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We obtain exact scattering solutions of the Dirac equation in 1 + 1 dimensions for a double square
barrier vector potential. The potential bottom between the two barriers is chosen to be higher than
2mc2, whereas the top of the barriers is at least 2mc2 above the bottom. The relativistic version of
the conventional double barrier transmission resonances is obtained for energies within ±mc2 from
the height of the barriers. However, due to our judicious choice of potential configuration we also
find two more (subbarrier) transmission resonance regions below the conventional one. Both are
located within the two Klein energy zones and characterized by resonances that are broader than
the conventional ones. The design of our double barrier so as to enable us to establish these two
new subbarrier transmission resonance regions is our main finding.

1. Introduction

The basic equation of relativistic quantummechanics was formulated more than 80 years ago
by Paul Dirac [1–3]. It describes the state of electrons in a way consistent with special
relativity, requiring that electrons have spin 1/2 and predicting the existence of an antiparticle
partner to the electron (the positron). The physics and mathematics of the Dirac equation
is very rich, illuminating, and provides a theoretical framework for different physical phe-
nomena that are not present in the nonrelativistic regime such as the Klein paradox, super-
criticality (supercritical transmission of a relativistic particle through a potential barrier) [1–
7], and the anomalous quantum Hall effect in graphene [8, 9]. It is well known that the Dirac
equation has positive as well as negative energy solutions [1–3]. The positive and negative
energy subspaces are completely disconnected. This is a general feature of the solution space
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of the Dirac equation, which is sometimes overlooked. Since the equation is linear, then the
complete solution must be a linear combination of the two. Incorporating the missing part
of the negative energy solution, which is not taken into account in the traditional solution,
one of the authors (A. D. Alhaidari) gave a new approach to the resolution of the famous
Klein paradox within relativistic quantum mechanics [10]. This approach leads to the correct
physical and mathematical interpretations of this phenomenon without resort to quantum
field theory.

On the other hand, tunneling phenomena played an important role in nonrelativistic
quantum mechanics due to its important application in electronic devices [11, 12]. It was
Esaki who discovered a characteristic called negative differential resistance (NDR) whereby,
for PN junction diodes, the current voltage characteristics has a sharp peak at a certain voltage
associated with resonant tunneling. This constituted the first important confirmation that
this phenomenon is due to the quantum mechanical tunneling effect of electrons [13–15].
Tunneling is a purely quantum phenomenon that happens in the classically forbidden region;
its experimental observation constituted a very important support to the quantum theory.
On the other hand, the study of tunneling of relativistic particles through one-dimensional
potentials has been restricted to some simple configurations such as δ-potentials and square
barriers, mainly, in the study of the possible relativistic corrections to mesoscopic conduction
[16] and the analysis of resonant tunneling through multibarrier systems [17]. Relativistic
studies of the quark and Dirac particles in 1D periodic potential were also reported separately
in [18, 19].

Very recently, electron transport through electrostatic barriers in single and bilayer
graphene has been studied using the Dirac equation, and barrier penetration effects
analogous to the Klein paradox were noted [20]. The study of transmission resonances
in relativistic wave equations in external potentials has been discussed extensively in the
literature [21, 22]. In this case, for given values of the energy and shape of the barrier,
the probability of transmission reaches unity even if the potential strength is larger than
the energy of the particle, a phenomenon that is not present in the nonrelativistic case.
The relation between low momentum resonances and supercritical transmission has been
established by Dombey and Calogeracos [7] and Kennedy [23]. Some results on the scattering
of Dirac particles by a one-dimensional potential exhibiting resonant behavior have also been
reported [22–24].

However, recent studies have shown that inducing a finite bandgap in graphene by
epitaxially growing it on a substrate is possible [25] and, therefore, its energy dispersion
relation is no longer linear in momentum. This process generated gaps in graphene energy
spectrum and resulted in a finite effective mass for its charge carriers and opened up
nanoelectronic opportunities for graphene. This 2D massless system can then be mapped
into an effectively massive 1D one [26] and, consequently, the problem of Klein tunneling of
Dirac fermions across a potential can be put on the test, because the potential barriers can be
seen as n-p-n junctions of graphene if they are high enough. Under these circumstances, it
is interesting to characterize the system behavior by determining the full expressions of the
corresponding reflection and transmission coefficients.

Motivated by the above progress, we study in this work the resonant transmission
of a beam of relativistic particles through two separated square barriers with elevated
potential bottom in between and investigate transmission resonance in this structure [1–3].
Under special conditions, dictated by our judicious choice of potential bottom elevations and
barrier heights, we demonstrate the occurrence of three (subbarrier) regions of transmission
resonances. One of them is the relativistic extension of the conventional nonrelativistic double
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Figure 1: The potential configuration of the relativistic double barrier problemwith V− > 2m and V+ > V− +
2m. Oscillatory solutions are in the grey regions, whereas exponential solutions are in the white regions.
The oscillatory positive/negative energy solutions are located in the light/dark grey areas.

barrier transmission resonances for energies within ±mc2 from the height of the barriers. The
other two are located within the two Klein energy zones where only positive and negative
energy oscillatory solutions coexist at the same energy. The latter resonances are broader than
the conventional ones.

2. Scattering Solution of the Dirac Equation

The physical configuration associated with the double barrier problem in our study is shown
in Figure 1. In the relativistic units � = c = 1, the one-dimensional stationary Dirac equation
with vector potential coupling can be written as [1–3]

⎛
⎜⎝
m + V (x) − E − d

dx

+
d

dx
−m + V (x) − E

⎞
⎟⎠
(
ψ+(x)
ψ−(x)

)
= 0, (2.1)

where V(x) is the time component of the vector potential whose space component vanishes
(i.e., gauged away due to gauge invariance). The potential V(x) is defined by

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 |x| ≥ a+ + a−,
V+ a− < |x| < a+ + a−,
V− |x| ≤ a−,

(2.2)

where V± and a± are positive potential parameters (see Figure 1) such that V− > 2m and V+ >
V−+2m. We divide configuration space according to the piece-wise constant potential sections
into three regions numbered 0 and ± corresponding to V = 0 and V = V±, respectively. In
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regions 0, where the potential vanishes, the equation becomes the free Dirac equation that
relates the two spinor components as follows:

ψ∓(x) =
1

m ± E
d

dx
ψ±(x). (2.3)

This relationship is valid for E/= ∓ m. Since the problem is linear and because E = ∓m
belongs to the ∓tive energy spectrum, then (2.3) with the top/bottom sign is valid only for
positive/negative energy, respectively. After choosing a sign in (2.3) then the other spinor
component obeys the following Schrödinger-like second order differential equation:

(
d2

dx2
+ E2 −m2

)
ψ±(x) = 0. (2.4)

We should emphasize that (2.4) does not give the two components of the spinor that belong to
the same energy subspace. One has to choose one sign in (2.4) to obtain only one of the two
components then substitute that into (2.3) with the corresponding sign to obtain the other
component. Now, within the double barrier (the V± regions) the same analysis follows but
with the substitution E → E − V± giving

ψ∓(x) =
1

m ± (E − V )
d

dx
ψ±(x),

[
d2

dx2
+ (E − V )2 −m2

]
ψ±(x) = 0,

(2.5)

where V stands for either of the two potentials V±. Generally, in any region of constant
potential V, positive/negative energy solutions occur for relativistic energies larger/smaller
than V . Of these, the oscillatory solutions of the form e±i kx hold for |E − V | > m, where
k2 = |(E − V )2 −m2|. On the other hand, the exponential solutions of the form e±kx hold for
|E − V | < m.

The scattering solution, which is the subject of this work, pertains to energies E > m.
It is straightforward to write down the positive and negative energy solutions of (2.3)–(2.5).
First, we write the wave vector associated with regions of space in which the potential equals
to zero, V+, and V−, as

kμ(E) =
√
m2 − (E −Uμ

)2
, (2.6)

where μ = 0,+,− and Uμ = {0, V+, V−}. This results in oscillatory solutions if kμ is pure
imaginary which happens when E > Uμ +m or E < Uμ −m (i.e., in the two grey regions of
Figure 1). Otherwise, these solutions are exponentials (i.e., in the white areas of the figure).
The oscillatory positive/negative energy solutions are located in the light/dark grey areas
of Figure 1, respectively. We divide configuration space from left to right into five regions
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indexed by ν = 1, 2, . . . , 5. The general positive energy solution in these regions (both
oscillatory and exponentials) can be written as

ψμ,ν(x) =
Aν√

1 +
∣∣αμ
∣∣2
(

1
αμ

)
ekμx +

Bν√
1 +
∣∣αμ
∣∣2
(

1
− αμ

)
e−kμx, (2.7a)

whereas the negative energy solutions are of the form

ψμ,ν(x) =
Aν√

1 +
∣∣βμ
∣∣2
(−βμ

1

)
e−kμx +

Bν√
1 +
∣∣βμ
∣∣2
(
βμ
1

)
ekμx. (2.7b)

Aν and Bν are constants (the complex amplitudes) associated with right and left “traveling”
solutions in the νth region, respectively. The energy parameters αμ and βμ are defined by

αμ =

√√√√
(
m − E +Uμ

)
(
m + E −Uμ

) , (2.8a)

βμ =

√√√√
(
m + E −Uμ

)
(
m − E +Uμ

) . (2.8b)

Note that βμ = ±1/αμ for real/imaginary values, respectively. The complex constant
amplitudes {Aν, Bν} will be determined by the boundary conditions. We should note that
the oscillatory solutions, e±i kx, in (2.7a) and (2.7b) represent a wave traveling in the ±x
direction for positive energy solutions and in the ∓x direction for negative energy solutions.
The solution of the Dirac equation to the right of the double barrier consists of positive
energy plane-wave solutions traveling in the ±x directions. However, the physical boundary
conditions of the problem allow only transmitted waves traveling to the right after passing
through the double barrier (i.e., B5 = 0). Moreover, and without loss of generality, we can
normalize the incident beam to unit amplitude (i.e., A1 = 1).

Matching the spinor wavefunctions at the four boundaries defined by |x| = a− and
|x| = a+ + a− gives relations between (Aν, Bν) in νth region and those in the neighboring
region. We prefer to express these relationships in terms of 2 × 2 transfer matrices between
different regions, {Mn}, with

(
An

Bn

)
= Mn

(
An+1
Bn+1

)
. Finally, we obtain the full transfer matrix

over the whole double barrier which can be written, in an obvious notation, as follows:

(
1
R

)
=

(
4∏
n=1

Mn

)(
T
0

)
= M(E)

(
T
0

)
, (2.9)

whereM(E) =M1M2M3M4 and we have set R = B1 and T = A5; R and T being the reflection
and transmission amplitudes, respectively. We have assumed an incident wave from left
normalized to unit amplitude (i.e., A1 = 1 and B5 = 0). The explicit form of the transfer
matricesMn depends on the specific energy range. There are three such ranges for all E > m.
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Figure 2: The transmission coefficient as a function of energy associated with the potential configuration
of Figure 1 for V+ = 8m, V− = 4m, a+ = 3/m, and 2a− = 5/m. Evident are the three subbarrier transmission-
resonance regions. The lowest two are within the two Klein energy zones and the highest one with sharp
resonances is bounded within the energy range V+ ±m.

These ranges are (i)m < E < V−, (ii) V− < E < V+, and (iii) E > V+. Therefore, we end up with
the full set of twelve transfer matrices given in the Appendix. Equation (2.9) leads to

T(E) =
1

M11(E)
, R(E) =

M21(E)
M11(E)

. (2.10)

Time reversal invariance and the relevant conservation laws dictate that the transfer matrix
M(E) has a unit determinant along with the following symmetry properties M11(E) =
M22(E)∗ and M12(E) = M21(E)∗, where ∗ stands for complex conjugation. These can easily
be checked using the explicit forms given in the Appendix. Thus, symmetry considerations
impose strong conditions on the structure of the transfer matrix. Using these properties
in (2.10) gives the expected flux conservation |T |2 + |R|2 = 1. Moreover, from (2.10) we
see that full transmission or resonance transmission occurs at energies where the condition
|M11(E)| = 1 is satisfied (equivalently, |M21(E)| = 0).

3. Results and Discussion

The physical content of particle scattering through the double barrier depends on the energy
of the incoming particle, which can assume any value larger than m. In order to allow for
supercritical transmission through the potential, we need to impose certain conditions on
the heights of the potential barriers. Our study concentrates on Klein energy zones where
full transmission can take place. The situation of interest to our study concerns two Klein
energy zones, which arises when V− > 2m and V+ − V− > 2m. As an example, we calculate
the transmission coefficient as a function of energy for a given set of potential parameters.
The result is shown in Figures 2 and 3. We combine Figures 1 and 2 together in such a way
that Figure 2 is turned 90 degrees such that the energy axis of Figures 1 and 2 coincide.
In this way, one can clearly see how the different transmission regions correspond to the
different potential regions. In addition to the expected above-barrier full transmission for
some values of energies larger than V+ +m, one can clearly identify three subbarrier regions
where transmission resonances occur. These are

(i) the lower Klein energy zone (m < E < V− −m): a region of seven resonances,

(ii) the higher Klein energy zone (V− +m < E < V+ −m): a region of four resonances,
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Figure 3: We combine Figures 1 and 2 together in such a way that Figure 2 is turned 90 degrees such that
the energy axis of Figures 1 and 2 coincide. In this way, one can clearly see how the different transmission
regions correspond to the different potential regions.

(iii) the relativistic version of the conventional nonrelativistic double barrier transmis-
sion resonance (V+ −m < E < V+ +m): a region of four resonances.

It is also clear that resonances in the conventional energy zone are very sharp (or very
narrow) whereas those in the two Klein energy zones are broad (or wide). This means
that resonance states corresponding to the former decay are much slower and have longer
tunneling time than the latter. In Table 1, we list the resonance energies for this potential
configuration to an accuracy of 10 decimal places. These results were obtained as solution
of the equation M21(E) = 0. As further insight into the dynamics of this relativistic model,
Figure 4 shows an animation of Figure 2 as the distance between the two barriers, 2a−, varies
from 2/m to 6/m. The animation shows the following.

(i) The density of resonances in each of the three subbarrier regions increases with a−,
that is, the energy separation between resonances decreases with a−.
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Table 1: Transmission resonance energies (in units of mc2) for the potential configuration associated with
Figure 2 (V+ = 8m, V− = 4m, a+ = 3/m, a− = 2.5/m). These values were obtained as solutions to the
equationM21(E) = 0.

Level Lower Klein
energy zone

Higher Klein
energy zone

Conventional
energy zone

Above-barrier
energy zone

0 1.1913921248 5.1824247690 7.2022544582 9.1265979020
1 1.4523858967 5.5378483868 7.7033320458 9.4112532302
2 1.7708714661 6.1348174089 8.2103665633 9.4794638424
3 2.0643517404 6.7590893689 8.7007206203 9.7910774141
4 2.2185949080 10.1475989665
5 2.4744005714 10.3256144827
6 2.7966547987 10.5446769142
7 10.9095057090
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0.8

1

Figure 4: Animation of Figure 2 as the distance between the two barriers, 2a−, varies from 2/m to 6/m
(2.4MB MPG).

(ii) As a− increases, resonance energies drop down (fall or dive) from the above-barrier
region into the conventional resonance region then into the higher Klein energy
zone.

(iii) Additionally, as a− increases, resonance energies are created at the bottom of the
spectrum (at E ≈ m) then move up into the lower Klein energy zone.

Figure 4 gives another animation of Figure 2 as the width of the barriers, a+, varies
from 1/m to 3/m. The animation shows that all resonances get sharper with an increase in a+
but the number of resonances in the conventional region does not change (i.e., the population
density of resonances in this region is independent of a+). We would like to mention a related
recent work by Villalba and Gonzalez-Arraga [27] who considered the resonant tunneling
through a double square barrier and double cusp potentials. Our problem differs from that in
[27] by the choice of an elevated bottom of the potential well, which gives rise to two Klein
energy zones of resonance. This potential design gave rise to a peculiar energy dependence
of the transmission with three resonance regions; one is due to the conventional quantum
tunneling and two others are due to Klein tunneling. Another animation of Figure 2 is given
in Figure 5.

For completeness, it is also interesting to consider the potential barrier with the
configuration shown in Figure 6, where V+ > 2m and V− > V+ + 2m. The associated
transmission coefficient as a function of energy is shown in Figure 7 for the given potential
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Figure 5: Animation of Figure 2 as the width of the barriers, a+, varies from 1/m to 3/m (2.4MB MPG).
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Figure 6: The potential configuration with V+ > 2m and V− > V+ + 2m.
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Figure 7: The transmission coefficient associated with the potential configuration of Figure 6 as a function
of energy for V+ = 4m, V− = 8m, a+ = 3/m, and 2a− = 5/m.

parameters where the values of V± were interchanged. In Figure 8, we combine Figures 6 and
7 together in such a way that Figure 7 is turned 90 degrees such that the energy axis of Figures
6 and 7 coincide. In this way, one can clearly see how the different transmission regions
correspond to the different potential regions. It looks as if the energy region [V− −m,V+ +m]
of Figure 2 was flipped and placed in the energy region [V+ − m,V− + m] of Figure 7.
Consequently, the sharp resonance region became sandwiched between the two Klein energy
zones while the transmission structure of the higher Klein energy zone was reversed.
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Figure 8: We combine Figures 6 and 7 together in such a way that Figure 7 is turned 90 degrees such that
the energy axis of Figures 6 and 7 coincide. In this way, one can clearly see how the different transmission
regions correspond to the different potential regions.

Finally, we note that the present work will not remain at this stage but will be pursued
further. We plan to use the results obtained so far to deal with different issues related
to transport properties in graphene. One of the main characteristics of Dirac fermions in
graphene is the accuracy with which we can model their behavior by having extremely small
mass (in fact, even massless). This implies that at any finite energy the model should be
treated relativistically. This endows fermions in graphene with the ability to tunnel through
a single potential barrier with probability one [20, 28–31]. It is then natural to extend that
analysis to our two-barrier problem case and investigate the basic features of such a system.
However, we would like to mention that graphene is a two-dimensional (2D) system, and 2D
carrier tunneling through 1D barriers can be very complicated and direction dependent. Our
present results correspond to the transmission of 2D carriers only when the carriers move
perpendicular to the potential barriers.
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Appendix

Transfer Matrices

If we define a = a+ + a−, σ0 = eak0 , σ+ = eak+ , and γ± = ea−k± , then in the first energy interval,
m < E < V−, the four transfer matrices at the boundaries |x| = a− and |x| = a are given by

M1 =
1
2

⎛
⎜⎜⎝
σ0σ+

(
1
α0

− β+
)

σ0
σ+

(
1
α0

+ β+
)

−σ+
σ0

(
1
α0

+ β+
)

1
σ0σ+

(
β+ − 1

α0

)

⎞
⎟⎟⎠, M2 =

1
2

⎛
⎜⎜⎝

γ−
γ+

(
1 +

β−
β+

)
1

γ+γ−

(
1 − β−

β+

)

γ+γ−

(
1 − β−

β+

)
γ+
γ−

(
1 +

β−
β+

)

⎞
⎟⎟⎠,

M3 =
1
2

⎛
⎜⎜⎝

γ−
γ+

(
1 +

β+
β−

)
γ+γ−

(
1 − β+

β−

)

1
γ+γ−

(
1 − β+

β−

)
γ+
γ−

(
1 +

β+
β−

)

⎞
⎟⎟⎠, M4 =

1
2

⎛
⎜⎜⎝
σ0σ+

(
α0 − 1

β+

)
−σ+
σ0

(
α0 +

1
β+

)

σ0
σ+

(
α0 +

1
β+

)
1

σ0σ+

(
1
β+

− α0
)

⎞
⎟⎟⎠.

(A.1)

Then, in the second energy range, V− < E < V+, we have

M1 =
1
2

⎛
⎜⎜⎝

σ0σ+

(
1
α0

− β+
)

σ0
σ+

(
1
α0

+ β+
)

−σ+
σ0

(
1
α0

+ β+
)

1
σ0σ+

(
β+ − 1

α0

)

⎞
⎟⎟⎠, M2 =

1
2

⎛
⎜⎜⎝

1
γ+γ−

(
α− − 1

β+

)
−γ−
γ+

(
α− +

1
β+

)

γ+
γ−

(
α− +

1
β+

)
γ+γ−

(
1
β+

− α−
)

⎞
⎟⎟⎠,

M3 =
1
2

⎛
⎜⎜⎝

1
γ+γ−

(
1
α−

− β+
)

γ+
γ−

(
1
α−

+ β+
)

−γ−
γ+

(
1
α−

+ β+
)

γ+γ−

(
β+ − 1

α−

)

⎞
⎟⎟⎠, M4 =

1
2

⎛
⎜⎜⎝
σ0σ+

(
α0 − 1

β+

)
−σ+
σ0

(
α0 +

1
β+

)

σ0
σ+

(
α0 +

1
β+

)
1

σ0σ+

(
1
β+

− α0
)

⎞
⎟⎟⎠.

(A.2)

Note that M1 and M4 have the same form as in (A.1). Finally, in the energy range,
E > V+, we obtain

M1 =
1
2

⎛
⎜⎜⎝

σ0
σ+

(
1 +

α+
α0

)
σ0σ+

(
1 − α+

α0

)

1
σ0σ+

(
1 − α+

α0

)
σ+
σ0

(
1 +

α+
α0

)

⎞
⎟⎟⎠, M2 =

1
2

⎛
⎜⎜⎝

γ+
γ−

(
1 +

α−
α+

)
γ+γ−

(
1 − α−

α+

)

1
γ+γ−

(
1 − α−

α+

) γ−
γ+

(
1 +

α−
α+

)

⎞
⎟⎟⎠,

M3 =
1
2

⎛
⎜⎜⎝

γ+
γ−

(
1 +

α+
α−

)
1

γ+γ−

(
1 − α+

α−

)

γ+γ−

(
1 − α+

α−

)
γ−
γ+

(
1 +

α+
α−

)

⎞
⎟⎟⎠, M4 =

1
2

⎛
⎜⎜⎝

σ0
σ+

(
1 +

α0
α+

)
1

σ0σ+

(
1 − α0

α+

)

σ0σ+

(
1 − α0

α+

)
σ+
σ0

(
1 +

α0
α+

)

⎞
⎟⎟⎠.

(A.3)
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