. But
for such an asymptotic expansion of the integral representation of the Berezin transform, we
will not only need an asymptotic expansion of the Bergman kernel along the diagonal (which
is well known) but in a neighbourhood of it. This is one of the key results obtained in [29].
It is based on works of Boutet de Monvel and Sjöstrand [88] on the Szegö kernel and in
generalization of a result of Zelditch [89] on the Bergman kernel on the diagonal. The integral
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representation is used then to prove the existence of the asymptotic expansion of the Berezin
transform.

Having such an asymptotic expansion, it still remains to identify its terms. As it was
explaining in Section 4.8, Karabegov assigns to every formal deformation quantizations with
the “separation of variables” property a formal Berezin transform I. In [29] it is shown that there
is an explicitly specified star product � (see [29, Theorem 5.9])with associated formal Berezin
transform such that if we replace 1/m by the formal variable ν in the asymptotic expansion
of the Berezin transform I(m)f(x)we obtain I(f)(x). This finally proves Theorem 7.2. We will
exhibit the star product � in the next section.

7.5. Identification of the BT Star Product

Moreover in [29] there is another object introduced, the twisted product

R(m)(f, g
)
:= σ(m)

(
T
(m)
f

· T (m)
g

)
. (7.16)

Also for it the existence of a complete asymptotic expansionwas shown. It was identifiedwith
a twisted formal product. This allows the identification of the BT star product with a special
star product within the classification of Karabegov. From this identification, the properties
of Theorem 4.6 of locality, separation of variables type, and the calculation to the classifying
forms and classes for the BT star product follow.

As already announced in Section 4.8, the BT star product �BT is the opposite of the dual
star product of a certain star product �. To identify � we will give its classifying Karabegov
form ω̂. As already mentioned above, Zelditch [89] proved that the the function um (7.13) has
a complete asymptotic expansion in powers of 1/m. In detail he showed

um(x) ∼ mn
∞∑

k=0

1
mk

bk(x), b0 = 1. (7.17)

If we replace in the expansion 1/m by the formal variable ν, we obtain a formal function s
defined by

es(x) =
∞∑

k=0

νkbk(x). (7.18)

Now take as formal potential (4.17)

Φ̂ =
1
ν
Φ−1 + s, (7.19)
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where Φ−1 is the local Kähler potential of the Kähler form ω = ω−1. Then ω̂ = i ∂∂Φ̂. It might
be also written in the form

ω̂ =
1
ν
ω + F

(
i ∂∂ logBm(α, α)

)
. (7.20)

Here we denote the replacement of 1/m by the formal variable ν by the symbol F.

7.6. Pullback of the Fubini-Study Form

Starting from the Kähler manifold (M,ω) and after choosing an orthonormal basis of the
space Γhol(M,Lm), we obtain an embedding

φ(m) :M −→ P
N(m) (7.21)

ofM into projective space of dimensionN(m). On P
N(m) we have the standard Kähler form,

the Fubini-Study form ωFS. The pull-back (φ(m))∗ωFS will not depend on the orthogonal basis
chosen for the embedding. But in general it will not coincide with a scalar multiple of the
Kähler form ω we started with (see [78] for a thorough discussion of the situation).

It was shown by Zelditch [89], by generalizing a result of Tian [90], that (Φ(m))∗ωFS

admits a complete asymptotic expansion in powers of 1/m as m → ∞. In fact it is related to
the asymptotic expansion of the Bergman kernel (7.13) along the diagonal. The pull-back can
be given as [89, Proposition 9]

(
φ(m)

)∗
ωFS = mω + i ∂∂ logum(x). (7.22)

If we again replace 1/m by ν, we obtain via (7.20) the Karabegov form introduced in
Section 4.8

ω̂ = F

((
φ(m)

)∗
ωFS

)
. (7.23)
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Advances and Applications, Birkhäuser, Basel, Switzerland, 1996.

[42] C. A. Berger and L. A. Coburn, “Toeplitz operators and quantum mechanics,” Journal of Functional
Analysis, vol. 68, no. 3, pp. 273–299, 1986.

[43] L. A. Coburn, “Deformation estimates for the Berezin-Toeplitz quantization,” Communications in
Mathematical Physics, vol. 149, no. 2, pp. 415–424, 1992.

[44] S. Klimek and A. Lesniewski, “Quantum Riemann surfaces. I. The unit disc,” Communications in
Mathematical Physics, vol. 146, no. 1, pp. 103–122, 1992.

[45] S. Klimek and A. Lesniewski, “Quantum Riemann surfaces. II. The discrete series,” Communications
in Mathematical Physics, vol. 24, pp. 125–139, 1992.
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[81] M. Engliš, “Berezin quantization and reproducing kernels on complex domains,” Transactions of the
American Mathematical Society, vol. 348, no. 2, pp. 411–479, 1996.
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