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The goal of this paper is to provide estimates leading to a direct proof of the analyticity of the
pressure for certain classical unbounded models. We use our new formula (Lo, 2007) to establish
the analyticity of the pressure in the thermodynamic limit for a wide class of classical unbounded
models in statistical mechanics.

1. Introduction

This paper is a continuation of [1] on the analyticity of the pressure. It attempts to study a
direct method for the analyticity of the pressure for certain classical unbounded spin systems.
The paper presents a simple hypothesis, on a Cn-estimate of the moments of the source term
to show that it does yield analyticity in the infinite volume limit.

The study of the analyticity of the pressure is very important in Statistical Mechanics.
In fact the analytic behavior of the pressure is the classical thermodynamic indicator for the
absence or existence of phase transition [2–19].

Because the nth-derivatives of the pressure are commonly represented in terms of the
truncated functions, most of the techniques available so far for proving analyticity of the
pressure take advantage of a sufficiently rapid decay of correlations and cluster expansion
methods or Brascamp-Lieb inequality [1, 5, 20–35].

In this paper, we propose a new method for proving the analyticity of the pressure
for a wide class of classical unbounded models. The method is based on a powerful
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representation of the nth-derivatives of the pressure by means of the Witten Laplacians [36]
given by

W(0)
Φ =

(
−Δ +

|∇Φ|2
4

− ΔΦ
2

)
,

W(1)
Φ = −Δ +

|∇Φ|2
4

− ΔΦ
2

+HessΦ.

(1.1)

These operators are in some sense deformations of the standard Laplace Beltrami operator.
They are, respectively, equivalent to

A
(0)
Φ := −Δ +∇Φ · ∇,

A
(1)
Φ := −Δ +∇Φ · ∇ +HessΦ.

(1.2)

Indeed,

W
(·)
Φ = e−Φ/2 ◦A(·)

Φ ◦ eΦ/2, (1.3)

and the map

UΦ : L2
(
�
Λ
)
−→ L2

(
�
Λ , e−Φdx

)
u �−→ eΦ/2u

(1.4)

is unitary. More precisely, we will use the formula

cov
(
g, h

)
= Z−1

∫(
A

(1)−1

Φ ∇g · ∇h
)
e−Φ(x)dx, (1.5)

where

Z =
∫
e−Φ(x)dx. (1.6)

This formula, due to Helffer and Sjöstrand [29, 37], is a stronger and more flexible
version of the Brascamp-Lieb inequality [20]. It allowed us in [1] to obtain an exact formula
for the nth-derivatives of the pressure. In this paper, we will use this exact formula to show
that a simpler assumption on the source term similar to the weak decay used in [3, 11]
will guarantee the analyticity of the pressure in the infinite volume limit for a wide class
of classical unbounded models.

We will consider classical unbounded systems, where each component is located at
a site i of a crystal lattice Λ ⊂ �

d and is described by a continuous real parameter xi ∈ �.
A particular configuration of the total system will be characterized by an element x = (xi)i∈Λ
of the product space �Λ .
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TheΦ = ΦΛ will denote the Hamiltonian which assigns to each configuration x ∈ �Λ a
potential energy Φ(x). The probability measure that describes the equilibrium of the system
is then given by the Gibbs measure

dμΛ(x) = Z−1
Λ e−Φ(x)dx. (1.7)

The ZΛ > 0 is a normalization constant.
We are eventually interested in the behavior of the system in the thermodynamic limit,

that is, limΛ→�d.

Assume thatΛ is finite, and consider a HamiltonianΦ of the phase space �Λ satisfying
the assumptions of the following theorem.

Theorem 1.1 (see [30]). Let Λ be a finite domain in �d. If Φ satisfies the following:

(1) lim|x|→∞|∇Φ(x)| = ∞,

(2) for someM, any ∂αΦ with |α| = M is bounded on �Λ ,

(3) for |α| ≥ 1, |∂αΦ(x)| ≤ Cα(1 + |∇Φ(x)|2)1/2 for some Cα > 0,

(4) HessΦ ≥ δ for some 0 < δ ≤ 1,

then for any C∞-function g satisfying

∣∣∂αg∣∣ ≤ Cα(1 + ZΦ)qα, (1.8)

where

ZΦ =
|∇Φ|
2

, (1.9)

α ∈ �|Λ| with some Cα and some qα > 0, there exists a unique C∞-function u solution of

A
(0)
Φ v = g − 〈

g
〉
L2(μΛ),

〈v〉L2(μΛ) = 0.
(1.10)

Remark 1.2. This theorem was established by Johnsen [30]. A detailed proof of this theorem
in the convex case that includes the regularity theory may also be found in [38]. The function
spaces to be considered are the Sobolev spaces Bk

Φ(�
Λ) defined by

Bk
Φ

(
�
Λ
)
=
{
u ∈ L2

(
�
Λ
)
: Z�

Φ∂
αu ∈ L2

(
�
Λ
)
, ∀� + |α| ≤ k

}
, (1.11)

where

ZΦ =
|∇Φ|
2

. (1.12)

These are subspaces of the well-known Sobolev spaces Wk,2(�Λ), k ∈ �. By regularity
arguments, one may prove that the solution of (1.10) belongs to each eΦ/2Bk

Φ(�
Λ) for all k ∈ �.
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2. The Analyticity of the Pressure

2.1. Preliminaries

We first recall the context over which the formula for the nth-derivative of the pressure was
derived in [1].

LetΛ be a finite domain in �d (d ≥ 1), and consider as above the HamiltonianΦ of the
phase space �Λ satisfying the assumptions of Theorem 1.1.

Let g be a smooth function on ��
d
satisfying

∣∣∂α∇g
∣∣ ≤ Cα, ∀α ∈ �Λ ,

Hess g ≤ C for some positive constant C.
(2.1)

Let

Φt
Λ(x) = Φ(x) − tg(x), (2.2)

where x = (xi)i∈Λ, and t ∈ [0,∞) is a thermodynamic parameter.
The finite volume pressure is defined by

PΛ(t) =
1
|Λ| log

[∫
�Λ

dxe−Φ
t
Λ(x)

]
. (2.3)

Denote that

Z =
∫
�Λ

dxe−ΦΛ(x),

Zt =
∫
�Λ

dxe−Φ
t
Λ(x),

〈·〉t,Λ =

∫ ·dxe−Φt
Λ(x)

Zt
.

(2.4)

Because of the assumptions made on g, one may find T > 0 such that, for all t ∈ [0, T),
Φt

Λ(x) satisfies all the assumptions of Theorem 1.1. Thus, each t ∈ [0, T) is associated with a
unique C∞-solution f(t) of the equation

A
(0)
Φt

Λ
f(t) = g − 〈

g
〉
L2(μ),

〈
f(t)

〉
L2(μ) = 0.

(2.5)

Hence,

A
(1)
Φt

Λ
v(t) = ∇g, (2.6)
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where v(t) = ∇f(t). Notice that the map

t �−→ v(t) (2.7)

is well defined [1] and that

{v(t) : t ∈ [0, T )} (2.8)

is a family of smooth solutions on �Λ corresponding to the family of potential

{
Φt

Λ : t ∈ [0, T )
}
. (2.9)

We proved in [1] that v is a smooth function of t by means of regularity arguments. The
following proposition proved in [1] gives an exact formula for the nth-derivatives of the
pressure.

Proposition 2.1 (see [1]). If

PΛ(t) =
1
|Λ| ln

[∫
�Λ

dxe−Φ
t(x)

]
, (2.10)

where

Φt(x) = ΦΛ(x) − tg(x),

∣∣∂α∇g
∣∣ ≤ Cα, ∀α ∈ �|Λ| ,

Hess g ≤ C for some positive constant C,

(2.11)

andΦΛ(x) satisfies the assumptions of Theorem 1.1, then there exist T > 0 such that, for all t ∈ [0, T),
the nth-derivative of the finite volume pressure PΛ(t) is given by the formula

P
(n)
Λ (t) =

(n − 1)!
〈
An−1

g g
〉
t,Λ

|Λ| , n ≥ 1, (2.12)

where

Agh := A
(1)−1

Φt
Λ
∇h · ∇g. (2.13)

This formula gives a direction towards proving the analyticity of the pressure in the
thermodynamic limit. In fact one only needs to provide a suitable estimate for 〈An−1

g g〉
Λ,t
.
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Remark 2.2. Though formula (2.12) was derived in [1] for models of Kac type, it is clear from
the proof that it remains valid for Hamiltonians Φ for which the Helffer-Sjöstrand formula

cov
(
f, g

)
=
〈
A

(1)−1

Φ

(∇f
) · ∇g

〉
Λ

(2.14)

holds. In [30], Johnsen proved that this formula remains valid for a wide class of none convex
Hamiltonians.

3. An Estimate for the Coefficients

In this section we propose to provide an estimate that establishes the analyticity of the
pressure in the infinite volume limit.

Recall that if f is an infinitely differentiable function defined on an open set D, then
f is real analytic if for every compact set K ⊂ D there exists a constant C such that for every
x ∈ K and every nonnegative integer n the following estimate holds:

∣∣∣∣ ∂n

∂xn
f(x)

∣∣∣∣ ≤ Cn+1n!. (3.1)

We propose to establish the above estimate for the nth-derivatives of the pressure. First
we have the following convolution formula.

Proposition 3.1. Under the assumptions and notations of Proposition 2.1, one has

n−1∑
k=0

〈
gk

〉
Λ,t

〈
An−k−1

g g
〉
Λ,t

k!
=

1
(n − 1)!

〈
gn〉

Λ,t
. (3.2)

Proof. First observe that

〈
gpAgh

〉
Λ,t

=
〈
gpA

(1)−1

Φt ∇h · ∇g
〉
Λ,t

=
1

p + 1

〈
A

(1)−1

Φt ∇h · ∇gp+1
〉
Λ,t

=
1

p + 1
cov

(
gp+1, h

)

=
1

p + 1

[〈
gp+1h

〉
Λ,t

−
〈
gp+1

〉
Λ,t
〈h〉Λ,t

]
, p = 0, 1, . . . .

(3.3)

Setting

k = p + 1, h = An−k−1
g g (3.4)
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yields

〈
gk

〉
Λ,t

〈
An−k−1

g g
〉
Λ,t

=
〈
gkAn−k−1

g g
〉
Λ,t

− k
〈
gk−1An−k

g g
〉
Λ,t
. (3.5)

Now dividing by k!, summing over k, and noticing that on the right-hand side one obtains
a telescoping sum yield

n−1∑
k=0

〈
gk

〉
Λ,t

〈
An−k−1

g g
〉
Λ,t

k!
=

1
(n − 1)!

〈
gn〉

Λ,t
. (3.6)

Next, we need the following lemma.

Lemma 3.2. Let {an} and {bn} be two sequences of real numbers such that

a0 = 1, |b0| ≤ C, |an| ≤ Cn,

∣∣∣∣∣
n∑

k=0

akbn−k

∣∣∣∣∣ ≤ (n + 1)Cn+1 (3.7)

for some positive constant C. Then

|bn| ≤
[
n + 1 +

n−1∑
k=0

2k(n − k)

]
Cn+1, ∀n ≥ 1. (3.8)

Proof. Let {αn} be the sequence defined recursively by

α0 = 1,

αn = (n + 1) + αn−1 + αn−2 + · · · + α1 + α0if n ≥ 1.
(3.9)

It is clear that

αn = n + 1 +
n−1∑
k=0

2k(n − k), ∀n ≥ 0. (3.10)

We need to prove that

|bn| ≤ αnC
n+1, ∀n. (3.11)

We have

|b0| ≤ C = α0C
0+1. (3.12)
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By induction assume that the result is true if n is replaced by ñ ≤ n. We have

∣∣∣∣∣
n+1∑
k=0

akbn+1−k

∣∣∣∣∣ ≤ (n + 2)Cn+2 ⇐⇒

∣∣∣∣∣bn+1 +
n+1∑
k=1

akbn+1−k

∣∣∣∣∣ ≤ (n + 2)Cn+2 =⇒

∣∣∣∣∣|bn+1| −
∣∣∣∣∣
n+1∑
k=1

akbn+1−k

∣∣∣∣∣
∣∣∣∣∣ ≤ (n + 2)Cn+2 =⇒

|bn+1| ≤ (n + 2)Cn+2 +

∣∣∣∣∣
n+1∑
k=1

akbn+1−k

∣∣∣∣∣ =⇒

|bn+1| ≤ (n + 2)Cn+2 +

∣∣∣∣∣
n+1∑
k=1

Ckαn+1−kCn+2−k
∣∣∣∣∣ ⇐⇒

|bn+1| ≤
[
(n + 2) +

n+1∑
k=1

αn+1−k

]
Cn+2,

|bn| ≤ αn+1C
n+2.

(3.13)

Proposition 3.3. In addition to the assumptions of Proposition 2.1 assume that for t0 ∈ [0, T) the
thermodynamic limit of PΛ(t0) exists, and

∣∣∣〈gn〉
Λ,t0

∣∣∣ ≤ n!
(
C

2

)n

u

[
max
x1,x2∈Λ

d(x1, x2)
]
, ∀n ≥ 1, (3.14)

where C is a positive constant and u is a positive real variable function satisfying

u(s) ≤ 1 if s ≥ M for some M > 0. (3.15)

Then the infinite volume pressure limΛ→�dPΛ(t) is analytic at t0.

Proof. First choose Λ large enough so that u[maxx1,x2∈Λd(x1, x2)] ≤ 1. We then have

∣∣∣〈gn
〉
Λ,t0

∣∣∣ ≤ n!
(
C

2

)n

. (3.16)

Let

an =

〈
gn

〉
Λ,t0

n!
, bn =

1
|Λ|

〈
An

gg
〉
Λ,t0

, C1 =
C

2
. (3.17)
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We have a0 = 1, |b0| = (1/|Λ|)|〈g〉Λ,t0
| ≤ C1, |an| ≤ Cn

1 , and by Proposition 3.1

n∑
k=0

akbn−k =
1
|Λ|(n + 1)an+1, (3.18)

from which we have
∣∣∣∣∣

n∑
k=0

akbn−k

∣∣∣∣∣ ≤ (n + 1)Cn+1
1 . (3.19)

Now applying Lemma 3.2 we get

∣∣∣∣〈An
gg

〉
Λ,t0

∣∣∣∣ ≤ |Λ|αnC
n+1
1 , ∀n ≥ 1, (3.20)

where

αn = n + 1 +
n∑

k=0

2k(n − k). (3.21)

Now using the fact that, for n ≥ 2

αn−1 = n +
n−1∑
k=0

2k(n − 1 − k)

= n

[
1 +

n−1∑
k=0

2k
(n − 1 − k)

n

]

≤ n

(
1 +

n−1∑
k=0

2k
)

= n

(
1 +

1 − 2n

1 − 2

)

= n2n,

(3.22)

we have
∣∣∣∣〈An−1

g g
〉
Λ,t0

∣∣∣∣ ≤ |Λ|n2nCn
1 , ∀n ≥ 1,

∣∣∣P (n)
Λ (t0)

∣∣∣ ≤ (n − 1)!n(2C1)n

= n!Cn, ∀n ≥ 1.

(3.23)

This shows that the Taylor series of the infinite volume pressure at t0 has a nonvanishing
radius of convergence.
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Next, we propose to prove that the pressure is equal to its Taylor series in a
neighborhood of t0.

By (3.16), the power series

∞∑
n=0

〈
gn

〉
Λ,t0

n!
(t − t0)n (3.24)

has nonvanishing radius of convergence RΛ. Put

G(t) =
∞∑
n=0

〈
gn

〉
Λ,t0

n!
(t − t0)n, A(t) =

∞∑
n=0

〈
An

gg
〉
Λ,t0

(t − t0)n. (3.25)

Inside the interval of convergence of G(t), the convolution formula of Proposition 3.1
gives

G(t)A(t) = G′(t). (3.26)

This implies that

A(t) =
G′(t)
G(t)

if t /= t0 =⇒
∫
A(t)dt = ln|G(t)| + const, if t /= t0. (3.27)

Equivalently

∞∑
n=0

〈
An

gg
〉
Λ,t0

n + 1
(t − t0)n+1 = ln

∣∣∣∣∣
∞∑
n=0

〈
gn

〉
Λ,t0

n!
(t − t0)n

∣∣∣∣∣ if t /= t0 (3.28)

or

∞∑
n=1

〈
An−1

g g
〉
Λ,t0

n
(t − t0)n = ln

∣∣∣∣∣
∞∑
n=0

〈
gn

〉
Λ,t0

n!
(t − t0)n

∣∣∣∣∣ if t /= t0. (3.29)

Thus

∞∑
n=1

〈
An−1

g g
〉
Λ,t0

|Λ|n (t − t0)n =
1
|Λ| ln

∣∣∣∣∣
∞∑
n=0

〈
gn

〉
Λ,t0

n!
(t − t0)n

∣∣∣∣∣, if t /= t0. (3.30)

Now using Proposition 2.1, we obtain

∞∑
n=1

P
(n)
Λ (t0)
n!

(t − t0)n =
1
|Λ| ln

∣∣∣∣∣
∞∑
n=0

〈
gn

〉
Λ,t0

n!
(t − t0)n

∣∣∣∣∣, if t /= t0. (3.31)
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Now adding PΛ(t0) on both sides of this above equality, we get

∞∑
n=0

P
(n)
Λ (t0)
n!

(t − t0)n =
1
|Λ| ln

∣∣∣∣∣
∞∑
n=0

Zt

〈
gn

〉
Λ,t0

n!
(t − t0)n

∣∣∣∣∣, if t /= t0

=
1
|Λ| ln

∣∣∣∣∣
∞∑
n=0

∫
�Λ

(t − t0)n

n!
gne−ΦΛ(x)+t0g(x)dx

∣∣∣∣∣, if t /= t0.

(3.32)

Because g has bounded derivatives, we have

∫
�Λ

∞∑
n=0

∣∣∣∣ (t − t0)n

n!
gne−ΦΛ(x)+t0g(x)

∣∣∣∣dx =
∫
�Λ

e|(t−t0)g|−ΦΛ(x)+t0g(x)dx < ∞. (3.33)

Thus by permuting sum and integral we obtain

∞∑
n=0

P
(n)
Λ (t0)
n!

(t − t0)n =
1
|Λ| ln

∣∣∣∣
∫
�Λ

e−ΦΛ(x)+tg(x)dx

∣∣∣∣, if t /= t0

= PΛ(t), if t /= t0.

(3.34)

4. Comparison with Known Results

In [11], Lebowitz derived some regularity properties of the infinite volume pressure by
assuming that the truncated functions have a weak decay of the type

∣∣∣〈xi1,...,xin〉TΛ
∣∣∣ ≤ Cn−1(n − 1)!u

(
max
x1,x2

d(x1, x2)
)
, (4.1)

where u is a rapidly decreasing function independent of Λ. However, he only obtained
infinite differentiability rather than analyticity. The obstacle from getting analyticity is that,
when u is rapidly or exponentially decaying, the bounds obtained increase too fast with n.
In [3], Duneau et al. considered stronger decay assumptions of the truncated functions and
showed that they do yield analyticity.

We showed in this paper that if the decay assumption is made on the nth moments of
g =

∑
i∈Λ xi for instance, then an even weaker assumption would imply analyticity.
Let us also mention that, even though our results concern unbounded models whose

Hamiltonians satisfy the assumptions of Theorem 1.1, it could be useful for the study of
certain bounded models. Indeed, it has been shown in [32] that the investigation of the
critical behavior of the two-dimensional Kac models may be reduced in the mean-field
approximation to the study of unbounded models of the type discussed above.
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It is also clear that if the thermodynamic limit

lim
Λ→�d

∫
�Λ

dxe−Φ
to (x) (4.2)

exists, then the assumption

∣∣∣〈gn〉
Λ,t0

∣∣∣ ≤ n!
(
C

2

)n

(4.3)

is equivalent to saying that the partition function

Zt,Λ =
∫
�Λ

dxe−Φ
t(x) (4.4)

is analytic at t0. Thus, Proposition 3.3 provides a simple and direct proof of the analyticity
of the pressure from the analyticity of the partition function. Recall that even in the grand
canonical ensemble, where the partition function is directly given as a power series, the
classical proofs of the analyticity of the pressure that are available in the literature involve
in general cluster expansions, sometimes with complicated renormalization arguments.
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403, Birkhäuser, Boston, Mass, USA, 1985.

[25] R. L. Dobrushin and S. B. Shlosman, “Completely analytical Gibbs fields,” in Statistical Physics and
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