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We present the relativistic particle model without Grassmann variables which, being canonically
quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence
with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical
equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

1. Discussion: Nonrelativistic Spin

Starting from the classical works [1–6], a lot of efforts have been spent in attempts to
understand behaviour of a particle with spin on the base of semiclassical mechanical models
[7–24].

In the course of canonical quantization of a given classical theory, one associates
Hermitian operators with classical variables. Let zα stands for the basic phase-space variables
that describe the classical system, and {zα, zβ} is the corresponding classical bracket. (It is the
Poisson (Dirac) bracket in the theory without (with) second-class constraints.) According
to the Dirac quantization paradigm [3], the operators ẑα must be chosen to obey the
quantization rule

[

ẑα, ẑβ
]

∓ = i�
{

zα, zβ
}∣

∣

∣

z→ ẑ
. (1.1)

In this equation, we take commutator (anticommutator) of the operators for the antisymmet-
ric (symmetric) classical bracket. Antisymmetric (symmetric) classical bracket arises in the
classical mechanics of even (odd = Grassmann) variables.
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Since the quantum theory of spin is known (it is given by the Pauli (Dirac) equation
for nonrelativistic (relativistic) case), search for the corresponding semiclassical model
represents the inverse task to those of canonical quantization: we look for the classical-
mechanics system whose classical bracket obeys (1.1) for the known left-hand side.
Components of the nonrelativistic spin operator ̂Si = (�/2)σi (σi are the Pauli matrices (1.5))
form a simple algebra with respect to commutator

[

̂Si, ̂Sj

]

−
= i�εijk ̂Sk, (1.2)

as well as to anticommutator

[

̂Si, ̂Sj

]

+
=

�
2

2
δij . (1.3)

So, the operators can be produced starting from a classical model based on either even or odd
spin-space variables.

In their pioneer work [13, 14], Berezin and Marinov have constructed the model
based on the odd variables and showed that it gives very economic scheme for semi-
classical description of both nonrelativistic and relativistic spin. Their prescription can be
shortly resumed as follows. For nonrelativistic spin, the noninteracting Lagrangian reads
(m/2)(ẋi)

2 + (i/2)ξiξ̇i, where the spin inner space is constructed from vector-like Grassmann
variables ξi, ξiξj = −ξjξi. Since the Lagrangian is linear on ξ̇i, their conjugate momenta coincide
with ξ, πi = ∂L/∂ξ̇i = iξi. The relations represent the Dirac second-class constraints and are
taken into account by transition from the odd Poisson bracket to the Dirac one, the latter reads

{

ξi, ξj
}

DB = iδij . (1.4)

Dealing with the Dirac bracket, one can resolve the constraints, excluding the momenta
from consideration. So, there are only three spin variables ξi with the desired brackets
(1.4). According to (1.1), (1.4), and (1.3), canonical quantization is performed replacing the
variables by the spin operators ̂Si proportional to the Pauli σ-matrices, ̂Si = (�/2)σi,
[σi, σj]+ = 2δij ,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

, (1.5)

acting on two-dimensional spinor spaceΨα(t, 
x). Canonical quantization of the particle on an
external electromagnetic background leads to the Pauli equation

i�
∂Ψ
∂t

=

(

1
2m

(

p̂i − e

c
Ai

)2

− eA0 − e�

2mc
Biσ

i

)

Ψ. (1.6)

It has been denoted that pi = −i�(∂/∂xi), (A0, Ai) is the four-vector potential of
electromagnetic field, and the magnetic field is Bi = εijk∂jAk, where εijk represents the totally
antisymmetric tensor with ε123 = 1. Relativistic spin is described in a similar way [13, 14].
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The problem here is that the Grassmann classical mechanics represents a rather formal
mathematical construction. It leads to certain difficulties [13, 14, 17] in attempts to use it for
description the spin effects on the semiclassical level, before the quantization. Hence it would
be interesting to describe spin on a base of usual variables. While the problem has a long
history (see [7–15] and references therein), there appears to be nowholly satisfactory solution
to date. It seems to be surprisingly difficult [15] to construct, in a systematic way, a consistent
model that would lead to the Dirac equation in the the course of canonical quantization. It is
the aim of this work to construct an example of mechanical model for the Dirac equation.

To describe the nonrelativistic spin by commuting variables, we need to construct a
mechanical model which implies the commutator (even) operator algebra (1.2) instead of
the anticommutator one (1.3). It has been achieved in the recent work [18] starting from the
Lagrangian

L =
m

2
(ẋi)2 +

e

c
Aiẋi + eA0 +

1
2g

(

ω̇i − e

mc
εijkωjBk

)2

+
3g�

2

8a2
+

1
φ

(

(ωi)2 − a2
)

. (1.7)

The configuration-space variables are xi(t), ωi(t), g(t), φ(t). Here xi represents the spatial
coordinates of the particle with the mass m and the charge e, ωi are the spin-space
coordinates, g, φ are the auxiliary variables and a = const. Second and third terms in (1.7)
represent minimal interaction with the vector potential A0, Ai of an external electromagnetic
field, while the fourth term contains interaction of spin with a magnetic field. At the end, it
produces the Pauli term in quantum mechanical Hamiltonian.

The Dirac constraints presented in the model imply [18] that spin lives on two-
dimensional surface of six-dimensional spin phase space ωi, πi. The surface can be
parameterized by the angular-momentum coordinates Si = εijkωjπk, subject to the condition
S2 = 3�2/4. They obey the classical brackets {Si, Sj} = εijkSk. Hence we quantize them
according the rule Si → ̂Si.

The model leads to reasonable picture both on classical and quantum levels. The
classical dynamics is governed by the Lagrangian equations

mẍi = eEi +
e

c
εijkẋjBk − e

mc
Sk∂iBk, (1.8)

Ṡi =
e

mc
εijkSjBk. (1.9)

It has been denoted that E = −(1/c)(∂A/∂t) + ∇A0. Since S2 ≈ �
2, the S-term disappears

from (1.8) in the classical limit � → 0. Then (1.8) reproduces the classical motion on an
external electromagnetic field. Notice also that in absence of interaction, the spinning particle
does not experience an undesirable Zitterbewegung. Equation (1.9) describes the classical spin
precession in an external magnetic field. On the other hand, canonical quantization of the
model immediately produces the Pauli equation (1.6).

Below, we generalize this scheme to the relativistic case, taking angular-momentum
variables as the basic coordinates of the spin space. On this base, we construct the
relativistic-invariant classical mechanics that produces the Dirac equation after the canonical
quantization, and briefly discuss its classical dynamics.
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2. Algebraic Construction of the Relativistic Spin Space

We start from the model-independent construction of the relativistic-spin space. Relativistic
equation for the spin precession can be obtained including the three-dimensional spin vector
̂Si (1.2) either into the Frenkel tensor Φμν, Φμνuν = 0, or into the Bargmann-Michel-Telegdi
four-vector (The conditions Φμνuν = 0 and Sμuμ = 0 guarantee that in the rest frame
survive only three components of these quantities, which implies the right nonrelativistic
limit). Sμ, Sμuμ = 0, where uμ represents four-velocity of the particle. Unfortunately, the
semiclassical models based on these schemes do not lead to a reasonable quantum theory, as
they do not produce the Dirac equation through the canonical quantization.We nowmotivate
that it can be achieved in the formulation that implies inclusion of ̂Si into the SO(3, 2)
angular-momentum tensor ̂LAB of five-dimensional Minkowski space A = (μ, 5) = (0, i, 5) =
(0, 1, 2, 3, 5), ηAB = (− + + + −).

In the passage from nonrelativistic to relativistic spin, we replace the Pauli equation
by the Dirac one

(

p̂μΓμ +mc
)

Ψ(xμ) = 0, (2.1)

where p̂μ = −i�∂μ. We use the representation with Hermitian Γ0 and anti-Hermitian Γi

Γ0 =

(

1 0

0 −1

)

, Γi =

(

0 σi

−σi 0

)

, (2.2)

then [Γμ,Γν]+ = −2ημν, ημν = (− + ++), and Γ0Γi, Γ0 are the Dirac matrices [3] αi, β

αi =

(

0 σi

σi 0

)

, β =

(

1 0

0 −1

)

. (2.3)

We take the classical counterparts of the operators x̂μ and p̂μ = −i�∂μ in the standard way,
which are xμ, pν, with the Poisson brackets {xμ, pν}PB = ημν.

Let us discuss the classical variables that could produce the Γ-matrices. To this aim,
we first study their commutators. The commutators of Γμ do not form closed Lie algebra, but
produce SO(1, 3)-Lorentz generators

[Γμ,Γν]− = −2iΓμν, (2.4)

where it has been denoted Γμν ≡ (i/2)(ΓμΓν − ΓνΓμ). The set Γμ, Γμν form closed algebra.
Besides the commutator (2.4), one has

[Γμν,Γα]− = 2i
(

ημαΓν − ηναΓμ
)

,

[

Γμν,Γαβ
]

−
= 2i

(

ημαΓνβ − ημβΓνα − ηναΓμβ + ηνβΓμα
)

.
(2.5)
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The algebra (2.4), (2.5) can be identified with the five-dimensional Lorentz algebra SO(2, 3)
with generators ̂LAB

[

̂LAB, ̂LCD
]

−
= 2i

(

ηAC
̂LBD − ηAD

̂LBC − ηBC
̂LAD + ηBD

̂LAC
)

, (2.6)

assuming Γμ ≡ ̂L5μ, Γμν ≡ ̂Lμν.
To reach the algebra starting from a classical-mechanics model, we introduce ten-

dimensional “phase” space of the spin degrees of freedom,ωA,πB, equippedwith the Poisson
bracket

{

ωA,πB
}

PB
= ηAB. (2.7)

Then Poisson brackets of the quantities

JAB ≡ 2
(

ωAπB −ωBπA
)

(2.8)

read

{

JAB, JCD
}

PB
= 2

(

ηACJBD − ηADJBC − ηBCJAD + ηBDJAC
)

. (2.9)

Below we use the decompositions

JAB =
(

J5μ, Jμν
)

=
(

J50, J5i ≡ J5, J0i ≡ W, Jij = εijkDk
)

. (2.10)

The Jacobian of the transformation (ωA,πB) → JAB has rank equal seven. So, only
seven among ten functions JAB(ω,π), A < B, are independent quantities. They can be
separated as follows. By construction, the quantities (2.8) obey the identity

εμναβJ5νJαβ = 0, ⇐⇒ Jij =
1
J50

(

J5iJ0j − J5jJ0i
)

, (2.11)

that is, the three-vector D can be presented through J5,W as

D =
1
J50

J5 ×W. (2.12)

Further, (ωA,πB)-space can be parameterized by the coordinates J5μ, J0i, ω0, ω5, π5. We can
not yet quantize the variables since it would lead to the appearance of some operators ω̂0,
ω̂5, π̂5, which are not presented in the Dirac theory and are not necessary for description
of spin. To avoid the problem, we kill the variables ω0, ω5, π5, restricting our model to
live on seven-dimensional surface of ten-dimensional phase space ωA, πB. The only SO(2, 3)
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quadratic invariants that can be constructed fromωA,πB areωAωA,ωAπA, πAπA. We choose
conventionally the surface determined by the equations

ωAωA + R = 0, (2.13)

ωAπA = 0, πAπA = 0, (2.14)

R = const > 0. The quantities J5μ, J0i form a coordinate system of the spin-space surface. So,
we can quantize them instead of the initial variables ωA, πB.

According to (1.1), (2.6), (2.9), quantization is achieved replacing the classical
variables J5μ, Jμν on Γ-matrices

J5μ −→ �Γμ, Jμν −→ �Γμν. (2.15)

It implies, that the Dirac equation can be produced by the constraint (we restate that J5μ ≡
2(ω5πμ −ωμπ5))

pμJ
5μ +mc� = 0. (2.16)

Summing up, to describe the relativistic spin, we need a theory that implies the Dirac
constraints (2.13), (2.14), (2.16) in the Hamiltonian formulation.

3. Dynamical Realization

One possible dynamical realization of the construction presented above is given by the
following d = 4 Poincare-invariant Lagrangian

L = − 1
2e2

[

(ẋμ + e3ω
μ)2 −

(

e3ω
5
)2
]

− σmc�

2ω5
+

1
σ

[

(ẋμ + e3ω
μ)ω̇μ − e3ω

5ω̇5
]

− e4
(

ωAωA + R
)

,

(3.1)

written on the configuration space xμ,ωμ,ω5, ei, σ, where ei, σ are the auxiliary variables. The
variables ω5, ei, σ are scalars under the Poincare transformations. The remaining variables
transform according to the rule

x′μ = Λμ
νx

ν + aμ, ω′μ = Λμ
νω

ν. (3.2)

Local symmetries of the theory form the two-parameter group composed by the reparame-
trizations

δxμ = αẋμ, δωA = αω̇A, δei = (αei)., δσ = (ασ)., (3.3)
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as well as by the local transformations with the parameter ε(τ) (below we have denoted
β ≡ ė4ε + (1/2)e4ε̇)

δxμ = 0, δωA = βωA, δσ = βσ, δe2 = 0,

δe3 = −βe3 + e2
σ
β̇, δe4 = −2e4β −

(

e2β̇

2σ2

)·
.

(3.4)

The local symmetries guarantee appearance of the first-class constraints (2.13), (2.16).
Curiously enough, the action can be rewritten in almost five-dimensional form.

Indeed, after the change (xμ, σ, e3) → (x̃μ, x̃5, ẽ3), where x̃μ = xμ− (e2/σ)ωμ, x̃5 = −(e2/σ)ω5,
ẽ3 = e3 + (e2/σ), it reads

L = − 1
2e2

(

Dx̃A
)2

+

(

x̃5)2

2e2(ω5)2
(

ω̇A
)2

+
e2mc�

x̃5
− e4

(

ωAωA + R
)

, (3.5)

where the covariant derivative is Dx̃A = ˙̃x
A
+ ẽ3ω

A (The change is an example of conversion
of the second-class constraints in the Lagrangian formulation [25]).

Canonical Quantization

In the Hamiltonian formalism, the action implies the desired constraints (2.13), (2.14), (2.16).
The constraints (2.13), (2.14) can be taken into account by transition from the Poisson to the
Dirac bracket, and after that they are omitted from the consideration [17, 26]. The first-class
constraint (2.16) is imposed on the state vector and produces the Dirac equation. In the result,
canonical quantization of the model leads to the desired quantum picture.

We now discuss some properties of the classical theory and confirm that they are in
correspondence with semiclassical limit [3, 27, 28] of the Dirac equation.

Equations of Motion

The auxiliary variables ei, σ can be omitted from consideration after the partial fixation of a
gauge. After that, Hamiltonian of the model reads

H =
1
2
πAπA +

1
2

(

pμJ
5μ +mc�

)

. (3.6)

SinceωA, πA are not ε-invariant variables, their equations of motion have no much sense. So,
we write the equations of motion for ε-invariant quantities xμ, pμ, J5μ, Jμν

ẋμ =
1
2
J5μ, (3.7)

J̇5μ = −Jμνpν,
J̇μν = pμJ5ν − pνJ5μ,

(3.8)

ṗμ = 0. (3.9)
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They imply

ẍμ = −1
2
Jμνpν. (3.10)

In three-dimensional notations, the equation (3.8) read

J̇50 = −(Wp), J̇5 = −p0W +D × p,

Ẇ = p0J5 − J50p.
(3.11)

Relativistic Invariance

While the canonical momentum of xμ is given by pμ, the mechanical momentum, according to
(3.7), coincides with the variables that turn into the Γ-matrices in quantum theory, (1/2)J5μ.
Due to the constraints (2.13), (2.14), J5μ obeys (J5μ/π5)2 = −4R, which is analogy of
p2 = −m2c2 of the spinless particle. As a consequence, xi(t) cannot exceed the speed of light,
(dxi/dt)2 = c2(ẋi/ẋ0)2 = c2(1−((π5)24R/(J50)2)) < c2. Equations (3.10), (3.11)mean that both
xμ-particle and the variables W, J5 experience the Zitterbewegung in noninteracting theory.

Center-of-Charge Rest Frame

Identifying the variables xμ with position of the charge, (3.7) implies that the rest frame is
characterized by the conditions

J50 = const, J5 = 0. (3.12)

According to (3.12), (2.12), only W survives in the nonrelativistic limit.

The Variables Free of Zitterbewegung

The quantity (center-of-mass coordinate [7]) x̃μ = xμ + (1/2p2)Jμνpν obeys ˙̃x
μ

=
−(mc�/2p2)pμ, so, it has the free dynamics ¨̃x

μ
= 0. Note also that pμ represents the mechanical

momentum of x̃μ-particle.
As the classical four-dimensional spin vector, let us take Sμ = εμναβpνJαβ. It has no

precession in the free theory, Ṡμ = 0. In the rest frame, it reduces to S0 = 0, S = p ×W.

Comparison with the Barut-Zanghi (BZ) Model

The BZ spinning particle [16] is widely used [19–24] for semiclassical analysis of spin effects.
Starting from the even variable zα, where α = 1, 2, 3, 4 is SO(1, 3)-spinor index, Barut and
Zanghi have constructed the spin-tensor according to Sμν = (1/4)izγμνz. We point out that
(3.7)–(3.9) of our model coincide with those of BZ-model, identifying J5μ ↔ vμ, Jμν ↔ Sμν.
Besides, our model implies the equations (J5μ/π5)2 = −4R, pμJ5μ+mc� = 0. The first equation
guarantees that the center of charge cannot exceed the speed of light. The second equation
implies the Dirac equation. (In the BZ theory [16], the mass of the spinning particle is not
fixed from the model.)
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