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We give an example of infinite-order rational transformation that leaves a linear differential
equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact
representation of the renormalization group.

1. Introduction

There is no need to underline the success of the renormalization group revisited by Wilson
[1, 2] which is nowadays seen as a fundamental symmetry in lattice statistical mechanics
or field theory. It contributed to promote 2d conformal field theories and/or scaling limits
of second-order phase transition in lattice statistical mechanics.1 If one does not take into
account most of the subtleties of the renormalization group, the simplest sketch of the
renormalization group corresponds to Migdal-Kadanoff decimation calculations, where the
new coupling constants created at each step of the (real-space) decimation calculations are
forced2 to stay in some (slightly arbitrary) finite-dimensional parameter space. This drastic
projection may be justified by the hope that the basin of attraction of the fixed points of the
corresponding (renormalization) transformation in the parameter space is “large enough.”

One heuristic example is always given because it is one of the very few examples
of exact renormalization, the renormalization of the one-dimensional Ising model without
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a magnetic field. It is a straightforward undergraduate exercise to show that performing
various decimations summing over every two, three, or N spins, one gets exact generators
of the renormalization group reading TN : t → tN , where t is (with standard notations) the high
temperature variable t = tanh(K). It is easy to see that these transformations TN , depending
on the integer N, commute together. Such an exact symmetry is associated with a covariance
of the partition function per site Z(t) = C(t) · Z(t2). In this particular case one recovers the
(very simple) expression of the partition function per site, 2 cosh(K), as an infinite product of
the action of (for instance) T2 on the cofactor C(t). In this very simple case, this corresponds
to the using of the identity (valid for |x| < 1):

∞∏

n=0

(
1 + x2n

)
=

1
1 − x . (1.1)

For T3 : t → t3 one must use the identity

∞∏

n=0

(
1 + x3n + x2·3n

)
=
∞∏

n=0

(
1 − x3n+1

1 − x3n

)
=

1
1 − x , (1.2)

and for TN : t → tN a similar identity where the 3 in the exponents is changed into N.
Another simple heuristic example is the one-dimensional Ising model with a magnetic

field. Straightforward calculations enable to get an infinite number of exact generators of the
corresponding renormalization group, represented as rational transformations3

TN : (x, z) −→ TN(x, z) = (xN, zN), (1.3)

where the first two transformations T2 and T3 read in terms of the two (low-temperature
well-suited and fugacity-like) variables x = e4K and z = e2H :

x2 =
(x + z)(1 + xz)

x · (1 + z)2
, z2 = z · (1 + xz)

x + z
,

x3 = x ·
(
z2x + 2z + 1

)(
z2 + 2z + x

)

(z2x + z + xz + x)2
, z3 = z · z

2x + 2z + 1
z2 + 2z + x

.

(1.4)

One simply verifies that these rational transformations of two (complex) variables commute.
This can be checked by formal calculations for TN and TM for anyN andM less than 30, and
one can easily verify a fundamental property expected for renormalization group generators:

TN · TM = TM · TN = TNM, (1.5)

where the “dot” denotes the composition of two transformations. The infinite number of these
rational transformations of two (complex) variables (1.3) are thus a rational representation of
the positive integers together with their product. Such rational transformations can be studied
“per se” as discrete dynamical systems, the iteration of any of these various exact generators
corresponding to an orbit of the renormalization group.
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Of course these two examples of exact representation of the renormalization group are
extremely degenerate since they correspond to one-dimensional models.4 Migdal-Kadanoff
decimation will quite systematically yield rational5 transformations similar to (1.3) in
two, or more, variables.6 Consequently, they are never (except “academical” self-similar
models) exact representations of the renormalization group. The purpose of this paper is
to provide simple (but nontrivial) examples of exact renormalization transformations that
are not degenerate like the previous transformations on one-dimensional models.7 In several
papers [3, 4] for Yang-Baxter integrable models with a canonical genus one parametrization
[5, 6] (elliptic functions of modulus k), we underlined that the exact generators of the
renormalization group must necessarily identify with the various isogenies which amount
to multiplying or dividing τ , the ratio of the two periods of the elliptic curves, by an integer.
The simplest example is the Landen transformation [4] which corresponds to multiplying (or
dividing because of the modular group symmetry τ ↔ 1/τ), the ratio of the two periods is

k −→ kL =
2
√
k

1 + k
, τ ←→ 2τ. (1.6)

The other transformations8 correspond to τ ↔ N · τ , for various integers N. In the
(transcendental) variable τ , it is clear that they satisfy relations like (1.5). However, in the
natural variables of the model (eK, tanh(K), k = sinh(2K), not transcendental variables
like τ), these transformations are algebraic transformations corresponding in fact to the
fundamental modular curves. For instance, (1.6) corresponds to the genus zero fundamental
modular curve

j2 · j ′2 − (j + j ′
) ·
(
j2 + 1487 · jj ′ + j ′2

)
+ 3 · 153 ·

(
16j2 − 4027jj ′ + 16j ′2

)

− 12 · 306 · (j + j ′
)
+ 8 · 309 = 0,

(1.7)

or

59v3u3 − 12 · 56u2v2 · (u + v) + 375uv ·
(
16u2 + 16v2 − 4027vu

)

− 64(v + u) ·
(
v2 + 1487vu + u2

)
+ 212 · 33 · uv = 0,

(1.8)

which relates the two Hauptmoduls u = 123/j(k), v = 123/j(kL):

j(k) = 256 ·
(
1 − k2 + k4)3

k4 · (1 − k2)2
, j(kL) = 16 ·

(
1 + 14k2 + k4)3

(1 − k2)4 · k2
. (1.9)

One verifies easily that (1.7) is verified with j = j(k) and j ′ = j(kL).
The selected values of k, the modulus of elliptic functions, k = 0, 1, are actually fixed

points of the Landen transformations. The Kramers-Wannier duality k ↔ 1/k maps k = 0 onto
k = ∞. For the Ising (resp. Baxter) model these selected values of k correspond to the three
selected subcases of the model (T = ∞, T = 0, and the critical temperature T = Tc), for which
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the elliptic parametrization of the model degenerates into a rational parametrization [4]. We
have the same property for all the other algebraic modular curves corresponding to τ ↔N ·τ .
This is certainly the main property most physicists expect for an exact representation of a
generator of the renormalization group, namely, that it maps a generic point of the parameter
space onto the critical manifold (fixed points). Modular transformations are, in fact, the only
transformations to be compatible with all the other symmetries of the Ising (resp. Baxter)
model like, for instance, the gauge transformations, some extended sl(2) × sl(2) × sl(2) ×
sl(2) symmetry [7], and so forth. It has also been underlined in [3, 4] that seeing (1.6) as a
transformation on complex variables (instead of real variables) provides two other complex
fixed points which actually correspond to complex multiplication for the elliptic curve, and
are, actually, fundamental new singularities9 discovered on the χ(3) linear ODE [8–10]. In
general, this underlines the deep relation between the renormalization group and the theory
of elliptic curves in a deep sense, namely, isogenies of elliptic curves, Hauptmoduls,10 modular
curves and modular forms.

Note that an algebraic transformation like (1.6) or (1.8) cannot be obtained from
any local Migdal-Kadanoff transformation which naturally yields rational transformations;
an exact renormalization group transformation like (1.6) can only be deduced from
nonlocal decimations. The emergence of modular transformations as representations of
exact generators of the renormalization group explains, in a quite subtle way, the difficult
problem of how renormalization group transformations can be compatible with reversibility11

(iteration forward and backwards). An algebraic modular transformation (1.8) corresponds
to τ → 2τ and τ → τ/2 in the same time, as a consequence of the modular group symmetry
τ ↔ 1/τ .

A simple rational parametrization12 of the genus zero modular curve (1.8) reads:

u = 1728
z

(z + 16)3
, v = 1728

z2

(z + 256)3
= u

(
212

z

)
. (1.10)

Note that the previously mentioned reversibility is also associated with the fact that the
modular curve (1.8) is invariant by u↔ v, and, within the previous rational parametrization
(1.10), with the fact that permuting u and v corresponds13 to the Atkin-Lehner involution
z↔ 212/z.

For many Yang-Baxter integrable models of lattice statistical mechanics the physical
quantities (partition function per site, correlation functions, etc.) are solutions of selected14

linear differential equations. For instance, the partition function per site of the square (resp.
triangular, etc.) Ising model is an integral of an elliptic integral of the third kind. It would be
too complicated to show the precise covariance of these physical quantities with respect to
(algebraic)modular transformations like (1.8). Instead, let us give, here, an illustration of the
nontrivial action of the renormalization group on some elliptic function that actually occurs in
the 2D Isingmodel: a weight-one modular form. This modular form actually, and remarkably,
emerged [11] in a second-order linear differential operator factor denoted Z2 occurring [8]
for χ(3), and that the reader can think as a physical quantity solution of a particular linear
ODE replacing the too complicated integral of an elliptic integral of the third kind. Let us
consider the second-order linear differential operator (Dz denotes d/dz):

α = D2
z +

(
z2 + 56z + 1024

)

z · (z + 16)(z + 64)
·Dz − 240

z · (z + 16)2(z + 64)
, (1.11)
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which has the (modular form) solution

2F1

([
1
12

,
5
12

]
, [1]; 1728

z

(z + 16)3

)

= 2 ·
(
z + 256
z + 16

)−1/4
· 2F1

([
1
12

,
5
12

]
, [1]; 1728

z2

(z + 256)3

)
.

(1.12)

Do note that the two pull-backs in the arguments of the same hypergeometric function are
actually related by the modular curve relation (1.8) (see (1.10)). The covariance (1.12) is thus
the very expression of a modular form property with respect to a modular transformation
(τ ↔ 2τ) corresponding to the modular transformation (1.8).

The hypergeometric function at the rhs of (1.12) is solution of the second-order linear
differential operator

β = D2
z +

z2 + 416z + 16384
(z + 256)(z + 64)z

·Dz − 60

(z + 64)(z + 256)2
, (1.13)

which is the transformed of operator α by the Atkin-Lehner duality z ↔ 212/z, and, also, a
conjugation of α:

β =
(

z + 16
z + 256

)−1/4
· α ·
(

z + 16
z + 256

)1/4

. (1.14)

Along this line we can also recall that the (modular form) function15

F
(
j
)
= j−1/12 · 2F1

([
1
12

,
5
12

]
, [1];

123

j

)
, (1.15)

verifies:

F

(
(z + 16)3

z

)
= 2 · z−1/12 · F

(
(z + 256)3

z2

)
. (1.16)

A relation like (1.12) is a straight generalization of the covariance we had in the one-
dimensional model Z(t) = C(t) · Z(t2), which basically amounts to seeing the partition
function per site as some “automorphic function” with respect to the renormalization group,
with the simple renormalization group transformation t → t2 being replaced by the algebraic
modular transformation (1.8) corresponding to τ ↔ 2τ (i.e., the Landen transformation
(1.6)).

We have here all the ingredients for seeing the identification of exact algebraic
representations of the renormalization group with the modular curves structures we tried
so many times to promote (preaching in the desert) in various papers [3, 4]. However,
even if there are no difficulties, just subtleties, these Ising-Baxter examples of exact algebraic
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representations of the renormalization group already require some serious knowledge of
the modular curves, modular forms, and Hauptmoduls in the theory of elliptic curves,
mixed with the subtleties naturally associated with the various branches of such algebraic
(multivalued) transformations.

The purpose of this paper is to present another elliptic hypergeometric function
and other much simpler (Gauss hypergeometric) second-order linear differential operators
covariant by infinite-order rational transformations.

The replacement of algebraic (modular) transformations by simple rational transforma-
tions will enable us to display a complete explicit description of an exact representation of the
renormalization group that any graduate student can completely dominate.

2. Infinite Number of Rational Symmetries on
a Gauss Hypergeometric ODE

Keeping in mind modular form expressions like (1.12), let us recall a particular Gauss
hypergeometric function introduced by Vidunas in [12]

2F1

([
1
2
,
1
4

]
,

[
5
4

]
; z
)

=
1
4
· z−1/4 ·

∫z

0
t−3/4(1 − t)−1/2dt

= (1 − z)−1/2 · 2F1

([
1
2
,
1
4

]
,

[
5
4

]
;
−4z

(1 − z)2
)
.

(2.1)

This hypergeometric function corresponds to the integral of a holomorphic form on a genus-
one curve P(y, t) = 0:

dt

y
, with: y4 − t3 · (1 − t)2 = 0. (2.2)

Note that the function

F(z) = z1/4 · 2F1

([
1
2
,
1
4

]
,

[
5
4

]
; z
)
, (2.3)

which is exactly an integral of an algebraic function, has an extremely simple covariance
property with respect to the infinite-order rational transformation z → −4z/(1 − z)2:

F
(
−4z

(1 − z)2
)

= (−4)1/4 · F(z). (2.4)

The occurrence of this specific infinite-order transformation is reminiscent of Kummer’s
quadratic relation

2F1([a, b], [1 + a − b]; z) = (1 − z)−a · 2F1

([
a

2
,
1 + a

2
− b
]
, [1 + a − b];− 4z

(1 − z)2
)
, (2.5)
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but it is crucial to note that, relation (2.4) does not relate two different functions, but is an
“automorphy” relation on the same function.

It is clear from the previous paragraph that we want to see such functions as “ideal”
examples of physical functions covariant by an exact (here, rational) generator of the
renormalization group. The function (2.3) is actually solution of the second-order linear
differential operator:

Ω = D2
z +

1
4

3 − 5z
z · (1 − z) ·Dz = ω1 ·Dz, with

ω1 = Dz +
1
4

3 − 5z
z · (1 − z) = Dz +

1
4
·
d ln
(
z3(1 − z)2

)

dz
.

(2.6)

From the previous expression of ω1 involving a log derivative of a rational function it is
obvious that this second-order linear differential operator has two solutions, the constant
function and an integral of an algebraic function. Since these two solutions behave very
simply under the infinite-order rational transformation z → −4z/(1 − z)2, it is totally and
utterly natural to see how the linear differential operator Ω transforms under the rational
change of variable z → R(z) = −4z/(1 − z)2 (which amounts to seeing how the two-order-
one operatorsω1 andDz transform). It is a straightforward calculation to see that introducing
the cofactor C(z)which is the inverse of the derivative of R(z)

C(z) = −1
4
· (1 − z)

3

1 + z
,

1
C(z)

=
dR(z)
dz

, (2.7)

Dz andω1, respectively, transform under the rational change of variable z → R(z) = −4z/(1−
z)2 as

Dz −→ C(z) ·Dz, ω1 −→ (ω1)(R) = C(z)2 ·ω1 · 1
C(z)

, yielding: Ω −→ C(z)2 ·Ω.

(2.8)

Since z → −4z/(1 − z)2 is of infinite-order, the second-order linear differential operator (2.6)
has an infinite number of rational symmetries (isogenies):

z −→ −4z
(1 − z)2

−→ 16 · (1 − z)
2 · z

(1 + z)4
−→ −64 · (1 − z)

2(1 + z)4z

(1 − 6z + z2)4
−→ · · · . (2.9)

Once we have found a second-order linear differential operator (written in a unitary
or monic form) Ω, covariant by the infinite-order rational transformation z → −4z/(1 −
z)2, it is natural to seek for higher-order linear differential operators also covariant by z →
−4z/(1 − z)2. One easily verifies that the successive symmetric powers of Ω are (of course)
also covariant. The symmetric square of Ω,

D3
z +

3
4

3 − 5z
(1 − z)z ·D

2
z +

3
8

1 − 5z
(1 − z)z2 ·Dz, (2.10)
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factorizes in simple order-one operators

(
Dz +

2
4

3 − 5z
(1 − z)z

)
·
(
Dz +

1
4

3 − 5z
(1 − z)z

)
·Dz, (2.11)

and, more generally, the symmetric Nth power16 of Ω reads

(
Dz +

N

4
3 − 5z
z(1 − z)

)
·
(
Dz +

N − 1
4

3 − 5z
z(1 − z)

)
· · ·
(
Dz +

1
4

3 − 5z
z(1 − z)

)
·Dz. (2.12)

The covariance of such expressions is the straight consequence of the fact that the order-one
factors

ωk = Dz +
k

4
3 − 5z

z · (1 − z) , k = 0, 1, . . . ,N, (2.13)

transform very simply under z → −4z/(1 − z)2:

ωk −→ (ωk)(R) = (C(z))k+1 ·ωk · (C(z))−k. (2.14)

More generally, let us consider a rational transformation z → R(z), the corresponding
cofactor C(z) = 1/R′(z), and the order-one operator ω1 = Dz +A(z). We have the identity

C(z) ·Dz ·
(

1
C(z)

)
= Dz − d ln(C(z))

dz
. (2.15)

The change of variable z → R(z) on ω1 reads

Dz +A(z) −→ C(z) ·Dz +A(R(z)) = C(z) · (Dz + B(z)). (2.16)

We want to impose that this rhs expression can be written (see (2.8)) as

C(z)2 · (Dz +A(z)) · 1
C(z)

, (2.17)

which, because of (2.15), occurs if

B(z) = A(z) − d ln(C(z))
dz

, (2.18)

yielding a “Rota-Baxter-like” [13, 14] functional equation on A(z) and R(z)

(
dR(z)
dz

)2

·A(R(z)) =
dR(z)
dz

·A(z) +
d2R(z)
dz2

. (2.19)



Advances in Mathematical Physics 9

Remark 2.1. Coming back to the initial Gauss hypergeometric differential operator the
covariance of Ω becomes a conjugation. Let us start with the Gauss hypergeometric
differential operator for (2.1):

H0 = 8z · (1 − z) ·D2
z + 2 · (5 − 7z) ·Dz − 1. (2.20)

It is transformed by z → R(z) = −4z/(1 − z)2 into

H1 = 8z · (1 − z) ·D2
z − 2(3z − 5) ·Dz +

4
1 − z = (1 − z)1/2 ·H0 · (1 − z)−1/2, (2.21)

then by z → R(R(z)) = R2(z) = 16z(1 − z)2/(1 + z)4 into

H2 = 8z · (1 − z) ·D2
z − 2

(3z − 1)(z + 5)
z + 1

·Dz + 16
z − 1

(z + 1)2

=
(

z + 1√
z − 1

)
·H0 ·

(
z + 1√
z − 1

)−1
,

(2.22)

and more generally for z → RN = R(R(R · · · (R(z) · · · )

HN = CN ·H0 · C−1N , where : CN = z1/4 · R−1/4N . (2.23)

2.1. A Few Remarks on the “Rota-Baxter-Like” Functional Equation

The functional equation17(2.19) is the (necessary and sufficient) condition for Ω = (Dz +
A(z)) ·Dz to be covariant by z → R(z).

Using the chain rule formula of derivatives of composed functions:

dR(R(z))
dz

=
dR(z)
dz

·
[
dR(z)
dz

(R(z))
]
,

d2R(R(z))
dz2

=
d2R(z)
dz2

·
[
dR(z)
dz

(R(z))
]
+
(
dR(z)
dz

)2

·
[
d2R(z)
dz2

(R(z))

]
,

(2.24)

one can show that, for A(z) fixed, the “Rota-Baxter-like” functional equation (2.19) is
invariant by the composition of R(z) by itself R(z) → R(R(z)), R(R(R(z))), . . . . This result
can be generalized to any composition of variousR(z)’s satisfying (2.19). This is in agreement
with the fact that (2.19) is the condition forΩ = (Dz +A(z)) ·Dz to be covariant by z → R(z)
it must be invariant by composition of R(z)’s (for A(z) fixed).

Note that we have not used here the fact that for globally nilpotent [11] oper-
ators, A(z) and B(z) are necessarily log derivatives of Nth roots of rational functions.
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For R(z) = −4z/(1 − z)2:

A(z) =
1
4
· d ln(a(z))

dz
, B(z) =

1
4
· d ln(b(z))

dz
,

a(z) = (1 − z)2 · z3, b(z) = z3 · (1 + z)4

(1 − z)10
.

(2.25)

The existence of the underlying a(z) in (2.25) consequence of a global nilpotence of the order-
one differential operator, can however be seen in the following remark on the zeros of the
lhs and rhs terms in the functional equation (2.19). When R(z) is a rational function (e.g.,
−4z/(1 − z)2 or any of its iterates R(n)(z)), the lhs and rhs of (2.19) are rational expressions.
The zeros are roots of the numerators of these rational expressions. Because of (2.25) the
functional equation (2.19) can be rewritten (after dividing by R′(z)) as

(
dR(z)
dz

)
·A(R(z)) = A(z) +

d

dz

(
ln
(
dR(z)
dz

))
=

1
4
· d

dz

(
ln

(
a(z) ·

(
dR(z)
dz

)4
))

.

(2.26)

One easily verifies, in our example, that the zeros of the rhs of (2.26) come from the zeros of
A(R(z)) (and not from the zeros of R′(z) in the lhs of (2.26)). The zeros of the log-derivative
rhs of (2.26) correspond to a(z) ·R′(z)4 = ρ, where ρ is a constant to be found. Let us consider
for R(z) the nth iterates of −4z/(1− z)2 that we denote R(n)(z). A straightforward calculation
shows that the zeros of A(R(n)(z)) or a′(R(n)(z)) (where a′(z) denotes the derivative of a(z)
namely, (z − 1)(5z − 3) · z2) actually correspond to the general closed formula:

55 · a(z) ·
(

dR(n)(z)
dz

)4

− 4 · 33 · (−4)n = 0. (2.27)

More precisely the zeros of 5 · R(n)(z) − 3 verify (2.27), or, in other words, the numerator of
5R(n)(z) − 3 divides the numerator of the lhs of (2.27).

In another case for T(z) given by (2.45), which also verifies (2.19) (see below), the
relation (2.27) is replaced by

55 · a(z) ·
(

dT (n)(z)
dz

)4

− 4 · 33 · (−7 − 24i)n = 0. (2.28)

More generally for a rational function ρ(x), obtained by an arbitrary composition of −4z/(1−
z)2 and T(z), we would have

55 · a(z) ·
(
dρ(z)
dz

)4

− 4 · 33 · λn = 0. (2.29)

where λ corresponds to

ρ(x) = λ · z + · · · , λ =
[
dρ(z)
dz

]

z=0
. (2.30)
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2.2. Symmetries of Ω, Solutions to
the “Rota-Baxter-Like” Functional Equation

Let us now analyse all the symmetries of the linear differential operator Ω = (Dz +A(z)) ·Dz

by analyzing all the solutions of (2.19) for a given A(z). For simplicity we will restrict to
A(z) = (3 − 5z)/z/(1 − z)/4 which corresponds to R(z) = −4z/(z − 1)2 and all its iterates
(2.9). Let us first seek for other (more general) solutions that are analytic at z = 0:

R(z) = a1 · z + a2 · z2 + a3 · z3 + · · · . (2.31)

It is a straightforward calculation to get, order by order from (2.19), the successive coefficients
an in (2.31) as polynomial expressions (with rational coefficients) of the first coefficient a1

with

a2 = −25 · a1 · (a1 − 1), a3 =
1
75
· a1 · (a1 − 1) · (7a1 − 17),

a4 = − 2
4875

· a1 · (a1 − 1) ·
(
41a2

1 − 232a1 + 366
)
, . . . ,

an = −n
5
· a1 · (a1 − 1) · Pn(a1)

Pn(−4) ,

(2.32)

where Pn(a1) is a polynomial with integer coefficients of degree n − 2. Since we have here
a series depending on one parameter a1 we will denote it Ra1(z). This is a quite remarkable
series depending on one parameter.18 One can easily verify that this series actually reduces
(as it should!) to the successive iterates (2.9) of −4z/(1 − z)2 for a1 = (−4)n. In other words
this one-parameter family of “functions” actually reduces to rational functions for an infinite
number of integer values a1 = (−4)n.

Furthermore, one can also verify a quite essential property we expect for a
representation of the renormalization group, namely, that two Ra1(z) for different values of
a1 commute, the result corresponding to the product of these two a1:

Ra1(Rb1(z)) = Rb1(Ra1(z)) = Ra1·b1(z). (2.33)
The neutral element must necessarily correspond to a1 = 1 which is actually the identity
transformation R1(z) = z. We have an “absorbing” element corresponding to a1 = 0, namely,
R0(z) = 0. Performing the inverse of Ra1(z) (with respect to the composition of functions)
amounts to changing a1 into its inverse 1/a1. Let us explore some “reversibility” property
of our exact representation of a renormalization group with the inverse of the rational
transformations (2.9). The inverse of R−4(z) = −4z/(1 − z)2 must correspond to a1 = −1/4:

R−1/4(z) = −14 · z −
1
8
z2 − 5

64
z3 − 7

128
z4 − 21

512
z5 + · · · . (2.34)

However, a straight calculation of the inverse of R−4(z) = −4z/(1 − z)2 gives a multivalued
function, or if one prefers, two functions

S
(1)
−1/4(z) =

z − 2 + 2
√
1 − z

z
= −1

4
· z − 1

8
z2 + · · · ,

S
(2)
−1/4(z) =

z − 2 − 2√1 − z
z

= −4
z
+ 2 +

1
4
z +

1
8
z2 + · · · ,

(2.35)
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which are the two roots of the simple quadratic relation (R−4(z′) = z):

z′2 − 2 ·
(
1 − 2

z

)
· z′ + 1 = 0, (2.36)

where it is clear that the product of these two functions is equal to +1. The radius of
convergence of S(1)

−1/4(z) is 1.
Because of our choice to seek for functions analytical at z = 0 our renormalization

group representation “chooses” the unique root that is analytical at z = 0, namely, S(1)
−1/4(z).

For the next iterate of R−4(z) = −4z/(1 − z)2 in (2.9) the inverse transformation corresponds
to the roots of the polynomial equation of degree four (R16(z′) = z):

z′4 +
(
4 − 16

z

)
· z′3 +

(
6 +

32
z

)
· z′2 +

(
4 − 16

z

)
· z′ + 1 = 0, (2.37)

which yields four roots, one of which is analytical at z = 0 and corresponds to a1 = 1/(−4)2
in our one-parameter family of (renormalization) transformations:

S
(1)
1/16(z) =

1
16

z +
3

128
z2 +

53
4096

z3 +
277
32768

z4 +
3181
524288

z5 + · · · , (2.38)

its (multiplicative) inverse S(2)
1/16(z) = 1/S(1)

1/16(z):

S
(2)
1/16(z) =

16
z
− 6 − 17

16
z − 67

128
z2 − 1333

4096
z3 − 7445

32768
z4 + · · · , (2.39)

and two (formal) Puiseux series (u = ±√z):

S
(3)
1/16(z) = 1 + u +

1
2
u2 +

3
8
u3 +

1
4
u4 +

27
128

u5 +
5
32

u6 + · · · . (2.40)

Many of these results are better understood when one keeps in mind that there is a special
transformation J : z↔ 1/zwhich is also a R-solution of (2.19) and verifies many compatibility
relations with these transformations (Id denotes the identity transformation R0(z)):

R−4 · J = R−4, S
(2)
−1/4 · R−4 = J, R−4 · S(1)

−1/4 = S
(1)
−1/4 · R−4 = Id,

S
(1)
1/16(z) = S

(1)
−1/4 · S

(1)
−1/4, S

(2)
1/16(z) = S

(1)
−1/4 · S

(2)
−1/4,

J · S(1)
−1/4 = S

(2)
−1/4, J · S(2)

−1/4 = S
(1)
−1/4, . . . ,

(2.41)

where the dot corresponds, here, to the composition of functions. These symmetries of the
linear differential operator Ω correspond to isogenies of the elliptic curve (2.2).
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It is clear that we have another one-parameter family corresponding to J · Ra1 with an
expansion of the form

J · Ra1 =
b1
z
− 2
5
· (b1 − 1) − 1

15
· b

2
1 − 1
b1

· z − 2
975
· (b1 − 1)(4b1 + 1)(4b1 + 3)

b21
· z2

− 1
248625

· (b1 − 1)(4b1 + 1)
(
1268b21 + 951b1 + 91

)

b31
· z3

− 2
2071875

· (b1 − 1)(4b1 + 1)
(
3688b31 + 2766b21 + 404b1 + 17

)

b41
· z4 + · · · .

(2.42)

For b1 = −1/4, b1 = (−1/4)2, b1 = (−1/4)3, this family reduces to the (multiplicative) inverse
of the successive rational functions displayed in (2.9)

−1
4
· (1 − z)

2

z
−→ 1

16
· (1 + z)4

(1 − z)2 · z
−→ − 1

64
·
(
1 − 6z + z2

)4

(1 − z)2(1 + z)4 · z
−→ · · · , (2.43)

which can also be written as:

− 1
4
·
(
z +

1
z

)
+
1
2
,

1
16
·
(
z +

1
z

)
+
3
8
+

z

(1 − z)2
,

− 1
64
·
(
z +

1
z

)
+
13
32
− z

4
· 17 − 60z + 102z2 − 60z3 + 17z4

(1 − z)2(1 + z)4
,

1
256
·
(
z +

1
z

)
+

51
128

+
z

16
· 17 − 60z + 102z2 − 60z3 + 17z4

(1 − z)2(1 + z)4
+ 16

z · (1 − z)2(1 + z)4

(z2 − 6z + 1)4
,

− 1
1024

·
(
z +

1
z

)
+
205
512
− z

164
· 17 − 60z + 102z2 − 60z3 + 17z4

(1 − z)2(1 + z)4

− 4z · (1 − z)
2(1 + z)4

(z2 − 6z + 1)4
− 64z · (1 − z)

2(1 + z)4
(
z2 − 6z + 1

)4
(
1 + 20z − 26z2 + 20z3 + z4

)4 , . . . ,

1
(−4)n ·

(
z +

1
z

)
+

2
54n
(
4n − (−1)n)

+
z

(−4)n−2
· 17 − 60z + 102z2 − 60z3 + 17z4

(1 − z)2(1 + z)4
+

z

(−4)n−6
· (1 − z)

2(1 + z)4

(z2 − 6z + 1)4

+
z

(−4)n−8
· (1 − z)

2(1 + z)4
(
z2 − 6z + 1

)4
(
1 + 20z − 26z2 + 20z3 + z4

)4 + · · · ,

(2.44)

where we discover some “additive structure” of these successive rational functions.
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In fact, due to the specificity of this elliptic curve (occurrence of complex multipli-
cation), we have another remarkable rational transformation solution of (2.19), preserving
covariantly Ω. Let us introduce the rational transformation (i denotes

√−1):

T(z) = z ·
(

z − (1 + 2i)
1 − (1 + 2i) · z

)4

, (2.45)

we also have the remarkable covariance [12]:

2F1

([
1
2
,
1
4

]
,

[
5
4

]
; z
)

=
1 − z/(1 + 2i)
1 − (1 + 2i)z

· 2F1

([
1
2
,
1
4

]
,

[
5
4

]
; T(z)

)
, (2.46)

which can be rewritten in a simpler way on (2.3) (see (2.4)).
It is a straightforward matter to see that T(z) actually belongs to the Ra1(z) one-

parameter family:

T(z) = Ra1(z) = −(7 + 24i) · z + · · · , a1 = −25 · ρ,

ρ =
(7 + 24i)

25
,

∣∣ρ
∣∣ = 1.

(2.47)

As far as the reduction of (2.32) to a rational function is concerned, it is straightforward
to see that:

(1 − z)2 · (1 + z)4 · Ra1(z)

= a1 · z + · · · − 2
175746796875

· a1 · (a1 − 1) · (a1 + 4) · (a1 − 16) · P8(a1) · z8 + · · ·

− 1
N(n)

· a1 · (a1 − 1) · (a1 + 4) · (a1 − 16) · Pn(a1) · zn + · · · ,

(2.48)

whereN(n) is a large integer growing with n, and Pn is a polynomial with integer coefficients
of degree n − 4, or

(1 − (1 + 2i) · z)4 · Ra1(z)

= a1 · z + · · · − 4
1243125

· a1 · (a1 − 1) · (a1 + 7 + 24i) · (P6(a1) + iQ6(a1)) · z6 + · · ·

+
1

N(n)
· a1 · (a1 − 1) · (a1 + 7 + 24i) · (Pn(a1) + iQn(a1)) · zn + · · · ,

(2.49)

where Pn and Qn are two polynomials with integer coefficients of degree, respectively, n − 3
and n − 4.

Similar calculations can be performed for T ∗(z) defined by

T ∗(z) = z ·
(

z − (1 − 2i)
(1 − 2i)z − 1

)4

, (2.50)
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for which we also have the covariance

2F1

([
1
2
,
1
4

]
,

[
5
4

]
; z
)

=
1 − z/(1 − 2i)
1 − (1 − 2i)z · 2F1

([
1
2
,
1
4

]
,

[
5
4

]
; T ∗(z)

)
. (2.51)

It is a simple calculation to check that any iterate of T(z) (resp. T ∗(z)) is actually a
solution of (2.19) and corresponds to Ra1(z) for the infinite number of values a1 = (−7−24i)N
(resp. (−7 + 24i)N). Furthermore, one verifies, as it should (see (2.33)), that the three rational
functions R−4(z), T(z), and T ∗(z) commute. It is also a straightforward calculation to see
that the rational function built from any composition of R−4(z), T(z), and T ∗(z) is actually a
solution of (2.19). We thus have a triple infinity of values of a1, namely a1 = (−4)M ·(−7−24i)N ·
(−7 + 24i)P for any integer M, N and P , for which Ra1(z) reduces to rational functions. We are
in fact describing (some subset of) the isogenies of the elliptic curve (2.2), and identifying
these isogenies with a discrete subset of the renormalization group. Conversely, a functional
equation like (2.19) can be seen as a way to extend the n-fold composition of a rational
function R(z) (namely R(R(· · ·R(z) · · · ))) to n any complex number.

2.3. Revisiting the One-Parameter Family of Solutions of the
“Rota-Baxter-Like” Functional Equation

This extension can be revisited as follows. Keeping in mind the well-known example of the
parametrization of the standard map z → 4z · (1 − z) with z = sin2(θ), yielding θ → 2θ, let
us seek for a (transcendental) parametrization z = P(u) such that

R−4(P(u)) = P(−4u) or : R−4 = P ·H−4 · P−1, (2.52)

where Ha1 denotes the scaling transformation z → a1 · z (here H−4 : z → −4 · z) and P−1

denotes the inverse transformation of P (for the composition). One can easily find such a
(transcendental) parametrization order by order

P(z) = z − 2
5
z2 +

7
75

z3 − 82
4875

z4 +
1078
414375

z5

− 452
1243125

z6 +
57311

1212046875
z7 − 1023946

175746796875
z8 + · · · ,

(2.53)

and similarly for its inverse (for the composition) transformation

Q(z) = P−1(z) = z +
2
5
z2 +

17
75

z3 +
244
1625

z4 +
45043
414375

z5

+
2302
27625

z6 +
128941
1939275

z7 +
15365176
281194875

z8 + · · · .
(2.54)

This approach is reminiscent of the conjugation introduced in Siegel’s theorem [15–17]. It is
a straightforward matter to see (order by order) that one actually has

Ra1(P(u)) = P(a1 · u) or : Ra1 = P ·Ha1 · P−1. (2.55)
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The structure of the (one-parameter) renormalization group and the extension of the
composition of n times a rational function R(z) (namely, R(R(· · ·R(z) · · · ))) to n any complex
number become a straight consequence of this relation. Along this line one can define some
“infinitesimal composition” (ε 	 0):

R1+ε(z) = P ·H1+ε · P−1(z) = z + ε · F(z) + · · · , (2.56)

where one can find, order by order, the “infinitesimal composition” function F(z):

F(z) = z − 2
5
z2 − 2

15
z3 − 14

195
z4 − 154

3315
z5 − 22

663
z6

− 418
16575

z7 − 9614
480675

z8 − 2622
160225

z9 + · · · .
(2.57)

It is straightforward to see, from (2.33), that the function F(z) satisfies the following
functional equations involving a rational function R(z) (in the one-parameter family Ra1(z)):

dR(z)
dz

· F(z) = F(R(z)),
dR(n)(z)

dz
· F(z) = F

(
R(n)(z)

)
, where :

R(n)(z) = R(R(· · ·R(z)) · · · ).
(2.58)

F (z) cannot be a rational or algebraic function. Let us consider the fixed points of R(n)(z).
Generically dR(n)(z)/dz is not equal to 0 or∞ at any of these fixed points. Therefore onemust
have F(z) = 0 or F(z) = ∞ for the infinite set of these fixed points: F(z) cannot be a rational
or algebraic function, it is a transcendental function, and similarly for the parametrization
function P(z). In fact, let us introduce the function

G(z) = (1 − z) · F(z),

G(z) = z − 7
5
z2 +

4
15

z3 +
4
65

z4 +
28
1105

z5 +
44

3315
z6 +

44
5525

z7

+
836

160225
z8 +

1748
480675

z9 + · · · + gn · zn + · · · .

(2.59)

One actually finds that the successive gn satisfies the very simple (hypergeometric function)
relation:

gn+1
gn

=
4n − 9
4n + 1

. (2.60)

The function G(z) is actually the hypergeometric function solution of the homogeneous
operator

D2
z +

1
4

13z − 3
z · (1 − z) ·Dz +

3
4
6z2 − 3z + 1

(1 − z)2 · z2
, (2.61)
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or of the inhomogeneous ODE

4z · (1 − z) · dG(z)
dz

+ (9z − 3) ·G(z) − z · (1 − z)2 = 0. (2.62)

One deduces the expression of F(z) as a hypergeometric function

F(z) = z · (1 − z)1/2 · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
; z
)

=
∂Ra1

∂a1

∣∣∣∣
a1=1

. (2.63)

Finally we get the linear differential operator annihilating F(z)

ΩF = D2
z +

1
4
· 5z − 3
z(1 − z) ·Dz +

1
4
· 3 − 6z + 5z2

(1 − z)2z2
= Dz ·

(
Dz − 1

4
· 3 − 5z
z · (1 − z)

)
, (2.64)

which is, in fact, nothing but Ω∗ the adjoint of linear differential operator Ω (see (2.6)). One
easily checks19 that the second-order differential equationΩF(y(z)) = 0 transforms under the
change of variable z → −4z/(1− z)2 into the second-order differential equationΩ(R)

F (y(z)) =
0 with Ω(R)

F = C(z)2 ·ω(R)
F where the unitary (monic) operator ω(R)

F is the conjugate of ΩF :

ω
(R)
F = D2

z −
1
4
· 11z2 + 30z + 3
z · (1 − z)(1 + z)

·Dz +
1
4
· 3 + 12z + 50z2 + 12z3 + 3z4

z2 · (1 − z)2(1 + z)2

=
(

1
C(z)

)
·Dz ·

(
Dz − 1

4
· 3 − 5z
z · (1 − z)

)
· C(z)

=
(

1
C(z)

)
·ΩF · C(z) =

(
1

C(z)

)
·Ω∗ · C(z)

(2.65)

with C(z) = 1/R′(z) and the “dot” denotes the composition of operators. Actually, the factors
in the adjoint Ω∗ transform under the change of variable z → −4z/(1 − z)2 as follows20:

Dz −→ C(z) ·Dz, ω∗1 = −→
(
ω∗1
)(R) = ω∗1 · C(z), Ω∗ −→ Ω(R)

F = C(z) ·Ω∗ · C(z)
(2.66)

which is precisely the transformation we need to match with (2.58) and see the ODE
Ω∗(F(z)) = 0 compatible with the change of variable z → −4z/(1 − z)2:

Ω∗(F(z)) = 0 −→ (C(z) ·Ω∗ · C(z))(F(R(z)))
= (C(z) ·Ω∗ · C(z))(R′(z) · F(z)) = C(z) ·Ω∗(F(z)) = 0.

(2.67)
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This is, in fact, a quite general result that will be seen to be valid in a more general (higher
genus) framework (see (2.148), (2.150) in what follows).

Not surprisingly one can deduce from (2.33) and the previous results, in particular
(2.63), the following results for Ra1(z):

−4 · ∂Ra1

∂a1

∣∣∣∣
a1=−4

= F(R(z)), (−4)n · ∂Ra1

∂a1

∣∣∣∣
a1=(−4)n

= F
(
R(n)(z)

)
, (2.68)

where R(z) = −4z/(1 − z)2 and R(n)(z) denotes R(R(· · ·R(R(z)))). Of course we have similar
relation for T(z), −4 being replaced by −7−24i. Therefore the partial derivative ∂Ra1/∂a1 that
can be expressed in terms of hypergeometric functions for for a double infinity of values of a1,
namely, a1 = (−4)M × (−7 − 24i)N .

One can, of course, check, order by order, that (2.58) is actually verified for any
function in the one-parameter family Ra1(z):

dRa1(z)
dz

· F(z) = F(Ra1(z)), (2.69)

which corresponds to an infinitesimal version of (2.33).
From (2.56) one simply deduces

z · dP(z)
dz

= F(P(z)), (2.70)

that we can check, order by order from (2.53), the series expansion of P(z), and from (2.57)
the series expansion of F(z), but also

dQ(z)
dz

· F(z) = Q(z) (2.71)

that we can, check order by order, from (2.54), the series expansion of Q(z) = P−1(z) and
from (2.57). We now deduce that the log-derivative of the “well-suited change of variable”
Q(z) is nothing but the (multiplicative) inverse of a hypergeometric function F(z):

d ln(Q(z))
dz

=
1

F(z)
, Q(z) = λ · exp

(∫z dz

F(z)

)
. (2.72)

The function Q(z) is solution of the nonlinear differential equation

− 4z2 · (1 − z)2 ·
(
Q ·Q(1) ·Q(3) +

(
Q(1)
)2 ·Q(2) − 2Q ·

(
Q(2)
)2)

+ z · (3 − 5z)(1 − z) ·Q(1) ·
(
Q ·Q(2) −

(
Q(1)
)2)

+
(
5z2 − 6z + 3

)
·Q ·

(
Q(1)
)2

= 0,

(2.73)
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where the Q(n)’s denote the nth derivative of Q(z). At first sight Q(z) would be a
nonholonomic function, however, remarkably, it is a holonomic function solution of an order-
five operator which factorizes as follows:

ΩQ =
(
Dz +

3 − 5z
(1 − z) · z

)
·
(
Dz +

3
4
· 3 − 5z
(1 − z) · z

)
·

×
(
Dz +

2
4
· 3 − 5z
(1 − z) · z

)
·
(
Dz +

1
4
· 3 − 5z
(1 − z) · z

)
·Dz,

(2.74)

yielding the exact expression of Q(z) in terms of hypergeometric functions:

Q(z) = z ·
(

2F1

([
1
2
,
1
4

]
,

[
5
4

]
; z
))4

=
z

1 − z ·
(

2F1

([
1
4
,
3
4

]
,

[
5
4

]
;− z

1 − z
))4

, (2.75)

that is, the fourth power of (2.3), with the differential operator (2.74) being the symmetric
fourth power of Ω. From (2.3) we immediately get the covariance of Q(z):

Q

(
− 4z

(1 − z)2
)

= −4 ·Q(z), (2.76)

and, more generally, Q(Ra1) = a1 · Q(z). Since Q(z) and F(z) are expressed in terms of the
same hypergeometric function, the relation (2.71)must be an identity on that hypergeometric
function. This is actually the case. This hypergeometric function verifies the inhomogeneous
equation:

4 · z · dH(z)
dz

+H(z) − (1 − z)−1/2 = 0, (2.77)

where

H(z) = 2F1

([
1
2
,
1
4

]
,

[
5
4

]
; z
)
. (2.78)

Recalling Q(P(z)) = z, one has the following functional relation on P(z):

P(z) · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
;P(z)

)4

= z. (2.79)

Noting that Q(z4)1/4 = F(z4) (see (2.3)) can be expressed in term of an incomplete
elliptic integral of the first kind of argument

√−1

z · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
; z4
)

= EllipticF
(
z,
√
−1
)
, (2.80)
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one can find that (2.79) rewrites on P(z) as

EllipticF
(
P(z)1/4,

√
−1
)
= z1/4, (2.81)

from which we deduce that the function P(z) is nothing but a Jacobi elliptic function 21

P(z) =
(
sn(z1/4,

√
−1)
)4
. (2.82)

In Appendix B we display a set of “Painlevé-like” ODEs22 verified by P(z). From the simple
nonlinear ODE on the Jacobi elliptic sinus, namely, S′′ + 2 · S3 = 0, and the exact expression
of P(z) in term of Jacobi elliptic sinus, one can deduce other nonlinear ODEs verified by the
nonholonomic function P(z) (P (1) = dP(z)/dz, P (2) = d2P(z)/dz2):

z3/2 ·
(
P (1)
)2 − (1 − P) · P 3/2 = 0, (2.83)

P (2) − 3
4
·
(
P (1))2

P
+
3
4
· P

(1)

z
+
1
2
· P

3/2

z3/2
= 0. (2.84)

2.4. Singularities of the Jacobi Elliptic Function P(z)

Most of the results of this section, and to some extent, of the next one, are straight
consequences of the exact closed expression of P(z) in terms of an elliptic function. Following
the pedagogical approach of this paper we will rather follow a heuristic approach not taking
into account the exact result (2.82), to display simple methods and ideas that can be used
beyond exact results on a specific example.

From a diff-Padé analysis of the series expansion of P(z), we got the sixty (closest
to z = 0) singularities. In particular we got that P(z) has a radius of convergence R 	
11.81704500807 · · · corresponding to the following (closest to z = 0) singularity z = zs of
P(z):

zs = −11.817045008077115768316337283432582087420697 · · ·

= (−4) · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
; 1
)4

= − 1
16
· π6

Γ(3/4)8
.

(2.85)

This singularity corresponds to a pole of order four: P(z) 	 (z − zs)−4. The function P(z) has
many other singularities:

34 · zs, (161 ± 240i) · zs, (−7 ± 24i) · zs, (−119 ± 120i) · zs, · · ·

54 · zs, (41 ± 840i) · zs, (−527 ± 336i) · zs, (−1519 ± 720i) · zs, · · ·

74 · zs, (1241 ± 2520i) · zs, (−567 ± 1944i) · zs, (−3479 ± 1320i) · zs, · · ·

(2.86)
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In fact, introducing x and y the real and imaginary part of these singularities in zs
units, one finds out that they correspond to the double infinity of points

x =
(
m2

1 − 2m1m2 −m2
2

)
·
(
m2

1 + 2m1m2 −m2
2

)
,

y = 4 ·m1m2 · (m2 −m1) · (m2 +m1),
(2.87)

where m1 and m2 are two integers, and they all lie on the intersection of an infinite number
of genus zero curves indexed by the fourth power of an integerM = m4 (m = m1 orm = m2):

212M4 − 211 · x ·M3 − 27 ·
(
17y2 + 14x2

)
·M2 − 25 · x ·

(
8x2 + 7y2

)
·M + y4 = 0. (2.88)

The parametrization (2.87) describes not only the poles of P(z)whenm1 +m2 is odd, but also
the zeros of P(z) when m1 +m2 is even. This (infinite) proliferation of singularities confirms
the nonholonomic character of P(z).

These results are simply inherited from (2.82). The zeros and poles of the elliptic sinus
sn(z, i) correspond to two lattice of periods. Denoting K1 and K2 the two periods of the
elliptic curve, the location of the poles and zeros reads, respectively,

Pn1,n2 = 2n1 · K1 + (2n2 + 1) · K2,

Zn1,n2 = 2n1 · K1 + 2n2 · K2,

K1 =
π3/2

23/2
· 1

Γ(3/4)2
, K2 =

(
1 −
√
−1
)
·K1

(2.89)

making crystal clear the fact that we have complex multiplication for this elliptic curve. The
formula (2.87) just amount to saying that the poles and zeros of sn(z1/4, i) are located at P 4

n1,n2

and Z4
n1,n2

:

P 4
n1,n2

= −zs
4
· ((2n1 + 2n2 + 1) + i · (2n2 + 1))4,

Z4
n1,n2

= −zs
4
· ((2n1 + 2n2 + 1) + i · 2n2)4.

(2.90)

The correspondence with (2.87) ism1 = n1 + 2n2 + 1,m2 = −n1 for the poles andm1 = n1 + 2n2,
m2 = −n1 for the zeros.

Remark 2.2. let us consider the a1 → ∞ limit of the one-parameter series Ra1 (see (2.31),
(2.32)) rewriting Ra1(z) as R̃b1(u)

R̃b1(u) = Ra1(z), with : b1 =
1
a1

, u =
z

b1
. (2.91)
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In the a1 → ∞ limit, that is the b1 → 0 limit, one easily verifies, order by order in u, that
R̃b1(u) becomes exactly the transcendental parametrization function (2.53):

R̃b1(u) −→ P(u) when b1 −→ 0. (2.92)

For a1 = (−4)n (n → ∞), one finds that the radius of convergence of theRa1(z) series becomes
in the n → ∞ limit Rn 	 zs/4n, in agreement23 with (2.91).

2.5. P(z) and an Infinite Number of Rational Transformations:
The Sky Is the Limit

Note that some nonlinear ODEs associated with P(z) and displayed in Appendix B, namely
(B.3) and (B.10), and the functional equation (2.79), are invariant by the change of variable
(P(z), z) → (−4P(z)/(1 − P(z))2,−4z). In fact (B.3), (2.79), and (B.10) are invariant by
(P(z), z) → (−4P(z)/(1 − P(z))2,−4z), but also (P(z), z) → (−(1 − P(z))2/4/P(z),−z/4),
and also by (P(z), z) → (1/P(z), z).

The function P(z) satisfies the functional equation:

P(−4 · z) = − 4P(z)

1 − P(z)2
, (2.93)

but also

P((−7 − 24i) · z) = T(P(z)),

P((−7 + 24i) · z) = T ∗(P(z)),
(2.94)

and, more generally, as can be checked order by order on series expansions

P(a1 · z) = Ra1(P(z)). (2.95)

For example, considering the “good” branch (2.35) for the inverse of −4z/(1 − z)2, namely
S
(1)
−1/4(z), we can even check, order by order, on the series expansions of P(z) and S

(1)
−1/4(z) the

functional relation

S
(1)
−1/4(P(z)) = P

(
−z
4

)
, (2.96)

valid for |P(z)| < 1 since the radius of convergence of S(1)
−1/4(z) is 1.

Recalling the functional equations (2.94) it is natural to say that if P(z) is singular at
z = zs, then, for almost all the rational functions, in particular T(z) (resp. T ∗(z)) the T(P(z))
is also singular z = zs, and thus, from (2.94), P(z) is also singular at z = (−7 ± 24i) · zs.
It is thus extremely natural to see the emergence of the infinite number of singularities in
(2.87) of the form z = (N1 + i ·N2) · zs, as a consequence of (2.95) together with a reduction
of the one-parameter series Ra1(z) to a rational function for an infinite number of selected
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values of a1, namely the N1 + i · N2 in (2.87). This is actually the case for all the values
displayed in (2.87). For instance, for a1 = 34 = 81 we get the following simple rational
function:

R81(z) = z ·
(

z2 + 6z − 3
3z2 − 6z − 1

)4

, (2.97)

for which it is straightforward to verify that this rational transformation commutes with
T(z), T ∗(z), −4z/(1 − z)2, and is a solution of the Rota-Baxter-like functional equation (2.19).
The case a1 = 54 = 625 in (2.87), is even simpler, since it just requires to compose T(z) and
T ∗(z)

R625(z) = T(T ∗(z)) = T ∗(T(z))

= z ·
(

z2 − 2z + 5
5z2 − 2z + 1

)4

·
(

1 − 12z − 26z2 + 52z3 + z4

1 + 52z − 26z2 − 12z3 + z4

)4

,

(2.98)

which, again verifies (2.19) and commutes with all the other rational functions, in particular
(2.97). We also obtained the rational function corresponding to a1 = 74 = 2401,
namely:

R2401(z) = z ·
(
N2401(z)
D2401(z)

)4

, (2.99)

with:

N2401(z) = z12 ·D2401

(
1
z

)
, (2.100)

D2401(z) = 1 + 196z − 1302z2 + 14756z3 − 15673z4 − 42168z5

+ 111916z6 − 82264z7 + 35231z8 − 19852z9

+ 2954z10 + 308z11 − 7z12.

(2.101)

The polynomial N2401(z) satisfies many functional equations, like, for instance (with
R−4(z) = −4z/(1 − z2)):

412 ·D2401

(
1

R−4(z)

)
= D2401(z) ·D2401

(
1
z

)
(2.102)

and also

(1 − z)49 ·D2401(R−4(z))
2 = D2401(z)4 − z49 ·D2401

(
1
z

)4

. (2.103)
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We also obtained the rational function corresponding to a1 = 114 = 14641, namely,

R14641(z) = z ·
(
N14641(z)
D14641(z)

)4

, (2.104)

with:

N14641(z) = z30 ·D14641

(
1
z

)
, (2.105)

D14641(z) = 1 + 1210z − 33033z2 + 2923492z3 + 5093605z4

− 385382514z5 + 3974726283z6 − 14323974808z7

+ 57392757037z8 − 291359180310z9 + 948497199067z10

− 1642552094436z11 + 1084042069649z12 + 1890240552750z13

− 6610669151537z14 + 9712525647792z15 − 8608181312269z16

+ 5384207244702z17 − 3223489742187z18 + 2175830922716z19

− 1197743580033z20 + 387221579866z21 − 50897017743z22

− 7864445336z23 + 5391243935z24 − 815789634z25

+ 28366041z26 − 5092956z27 + 207691z28 + 2794z29 − 11z30,

(2.106)

and, of course, one can verify that R14641(z) actually commutes with R−4, R81, R625, R2401(z),
and is a solution of the Rota-Baxter-like functional equation (2.19). Similarly to R2401(z) (see
(2.102), (2.103)), we also have the functional equations:

430 ·D14641

(
1

R−4(z)

)
= D14641(z) ·D14641

(
1
z

)
, (2.107)

and also

(1 − z)(4·30+1) ·D14641(R−4(z))2 = D14641(z)4 − z(4·30+1) ·D14641

(
1
z

)4

. (2.108)

Next we obtained the rational function corresponding to a1 = 134 = 28561, which
verifies (2.19) namely,

R28561(z) = z ·
(
N28561(z)
D28561(z)

)4

, with N28561(z) = z42 ·D28561

(
1
z

)
,

N28561(z) = z42 ·D28561

(
1
z

)
,

(2.109)
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D28561(z) =
(
1 − 22z + 235z2 − 228z3 + 39z4 + 26z5 + 13z6

)
·D(36)

28561(z)

D
(36)
28561(z) = 1 + 2388z − 61098z2 + 19225300z3 + 606593049z4

− 1543922656z5 + 7856476560z6 − 221753896032z7 + 1621753072244z8

− 4542779886736z9 + 2731418674664z10 + 36717669656304z11

− 200879613202428z12 + 547249607666784z13 − 934179604482832z14

+ 1235038888776160z15 − 1788854212778642z16 + 3018407750933816z17

− 4349780716415868z18 + 4419228090228152z19 − 2899766501472914z20

+ 931940880451552z21 + 413258559018224z22 − 857795672629664z23

+ 659989056851972z24 − 304241349909008z25 + 87636987790824z26

− 14593362219920z27 + 1073204980340z28 + 45138167200z29

− 23660433008z30 + 2028597792z31 − 29540327z32 + 3238420z33

− 73386z34 − 492z35 + z36.

(2.110)

We get similar results, mutatis mutandis, than the ones previously obtained (commutation,
functional equations like (2.107), (2.108), etc.), namely,

442 ·D28561

(
1

R−4(z)

)
= D28561(z) ·D28561

(
1
z

)
, . . . . (2.111)

The “palindromic” nature of (2.97) (2.98), (2.99), (2.104) and (2.109) (see (2.100),
(2.105)), (2.109)) corresponds to the fact that these rational transformations commute with
J :

1
R81(z)

= R81

(
1
z

)
,

1
R625(z)

= R625

(
1
z

)
, . . . . (2.112)

In fact, more generally, we have RN4(1/z) = 1/RN4(z) for N any odd integer (N = 9, 21, . . .)
and RN4(1/z) = RN4(z) for any even integer N.

From (2.87) one can reasonnably conjecture that the fourth power of any integer will
provide a new example of Ra1(z) being a rational function. The simple nontrivial example
corresponds to the already found rational function

R16(z) = 16 · z · (1 − z)
2

(z + 1)4
. (2.113)

We already have explicit rational functions for all values of a1 of the form N4 for N =
2, 3, . . . , 16 and of course, we can in principle, build explicit rational functions for all the N’s
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product of the previous integers. Along this line it is worth noticing that the coefficients of
the series Ra1(z) are all integers when a1 is the fourth power of any integer.

We are thus starting to build an infinite number of (elementary) commuting rational
transformations, any composition of these (infinite number of) rational transformations
giving rational transformations satisfying (2.19) and preserving the linear differential
operator Ω. This set of rational transformations is a pretty large set! Actually this set of
rational transformations corresponds to the isogenies of the underlying elliptic function.

The proliferation of the singularities of P(z) corresponds to this (pretty large) set of
rational transformations. Recalling (2.96), the previous singularity argument is not valid 24

for the (well-suited) inverse transformations (S(1)
−1/4(z), . . . ) of these rational transformations

because (2.96) requires |P(z)| < 1 (corresponding to the radius of convergence of S(1)
−1/4(z))

and the singularity z = zs corresponds precisely to “hit” the value P(z) = 1.

2.6. Other Examples of Selected Gauss Hypergeometric ODEs

For heuristic reasons we have focused on A(z) = (3 − 5z)/z/(1 − z)/4, but of course, one can
find many other examples and try to generalize these examples.

For instance, introducing

A(z) =
1
6
·
d ln
(
(1 − z)3z5

)

dz
=

1
6
· 5 − 8z
(1 − z)z

(2.114)

the rational transformation

R(z) = −27 · z

(1 − 4z)3
, (2.115)

verifies the “Rota-Baxter-like” functional relation (2.19). This example corresponds to the
following covariance [12] on a Gauss hypergeometric integral (of the c = 1 + b type, see
below):

2F1

([
1
2
,
1
6

]
,

[
7
6

]
; z
)

=
z−1/6

6
·
∫z

0
t−5/6(1 − t)−1/2 · dt

= (1 − 4z)−1/2 · 2F1

([
1
2
,
1
6

]
,

[
7
6

]
;−27 z

(1 − 4z)3
) (2.116)

which is associated with the elliptic curve

y6 − (1 − t)3 · t5 = 0. (2.117)

Another example (of the c = 1 + a type, see below) is

A(z) =
1
3
·
d ln
(
(1 − z)2z2

)

dz
=

2
3
· 1 − 2z
(1 − z)z ,

(2.118)
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where the rational transformation

R(z) =
z · (z − 2)3
(1 − 2z)3

= −8z − 36z2 − 126z3 − 387z4 + · · · (2.119)

verifies the “Rota-Baxter-like” functional relation (2.19). This example corresponds to the
following covariance [12] on a Gauss hypergeometric integral:

2F1

([
1
3
,
2
3

]
,

[
4
3

]
; z
)

=
z−1/3

3
·
∫z

0
t−2/3(1 − t)−2/3 · dt

=
1
2
· 2 − z
1 − 2z · 2F1

([
1
3
,
2
3

]
,

[
4
3

]
;
z · (z − 2)3
(1 − 2z)3

)
,

(2.120)

which is associated with the elliptic curve

y3 − (1 − t)2 · t2 = 0. (2.121)

Note that, similarly to the main example of the paper, there exist many rational
transformations25 satisfying (2.19) that cannot be reduced to iterates of (2.119), for instance,

T(z) = −27 · z · (1 − z)
(
z2 − z + 1

)3

(z3 + 3z2 − 6z + 1)3
= −27z − 378z2

− 3888z3 − 34074z4 − 271620z5 − 2032209z6 + · · · .
(2.122)

One verifies immediately that (2.122) actually verifies (2.19) with (2.118). Not surprisingly,
the two rational transformations (2.119) and (2.122) commute.

Another simple example with rational symmetries corresponds toΩ = (Dz+A(z)) ·Dz

with

A(z) = −1
2
· 3z − 1
z(1 − z) =

1
2
·
d ln
(
z · (1 − z)2

)

dz
. (2.123)

It has the simple (genus zero) hypergeometric solution26:

F(z) = z1/2 · 2F1

([
1,

1
2

]
,

[
3
2

]
; z
)

= arctanh
(
z1/2
)
. (2.124)

The linear differential operator Ω is covariant under the change of variable z → 1/z and
z → R(z), where27

R(z) =
4z

(1 + z)2
. (2.125)
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One can easily check that (2.123) and (2.125) satisfy the functional equation (2.19). One also
verifies that (2.123) and z → 1/z or the iterates of (2.125) satisfy the functional equation
(2.19). The solution of the adjoint operator are (1 − z) · z1/2 and

F(z) = z · (1 − z) · 2F1

([
1,

1
2

]
,

[
3
2

]
; z
)

= z1/2 · (1 − z) · arctanh
(
z1/2
)
= z − 2

3
z2 − 2

15
z3

− 2
35

z4 − 2
63

z5 − 2
99

z6 − 2
143

z7 + · · · .

(2.126)

One verifies, again, that (2.126) and (2.125) commute, (2.126) corresponding to the
“infinitesimal composition” of (2.125) (see (2.56)).

A first natural generalization amounts to keeping the remarkable factorization (2.6)
which will, in fact, reduce the covariance of a second-order operator to the covariance
of a first-order operator.28 Such a situation occurs for Gauss hypergeometric functions
2F1([a, b], [1 + a]; z) solution of the (a, b)-symmetric linear differential operator

z · (1 − z) ·D2
z + (c − (a + b + 1) · z) ·Dz − a · b, (2.127)

as soon as29 c = 1 + a. For instance

F(z) = za · 2F1([a, b], [1 + a]; z), (2.128)

is an integral of a simple algebraic function and is solution with the constant function of the
second-order operator

Ω =
(
Dz +

(a − b − 1)z + 1 − a
z · (1 − z)

)
·Dz

=

⎛
⎜⎝Dz +

d ln
(
(1 − z)b · z1−a

)

dz

⎞
⎟⎠ ·Dz,

(2.129)

yielding a new A(z):

A(z) =
(1 − a) + (a − b − 1)z

(1 − z) · z =
1 − a
z
− b

1 − z . (2.130)

The adjoint of (2.129) has the simple solution z1−a · (1 − z)b:

F(z) = z · (1 − z)b · 2F1([a, b], [1 + a]; z). (2.131)
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Due to the (a, b)-symmetry of (2.127)we have a similar result for c = 1+b. The function
F(z) = zb · 2F1([a, b], [1 + b]; z) is solution of (2.129)where a and b have been permuted:

(
Dz +

(b − a − 1)z + 1 − b
z · (1 − z)

)
·Dz, (2.132)

yielding another A(z)

A(z) =
(1 − b) + (b − a − 1)z

(1 − z) · z , (2.133)

The adjoint of (2.132) has the solution (1−z)a ·z1−b together with the hypergeometric function:

F(z) = z · (1 − z)a · 2F1([a, b], [1 + b]; z), (2.134)

where one recovers the previous result (2.126).
We are seeking for (Gauss hypergeometric) second-order differential equations30 with

an infinite number of (hopefully rational, if not algebraic) symmetries: this is another way
to say that we are not looking for generic Gauss hypergeometric differential equations, but
Gauss hypergeometric differential equations related to elliptic curves, and thus having an
infinite set of such isogenies. We are necessarily in the framework where the two parameters
a and b of the Gauss hypergeometric are rational numbers in order to have integral of algebraic
functions (yielding globally nilpotent [11] second-order differential operators). Let us denote
by D the common denominator of the two rational numbers a = Na/D and b = Nb/D,
function (2.128) is associated to a period of the algebraic curve

yD = (1 − t)Nb · tD−Na. (2.135)

We just need to restrict to triplets of integers (Na,Nb,D) such that the previous curve is an
elliptic curve.

Let us give an example (of the c = 1 + b type) that does not correspond to a genus one
curve, with

2F1

([
1
3
,
1
6

]
,

[
7
6

]
; z
)

=
1
6
· z−1/6 ·

∫z

0
t−5/6(1 − t)−1/3 · dt, (2.136)

which corresponds to the genus two curve:

y6 − (1 − t)2 · t5 = 0. (2.137)

Again one introduces A(z)

A(z) =
1
6
·
d ln
(
(1 − z)2z5

)

dz
=

1
6
· 5 − 7z
z · (1 − z)

(2.138)
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and seeks for R(z) as series expansions analytical at z = 0. One gets actually, order by order,
a one-parameter family

Ra1(z) = a1 · z − 2
7
a1 · (a1 − 1) · z2

+
1

637
a1 · (a1 − 1) · (17a1 − 87) · z3

− 2
84721

a1 · (a1 − 1) ·
(
113a2

1 − 856a1 + 3438
)
· z4

− 1
38548055

a1 · (a1 − 1) ·
(
3674a3

1 + 121194a2
1 − 552261a1 + 2095059

)
· z5 + · · ·

+
1 + εn
N(n)

· a1 · (a1 − 1) · Pn(a1) · zn + · · · ,
(2.139)

where εn = 0 for n odd and εn = 1 for n even, and N(n) is a (large) integer depending on n,
and Pn(a1) is a polynomial with integer coefficients of degree n − 2. One easily verifies, order
by order, that one gets a one-parameter family of transformations commuting for different
values of the parameter:

Ra1(Rb1(z)) = Rb1(Ra1(z)) = Ra1b1(z). (2.140)

As far as the “algorithmic complexity” of this series (2.139) is concerned it is worth
noticing that the degree growth [18] of the series coefficients is actually linear and not
exponential as we could expect [19] at first sight. Even if this series is transcendental, it is
not a “wild” series.

Seeking for selected values of a1 such that the previous series (2.139) reduces to
a rational function one can try to reproduce the simple calculations (2.48), (2.49), but
unfortunately “shooting in the dark” because we have no hint of a well-suited denominator
(if any!) like the polynomials in the lhs of (2.48), (2.49).

It is also worth noticing that if we slightly change A(z) into

A(z) =
1
N
·
d ln
(
(1 − z)2z5

)

dz
=

1
N
· 5 − 7z
z · (1 − z) ,

(2.141)

the algebraic curve (2.137) becomes yN − (1− t)2 · t5 = 0 which has, for instance genus five for
N = 11, but genus zero for N = 7. For any of these cases of (2.141) one can easily get, order
by order, a one-parameter series Ra1 totally similar to (2.139)with, again, polynomials Pn(a1)
of degree n − 2.

The first coefficient a2 is in general

a2 = − 2
2N − 5 · a1 · (a1 − 1). (2.142)
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For the genus zero case, N = 7

a2 = −29 · a1 · (a1 − 1), a3 = − 1
1296

· a1 · (a1 − 1) · (127 − a1),

a4 = − 1
134136

· a1 · (a1 − 1) ·
(
254a2

1 + 185a1 + 7499
)
, . . . ,

an = − 1
N(n)

· a1 · (a1 − 1) · Pn(a1),

(2.143)

which corresponds to the solution

2
7
·
∫z

0
z−5/7 · (1 − z)−2/7 · dt = z2/7 · 2F1

([
2
7
,
2
7

]
,

[
9
7

]
; z
)
. (2.144)

Using the parametrization of the genus zero curve

y = − (u + 1)2 · u5

(u + 1)7 − u7
, t = − u7

(u + 1)7 − u7
, (2.145)

one can actually perform the integration (2.144) of dt/y and get an alternative form of the
hypergeometric function (2.144):

∫z

0
z−5/7 · (1 − z)−2/7 · dt =

∫u

0
ρ(u) · du =

∫v

0

v

1 − v7
· dv,

where : z = − u7

(u + 1)7 − u7
, ρ(u) =

(u + 1)4 · u
(u + 1)7 − u7

,

and: v =
u

1 + u
, z =

v7

v7 − 1 .

(2.146)

Except transformations like v → ω · v (with ω7 = 1) which have no impact on z, it seems
difficult to find rational symmetries in this genus zero case.

For N = 11 (genus five) the first successive coefficients read:

a2 = − 2
17
· a1 · (a1 − 1),

a3 = − 1
8092

· a1 · (a1 − 1) · (143a1 + 367),

a4 = − 1
206346

· a1 · (a1 − 1) ·
(
1186a2

1 + 2473a1 + 5011
)
, . . . ,

an = − 1
N(n)

· a1 · (a1 − 1) · Pn(a1).

(2.147)
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The “infinitesimal composition” function F(z) (see (2.56), (2.57), and (2.58)) reads,

F(z) =
∂Ra1

∂a1

∣∣∣∣
a1=1

= z − 2
17

z2 − 15
238

z3 − 5
119

z4 − 37
1190

z5

− 888
36295

z6 − 2183
108885

z7 − 4366
258213

z8 − 58941
4045337

z9

− 1807524
141586795

z10 − 46543743
4106017055

z11 − 5305986702
521464165985

z12 + · · ·

(2.148)

and again we can actually check that this is actually the series expansion of the hyper-
geometric function

z · (1 − z) · 2F1

([
1,

15
11

]
,

[
17
11

]
; z
)
, (2.149)

solution ofΩ∗ the adjoint of theΩ linear differential operator corresponding to this (genus 5)
N = 11 case:

Ω∗ = Dz ·
(
Dz +

1
11
· 7z − 5
z · (1 − z)

)
. (2.150)

We have similar results for (2.128), (2.129), (2.130). As far as these one-parameter
families of transformations Ra1 are concerned, the only difference between the generic cases
corresponding to arbitrary genus and genus one cases like (2.118) is that in the generic
higher genus case, only a finite number of values of the parameter a1 can correspond to
rational functions. Note that this higher genus result generalizes to the arbitrary genus Gauss
hypergeometric functions (2.128) and associated operators (2.129) and function (2.130). In
this general case one can also get order by order a one-parameter family of transformations
Ra1 satisfying a commutation relation (2.141).

Note that R(z) = 1/z is actually a solution of (2.19) for this genus-two example (2.139).
Along this line of selected R(z) solutions of (2.19) many interesting subcases of this general
case (2.128), (2.129), (2.130) are given in Appendix C.1.

In our previous genus-one examples, with this close identification between the
renormalization group and the isogenies of elliptic curves, we saw that, in order to obtain
linear differential operators covariant by an infinite number of transformations (rational or
algebraic), we must restrict our second-order Gauss hypergeometric differential operator to
Gauss hypergeometric associated to elliptic curves (see Appendices C and D). Beyond this
framework we still have one-parameter families (see (2.141)) but we cannot expect an infinite
number of rational (and probably algebraic) transformations to be particular cases of such
families of transcendental transformations.

3. Conclusion

We have shown that several selected Gauss hypergeometric linear differential operators
associated to elliptic curves, and factorised into order-one linear differential operators,
actually present an infinite number of rational symmetries that actually identify with the
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isogenies of the associated elliptic curves that are perfect illustrations of exact representations of
the renormalization group. We actually displayed all these calculations, results, and structures
because they are perfect examples of exact renormalization transformations. For more
realistic models (corresponding to Yang-Baxter models with elliptic parametrizations),
the previous calculations and structures become more involved and subtle, the previous
rational transformations being replaced by algebraic transformations corresponding to
modular curves. For instance, in our models of lattice statistical mechanics (or enumerative
combinatorics, etc.), we are often getting globally nilpotent linear differential operators [11]
of quite high orders [20–24] that, in fact, factor into globally nilpotent operators of smaller
orders31 which, for Yang-Baxter integrable models with a canonical elliptic parametrization,
must necessarily “ be associated with elliptic curves.” Appendix D provides some calculations
showing that the integral for χ(2), the two-particle contribution of the susceptibility of the
Ising model [25–27], is clearly and straightforwardly associated with an elliptic curve.

We wanted to highlight the importance of explicit constructions in answering difficult
or subtle questions.

All the calculations displayed in this paper are elementary calculations given explicitly
for heuristic reasons. The simple calculations (in particular with the introduction of a simple
Rota-Baxter like functional equation) should be seen as some undergraduate training to more
realistic renormalization calculations that will require a serious knowledge of fundamental
modular curves, modular forms, Hauptmoduls, Gauss-Manin or Picard-Fuchs structures [28,
29] and, beyond, some knowledge of mirror symmetries [30–34] of Calabi-Yau manifolds,
these mirror symmetries generalizing32 the Hauptmodul structure for elliptic curves.

Appendices

A. Comment on the Rota-Baxter-Like Functional Equation (2.19)

We saw, several times, that the Rota-Baxter-like functional equation (2.19) is such that for
a given A(z) one gets a one-parameter family of analytical functions R(z) obtained order
by order by series expansion (see (2.32), (2.139)). Conversely for a given R(z), for instance,
R(z) = −4z/(1−z)2, let us see ifR(z) can come from a uniqueA(z). Assume that there are two
A(z) satisfying (2.26)with the sameR(z) = −4z/(1−z)2. Wewill denote δ(z) the difference of
these two A(z), and we will also introduce Δ(z) = z · δ(z). It is a straightforward calculation
to see that Δ(z) verifies

Δ(z) =
1 + z

1 − z ·Δ
(
−4z

(1 − z)2
)
, (A.1)

which has, beyond Δ(z) = 0, at least one solution analytical at z = 0 that we can get order by
order:

Δ(z) = 1 +
2
5
z +

22
75

z2 +
394
1625

z3 +
262634
1243125

z4 + · · · . (A.2)

It is straightforward to show from (A.1), from similar arguments we introduced for (2.57) on
the functional equations (2.58) that Δ(z) is a transcendental function.
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B. Miscellaneous Nonlinear ODEs on P(z)

From (2.70) one can get

F ′(P(z)) = 1 + z · P
(2)

P (1)
,

F ′′(P(z)) =
P (2)

(
P (1)
)2 + z · P (3)

(
P (1)
)2 − z ·

(
P (2))2
(
P (1)
)3 ,

(B.1)

and from (2.64), the linear second-order ODE on F(z), one deduces the third-order nonlinear
ODE33 on the (at first sight nonholonomic) function P(z):

z ·
(
5P 2 − 6P + 3

)
·
(
P (1)
)4 − P · (5P − 3) · (P − 1) ·

(
P (1)
)3

− z · (P − 1) · P · (5P − 3) · P (2) ·
(
P (1)
)2

+ 4P 2 · (P − 1)2 ·
(
P (2) + z · P (3)

)
· P (1)

− 4z ·
(
P (2)
)2 · P 2 · (P − 1)2 = 0,

(B.2)

where the P (n)’s denote the nth derivative of P(z). This third order nonlinear ODE has a
rescaling symmetry z → ρ · z, for any ρ, and, also, an interesting symmetry, namely an
invariance by z → zα, for any34 value of α.

In a second step, using differential algebra tools, and, more specifically, the fact that
P(Q(z)) = Q(P(z)) = z together with the linear ODE for Q(z), one finds the simpler second-
order nonlinear ODE for P(z):

P (2) − 1
4
· 5P − 3
(P − 1) · P ·

(
P (1)
)2

+
3
4
· 1
z
· P (1) = 0 (B.3)

or

P (2) −
(
3
4
· 1
P

+
1
2
· 1
P − 1

)
·
(
P (1)
)2

+
3
4
· 1
z
· P (1) = 0. (B.4)

Note that, more generally, the second-order nonlinear ODE

P (2) −
(
3
4
· 1
P

+
1
2
· 1
P − 1

)
·
(
P (1)
)2

+
η

z
· P (1) = 0, (B.5)

yields (B.2) for any value of the constant η. The change of variable z → zα, changes the
parameter η into 1 + α · (η − 1). In particular the involution z ↔ 1/z changes η = 3/4 into
η = 5/4.
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This nonlinear ODE, looking like Painlevé V, is actually invariant by the change of
variable P → −4P/(1 − P)2. It is, also, invariant by any rescaling z → λz, like the particular
degenerate35 subcase of Painlevé V

y′′ −
(

1
2y

+
1

y − 1
)
· y′2 + 1

z
· y′ = 0. (B.6)

With (2.70) we recover the “Gauss-Manin” idea of Painlevé functions being seen as
deformations of elliptic functions:

z · dP(z)
dz

= P(z) · (1 − P(z))1/2 · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
;P(z)

)
. (B.7)

or

−2z ·
d arctanh

(
(1 − P(z))1/2

)

dz
= 2F1

([
1
4
,
1
2

]
,

[
5
4

]
;P(z)

)
. (B.8)

In fact, recalling Q(P(z)) = z, one also has the relation

P(z) · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
;P(z)

)4

= z, (B.9)

yielding with (B.7) the simple nonlinear order-one differential equation

z3 · (P ′)4 − (1 − P)2 · P 3 = 0, (B.10)

already seen with (2.83), and that we can write in a separate way:

dP

(1 − P)1/2 · P 3/4
=

dz

z3/4
. (B.11)

Note that P(z4·(1−η)) is actually solution of (B.5).
Equation (B.10) has (B.9) as a solution but in general the Puiseux series solutions Pμ(z)

of the functional equation (μ is a constant):

Pμ(z)1/4 · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
;PA(z)

)
= μ + z1/4 or

Pμ(z) = P

((
μ + z1/4

)4)
,

Pμ(z) = P
(
μ4
)
+ 4 · μ3 · P ′

(
μ4
)
· z1/4 + · · · .

(B.12)

It is a straightforward exercise of differential algebra to see that the order-one nonlinear
differential equation (B.10) implies (B.3). In particular not only (B.9) is solution of (B.3)
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but also all the Puiseux series solutions (B.12) of (B.10). More generally the solutions of the
functional equation:

Pμ,λ(z)1/4 · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
;Pμ,λ(z)

)
= μ + λ · z1/4 (B.13)

verify (B.3). This corresponds to the fact that

z3 · (P ′)4 − λ4 · (1 − P)2 · P 3 = 0, (B.14)

yields (B.2) which is scaling symmetric (z → ρ · z) when (B.10) is not. More generally

z4η · (P ′)4 − λ4 · (1 − P)2 · P 3 = 0 (B.15)

yields (B.2) for any value of the parameters η and λ. Finally, one also has that the solution of
the functional equation

Pη(z)1/4 · 2F1

([
1
4
,
1
2

]
,

[
5
4

]
;Pη(z)

)
= μ + λ · z1−η (B.16)

is solution of (B.2), but also of (B.5) and even of (B.15).
Equation (B.5) with η = 1/2 (instead of η = 3/2 in (B.3)) has a solution, analytical at

z = 0:

1 + x +
1
2
x2 +

7
40

x3 +
1
20

x4 +
121
9600

x5 +
7

2400
x6 +

211
332800

x7 +
41

312000
x8 + · · · . (B.17)

This series has a singularity at −1/4·z2s, where zs is given by (2.85). The radius of convergence
of (B.17) corresponds to this singularity, namely, R = 1/4 · z2s. This singularity result can be
understood from the fact that, at η = 1/2, P(z2) is actually solution of (B.5).

In fact, we have the following solutions of (B.5) for various selected values of η. For
η = 0, P(z4) is solution of (B.5). For η = 2/3, P(z4/3) is solution of (B.5), and, more generally,
P(z4·(1−η)) is solution of (B.5).

C. Gauss Hypergeometric ODEs Related to Elliptic Curves

It is not necessary to recall the close connection between Gauss hypergeometric functions and
elliptic curves, or even modular curves [35, 36] and Hauptmoduls. This is very clear on the
Goursat-type relation

2F1

([
2a,

2a + 1
3

]
,

[
4a + 2

3

]
;x
)

=
(
1 − x + x2

)−a · 2F1

([
a

3
,
a + 1
3

]
,

[
4a + 5

6

]
;
27
4
· (x − 1)

2 · x2

(1 − x + x2)3

)
,

(C.1)
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which generalizes the simpler quadratic Gauss relation:

2F1

(
[a, b],

[
a + b + 1

2

]
;x
)

= 2F1

([
a

2
,
b

2

]
,

[
a + b + 1

2

]
; 4x(1 − x)

)
. (C.2)

On (C.1) one recognizes (the inverse of) the Klein modular invariant 36 for the pull-back of the
hypergeometric function on the rhs.

Many values of [[a, b], [c]] are known to correspond to elliptic curves like
[[1/2, 1/2], [1]] (complete elliptic integrals of the first and second kind) or modular forms:
[[1/12, 5/12], [1]], [[2/3, 2/3], [1]], [[2/3, 2/3], [3/2]], and they can even be simply related:

(
z + 27
27

)1/3

· 2F1

([
2
3
,
2
3

]
, [1];− 1

27
z

)
= μ(z) · 2F1

([
1
12

,
5
12

]
, [1]; 1728

z

(z + 27)(z + 3)3

)
,

(C.3)

where:

μ(z) =

(
(z + 27)(z + 3)3

729

)−1/12
. (C.4)

Once we have a hypergeometric function corresponding to an elliptic curve for some
values of (a, b, c), one can find other values of (a, b, c) also corresponding to elliptic curves

2F1([a, b], [c];x) −→ x1−c · 2F1([1 + a − c, 1 + b − c], [2 − c];x). (C.5)

In order to provide simple examples of linear differential ODEs we will restrict
ourselves (just for heuristic reasons) to Gauss hypergeometric second-order differential
equations.

Let us recall the Euler integral representation of the Gauss hypergeometric functions:

2F1([a, b], [c]; z) =
Γ(c)

Γ(b)Γ(c − b) ·
∫1

0

dw

w
wb · (1 −w)c−1−b · (1 − zw)−a

=
Γ(c)

Γ(a)Γ(c − a) ·
∫1

0

dw

w
wa · (1 −w)c−1−a · (1 − zw)−b

=
Γ(c)

Γ(a)Γ(c − a) · z
−a
∫z

0

du

u
ua ·
(
1 − u

z

)c−1−a
· (1 − u)−b.

(C.6)

On the last line of (C.6), the selected role of c = 1 + a is quite clear.
Recall that the corresponding second-order differential operator is invariant under the

permutation of a and b which is not obvious37 on the Euler integral representations of the
hypergeometric functions (this amounts to permuting 0 and∞). The permutation of a and b
is always floating around in this paper.
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When the three parameters a, b and c of the Gauss hypergeometric functions are
rational numbers we have integrals of algebraic functions and, therefore, we know [11, 37–
40] that the corresponding second-order differential operator is necessarily globally nilpotent
[11, 37–40]. Let us restrict to a, b, and c being rational numbers a = Na/D, b = Nb/D and
c = Nc/D, where D is the common denominator of these three rational numbers. The Gauss
hypergeometric functions are naturally associated to the pencil of algebraic curves

yD = (1 − u)Nb · uD−Na ·
(
1 − u

z

)−Nc+D+Na

. (C.7)

Recalling the main example of the paper, one associates with 2F1([1/4, 1/2], [5/4]; z)

2F1

([
1
2
,
1
4

]
,

[
5
4

]
; z
)

=
Γ(5/4)

Γ(1/2)Γ(3/4)
·
∫1

0

dw

w
·w1/2 · (1 −w)−1/4 · (1 − zw)−1/4

=
Γ(5/4)

Γ(1/2)Γ(3/4)
· z−1/2 ·

∫z

0
u−1/2 ·

(
1 − u

z

)−1/4
· (1 − u)−1/4 · du

(C.8)

the z-pencil of elliptic curves38

y4 − u2 · (1 − u) ·
(
1 − u

z

)
= 0, (C.9)

where we associated (see (2.2)) to 2F1([1/2, 1/4], [5/4]; z) the elliptic curve

y4 − u3 · (1 − u)2 = 0. (C.10)

C.1. Miscellaneous Examples

In the more general (2.128), (2.129), (2.130), (resp. (2.132), (2.133)) framework, one can find
many interesting subcases.

(i) The previous R(z) = 1/z involution is solution of the functional relation (2.19)
when a = 2b if c = 1 + b, or b = 2a if c = 1 + a.

(ii) The involutionR(z) = 1−z is solution of the functional relation (2.19)when a+b = 1
if c = 1 + b, or c = 1 + a.

(iii) The infinite-order transformation:

R(z) = t · z

1 + (t − 1) · z , R(n)(z) = tn · z

1 + (tn − 1) · z , (C.11)

is solution of the functional relation (2.19)when a = 1+ b if c = 1+ b, or b = 1+ac =
1 + a.

(iv) The scaling transformation R(z) = t · z is solution of the functional relation (2.19)
when a = 0 and c = 1 + b (resp., b = 0 and c = 1 + a).

(v) We also have a quite degenerate situation for b = 1 or a = 1 when c = 2 with the
infinite-order transformation

R(z) = 1 − t · (1 − z), R(n)(z) = 1 − tn · (1 − z), (C.12)

solution of (2.19).
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(vi) The two order-three transformations

R(z) =
z − 1
z

, R(R(z)) =
1

1 − z , (C.13)

are solutions of the functional relation (2.19) for a = 2/3, b = 1/3, c = 4/3, or
a = 1/3, b = 1/3, c = 4/3.

D. Ising Model Susceptibility: χ̃(2) and Elliptic Curves

The two-particle contribution of the susceptibility of the Ising model [25–27] is given by
a double integral. This double integral on two angles χ̃(2) reduces to a simple integral39

(because the two angles are opposite):

χ̃(2) =
∫π

0
dθ · y2 · 1 + x2

1 − x2
·
(
x · sin(θ)
1 − x2

)2

, (D.1)

where

x = A − B, A =
1
2w
− cos(θ), B2 = A2 − 1, y2 =

1
A2 − 1 . (D.2)

Denoting C = cos(θ)we can rewrite the integral χ(2) as

χ̃(2) =
∫1

0

dC

(1 − C2)1/2
· x2 · y2 · 1 + x2

(1 − x2)3
, (D.3)

that we want to see as:
∫1

0

dC

z
=
∫w

0

dq

Z
. (D.4)

The variable z reads:

1
z
− 1

(1 − C2)1/2
· x2 · y2 · 1 + x2

(1 − x2)3
= 0, (D.5)

which after simplifications gives

A2
(
C2 − 1

)
· z2 +

(
A2 − 1

)5
= 0, (D.6)

that is

(
1
2w
− C
)2

·
(
C2 − 1

)
· z2 +

((
1
2w
− C
)2

− 1
)5

= 0. (D.7)

In terms of the variable q = w · C one can rewrite (see (D.4)) the integral (D.3) as an
incomplete integral:

256 · (1 − 2q)2
(
q2 −w2

)
· Z2w4 +

(
2q − 1 + 2w

)5(2q − 1 − 2w)5 = 0. (D.8)
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This w-pencil of algebraic curves is actually a w-pencil of genus one curves, seen as algebraic
curves in Z and q.
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Endnotes

1. The renormalization group approach of important problems like first-order phase
transitions, commensurate-incommensurate phase transitions, or off-critical problems is
more problematic.

2. In contrast with functional renormalization group [41–43].

3. One simply verifies that these transformations reduce to the previous TN : t → tN in the
z = 1 limit (no magnetic field).

4. For instance the fixed points of (1.3) are not isolated fixed points but lie on (an infinite
number) of genus zero curves.

5. In well-suited Boltzmannweight variables like x and z in (1.3), and not in (bad) variables
like K, the coupling constants or the temperature.

6. Such representations of the renormalization group are not exact representations (the
exact transformation acts in an infinite number of parameters) but some authors tried
to define “improved” renormalization transformations imposing the compatibility (com-
mutation) of the renormalization transformations with some known exact symmetries of
the model (Kramers-Wannier duality, gauge symmetries...).

7. For which the partition function or other physical quantities are algebraic functions.

8. See for instance (2.18) in [44].

9. Suggesting an understanding [4, 45] of the quite rich structure of infinite number of the
singularities of the χ(n)’s in the complex plane from a Hauptmodul approach [4, 45].
Furthermore the notion of Heegner numbers is closely linked to the isogenies mentioned
here [4]. An exact value of the j-function j(τ) corresponding one of the first Heegner
number is, e.g., j(1 + i) = 123.

10. It should be recalled that the mirror symmetry found with Calabi-Yau manifolds [30–
34] can be seen as higher-order generalizations of Hauptmoduls. We thus have already
generalizations of this identification of the renormalization and modular structure when
one is not restricted to elliptic curves anymore.

11. The fact that the renormalization group must be reversible has apparently been totally
forgotten by most of the authors who just see a semigroup corresponding to forward
iterations converging to the critical points (resp. manifolds).

12. Corresponding to Atkin-Lehner polynomials and Weber’s functions.



Advances in Mathematical Physics 41

13. Conversely, and more precisely, writing 1728z2/(z + 256)3 = 1728z′/(z′ + 16)3 gives the
Atkin-Lehner [46] involution z · z′ = 212, together with the quadratic relation z2 − zz′2 −
48zz′ − 4096z′ = 0

14. They are not only Fuchsian, the corresponding linear differential operators are globally
nilpotent orG-operators [11].

15. Where j is typically the j-function [44, 47].

16. Such formula is actually valid for ΩA = (Dz + A(z)) · Dz for any A(z). Denoting SN

symmetric Nth power of ΩA one has SN = (Dz +A(z)) · SN−1.

17. The Rota-Baxter relation of weight Θ reads: R(x)R(y) + ΘR(xy) R(R(x)y + xR(y)).

18. For A(z) given we get a one-parameter family of R(z) solution of (2.19). Conversely,
for R(z) given one can ask if there are several A(z) such that (2.19) is verified. This is
sketched in Appendix A.

19. Using the command “dchange” with PDEtools in Maple.

20. Note that the result for ω∗1 is nothing but transformation (2.14) on ωk for k = −1. Also
note that the two transformations, performing the change of variable z → −4z/(1 − z)2
and taking the adjoint, do not commute: (ω∗1)

(R)
/= ((ω1)

(R))∗.

21. Denoted JacobiSN in Maple: P(z) = (JacobiSN(z1/4, I))4.

22. As a (nonholonomic) elliptic function P(z) provides elementary examples [48] of
nonlinear ODEs with the Painlevé property (like the Weierstrass P-function).

23. It is the absolute value of the inverse of the image of the n-th iterate of S(1)
−1/4 of −1.

24. If this previous singularity argument was valid we would have had singularities as close
as possible to z = 0 (namely, zs/(−4)n), yielding a zero radius of convergence. Similarly
combining T ∗(z) and the inverse of T(z) we would have obtained an infinite number of
singularities on the circle of radius |zs|.

25. Note a (small) misprint in formula (64) page 174 of Vidunas [12].

26. Of the c = 1 + b type (see below).

27. The change of variable (2.125) can be parametrized with hyperbolic tangents: z → z′

with z = tanh(u)2,z′ = tanh(2u)2. Note that z → 4 · z/(1 − z)2 is parametrized by
z = tan(u)2z′ = tan(2u)2 but z → −4 · z/(1 − z)2 is not parametrized by trigonometric
functions.

28. Thus avoiding the full complexity (and subtleties) of the covariance of ODEs by algebraic
transformations like modular transformations (1.8).

29. See for instance (C.6) in Appendix C.

30. More generally in our models of lattice statistical mechanics (or enumerative combi-
natorics etc.) we are seeking for (high order) globally nilpotent [11] operators that,
in fact, factor into globally nilpotent operators of smaller order, which, for Yang-
Baxter integrable models with a canonical elliptic parametrization, must necessarily “be
associated with elliptic curves”. Appendix D provides some calculations showing that
the integral for χ(2), the two-particle contribution of the susceptibility of the Ising model
[25–27] is clearly, and straightforwardly, associated with an elliptic curve.

31. Experimentally [21] and as could be expected from Dwork’s conjecture [11], one
often finds for these small order factors hypergeometric second-order operators and
sometimes selected Heun functions [49] (or their symmetric products).
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32. For instance equation (1.9) of [31]. Do note that the periods of certain K3 families (and
hence the original Calabi-Yau family) can be described by the squares of the periods
of the elliptic curves [31]. The mirror maps of some K3 surface families are always
reciprocals of some McKay-Thompson series associated to the Monstruous Moonshine
list of Conway and Norton, with the mirror maps of these examples being always
automorphic functions for genus zero [32, 33].

33. Using differential algebra tools one can verify that (2.84) implies (B.2).

34. Beyond diffeomorphisms of the circle: the parameter α can be a complex number.

35. Having the movable-poles solutions: (αβ + zβ)2/(αβ − zβ)2.
36. Taking forx the elliptic lambda function.

37. For instance for 2F1([1/4, 1/2], [5/4]; z) it changes an Euler integral with Γ(5/4)/
Γ(1/4)Γ(1) = 1/4 into an Euler integral with Γ(5/4)/Γ(3/4)Γ(1/2) = (1/4) · ((2π)1/2/
Γ(3/4)2).

38. The algebraic curves (C.9) are genus one curves for any value of z, except z = 1, where
the curve becomes the union of two rational curves (u2 − u + y2)(u2 − u − y2) = 0.

39. The prefactors in front of the integrals are not relevant for our discussion here.
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