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This work is concerned with the series solutions for the flow of third-grade non-Newtonian fluid
with variable viscosity. Due to the nonlinear, coupled, and highly complicated nature of partial
differential equations, finding an analytical solution is not an easy task. The homotopy analysis
method (HAM) is employed for the presentation of series solutions. The HAM is accepted as an
elegant tool for effective solutions for complicated nonlinear problems. The solutions of (Hayat
et al., 2007) are developed, and their convergence has been discussed explicitly for two different
models, namely, constant and variable viscosity. An error analysis is also described. In addition, the
obtained results are illustrated graphically to depict the convergence region. The physical features
of the pertinent parameters are presented in the form of numerical tables.

1. Introduction

During the last few years, there has been substantial progress in the steady and unsteady
flows of non-Newtonian fluids. A huge amount of literature is now available on the topic
(see some studies [1–6]). All real fluids are diverse in nature. Hence in view of rheological
characteristics, all non-Newtonian fluids cannot be explained by employing one constitutive
equation. This is the striking difference between viscous and the non-Newtonian fluids. The
rheological parameters appearing in the constitutive equations lead to a higher-order and
complicated governing equations than the Navier-Stokes equations. The simplest subclass of
differential-type fluids is called the second grade. In steady flow such fluids can predict the
normal stress and does not show shear thinning and shear thickening behaviors. The third-
grade fluid puts forward the explanation of shear thinning and shear thickening properties.
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Therefore, the present paper aims to study the pipe flow of a third-grade fluid. Some progress
on the topic is mentioned in the studies [7, 8] andmany references therein. In all these studies,
variable viscosity is used. Massoudi and Christie [9] numerically examined the pipe flow of
a third-grade fluid when viscosity depends upon temperature. Hayat et al. [10] presented the
homotopy solution of the problem considered in [10] up to second-order deformation.

In this paper, the motivation comes from a desire to understand the convergence of
the problem discussed in [10]. The relevant equations for flow and temperature have been
solved analytically by using homotopy analysis method [11–15]. Here the convergence of the
obtained solutions is explicitly shown,and that was not previously given in [10].

2. Problem

From [10], we have the equations (2.1) to (3.4) in nondimensional and nonlinear coupled
partial differential equations of the form
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subject to boundary conditions
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3. Solution of the Problem

Our interest is to carry out the analysis for the homotopy solutions for two cases of viscosity,
namely, constant and space-dependent viscous dissipation.

Case I. For constant viscosity model, we choose

μ = 1. (3.1)

For HAM solution, we select

v0(r) =
c
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)
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, (3.2)

as initial approximations of v and θ, respectively, which satisfy the linear operator and
corresponding boundary conditions. We use themethod of higher-order differential mapping
[16] to choose the linear operator L which is defined by

L1 =
d2

dr2
+
1
r

d

dr
, (3.3)
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such that

L1(C1 + C2 ln r) = 0, (3.4)

where C1 and C2 are the arbitrary constants.
If the convergence parameter is ħ and 0 ≤ p ≤ 1 is an embedding parameter, then the

zeroth-order problems become
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where the nonlinear parameters N1 and N2 are defined by
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For p = 0 and p = 1, we have

v∗(r, 0) = v0(r), θ∗(r, 0) = θ0(r), v∗(r, 1) = v(r), θ∗(r, 1) = θ(r). (3.7)

When p increases from 0 to 1, v∗(r, p), θ∗(r, p) vary from v0(r), θ0(r) to v(r), θ(r), respectively.
By Taylor’s theorem and (3.7), one can get

v∗(r, p) = v0(r)+
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m=1
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The convergence of the series (3.8) depends upon ħ. We choose ħ in such a way that the series
(3.8) is convergent at p = 1; then, due to (3.7), we get

v(r) = v0(r)+
∞∑

m=1

vm(r), θ(r) = θ0(r)+
∞∑

m=1

θm(r). (3.10)
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Themth-order deformation problems are
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where the recurrence formulae �1 and �2 are given by
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in which

χm =
{

0, m ≤ 1,
1, m > 1.

(3.13)

For constant viscosity, the velocity and temperature expressions up to second-order deforma-
tion are
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Case II. For space-dependent viscosity, we take

μ = r. (3.15)

For HAM solution, we select

v0(r) =
c
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. (3.16)
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As the initial approximation of v and θ. We select
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such that
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where C3 and C4 are arbitrary constants. The zeroth- and mth-order deformation problems
are
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For variable viscosity, the velocity and temperature expressions up to second-order deforma-
tion are
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where the constant coefficients M1–M15 can be easily obtained through the routine calcula-
tion.

mth-order solutions

In both cases, for p = 0 and p = 1, we have

v∗(r; 0) = v0(r), θ∗(r; 0) = θ0
(
y
)
,

v∗(r; 1) = v(r), θ∗(r; 1) = θ(r).
(3.24)

When p increases from 0 to 1, v∗(r, p), θ∗(r, p)φ∗(r, p) varies from v0(r), θ0(r)φ0(r) to v(r), θ(r)
and φ(r), respectively. By Taylor’s theorem and (3.24) the general solutions can be written as
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The convergence of (3.25) depends upon ħ; therefore, we choose ħ in such away that it should
be convergent at p = 1. In view of (3.24), finally the general form ofmth-order solutions is

v(r) = v0(r)+
∞∑

m=1

vm(r), θ(r) = θ0(r)+
∞∑

m=1

θm(r). (3.27)

4. Discussion

It is noticed that the explicit, analytical expressions (3.11), (19), (3.19), and (3.20) contain
the auxiliary parameter ħ. As pointed out by Liao [17], the convergence region and rate of
approximations given by the HAM are strongly dependent upon ħ. Figures 1 and 2 show the
ħ-curves of velocity and temperature profiles, respectively, just to find the range of ħ for the
case of constant viscosity. The range for admissible values of ħ for velocity is −2.4 ≤ ħ ≤ 0.4
and for temperature is −2.2 ≤ ħ ≤ 0.5. Figures 4 and 5 represent the ħ-curves for variable
viscosity. The admissible ranges for both velocity and temperature profiles are −3 ≤ ħ ≤
0.4 and −2.8 ≤ ħ ≤ 0.8, respectively. In Figures 3 and 6, the graphs of residual error are
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Figure 1: ħ-curve for velocity in case of constant viscosity at 10th-order approximation.
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Figure 2: ħ-curve for temperature in case of constant viscosity at 10th-order approximation.
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Figure 3: Residual error curve for constant viscosity.
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Figure 4: ħ-curve for velocity in case of variable viscosity at 10th-order approximation.
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Figure 5: ħ-curve for temperature in case of variable viscosity at 10th-order approximation.
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Table 1: Illustrating the variation of the velocity and temperature with c.

h Λ c V θ

−0.01 1 −1 1.673 0.006

−2 3.191 0.068

−3 4.4331 0.270

−4 5.339 0.661

−5 5.924 1.205

Table 2: Illustrating the variation of the velocity and temperature with Λ.

h c Γ Λ V θ

−0.01 −1 1 0 1.700 0.243

5 1.571 2.002

10 1.455 3.209

15 1.353 4.011

20 1.263 4.520

plotted for constant and variable viscosity, respectively. The error of norm 2 of two successive
approximations over [0, 1] with HAM by 10th-order approximations is calculated by

E2 =

√√√√ 1
11

10∑
i=0

(
v10

(
i

10

))2

= f.
(
say
)

(4.1)

It is seen that the error is minimum at ħ = −0.01. These values of ħ also lie in the admissible
range of ħ.

We use the widely applied symbolic computation software MATHEMATICA to see
the effects of sundry parameters by Tables 1, 2, and 3.

5. Conclusion

In this paper, the convergence of series solution for constant and variable viscosity in a third-
grade fluid is presented. The steady pipe flow is considered. Convergence values and residual
error are also examined in Figures 1 to 6. To see the effects of emerging parameters for
constant and variable viscosity, Tables 1 to 3 have been displayed. In Tables 1 and 2, it is found
that the velocity and temperature increase with the decrease in pressure gradient and third-
grade parameter, respectively, whereas Table 3 explains the variation of viscous dissipation
parameter on velocity and temperature distributions. Here, it is revealed that the velocity and
temperature decrease by increasing the viscous dissipation. It is observed that the results and
figures [10] for important parameters c,Λ and Γ are correct and remain unchanged.
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Table 3: Illustrating the variation of temperature with Γ.

h c Λ Γ V θ

−0.01 1 1
0 0 0
5 0.075 3.242
10 0.158 6.484
15 0.249 9.726
20 0.351 12.969
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