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The covariant canonical analysis for Yang-Mills theory expressed as a BF-like action is performed.
We study a BF-like action, that in spite of being the coupling of two topological terms, yield, on
shell to Yang-Mills action. In addition, by using the results obtained in the covariant canonical
approach we study the symmetries of the action, in particular we calculate its energy-momentum
tensor obtaining the same tensor found for Yang-Mills theory; then we confirm those results by
using Noether’s theorem.

1. Introduction

For studying a dynamical system, it is mandatory to know its symmetries at classical and
quantum level in order to research the relevant physical implications of them. Nowadays,
there exist approaches that can be used for studying extensively the symmetries of a given
theory as for instance, Dirac’s canonical formalism and the covariant canonical method,
both with its respective advantages. Dirac’s canonical formalism is an elegant approach for
obtaining relevant physical information of a theory under study namely, the counting of
physical degrees of freedom, the gauge transformations, the study of the constraints, the
obtention of the extended Hamiltonian and the extended action [1, 2], being a relevant
information it is the guideline to make the best progress in the analysis of quantum aspects.
On the other hand, in the covariant canonical method in order to describe all the relevant
Hamiltonian description of the covariant phase space [3–5], we are able to identify a
closed and gauge invariant two-form, being an important step to analyze within a complete
covariant context the theory under study. However, it is well known that the analysis of a
dynamical system within the covariant canonical formalism is based on the statement that
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the classical phase space of a given physical theory is defined as the space of solutions of
its classical equations of motion, but this implies that the phase space is not endowed with
a natural or preferred symplectic structure as has been claimed in [6], and the freedom in
the choice of the symplectic structure is an important fact because could yield to different
quantum mechanics formulations [6–8]. Nonetheless, this inconvenience can be overcome if
we extend the definition of a dynamical system by considering its equations of motion plus a
principle action, thus we are in a profitable situation because the action gives us the equations
of motion; from the other side it fixes the symplectic structure of the theory [8, 9]. Thus, in
the study of the symmetries of a dynamical system must be taken into account both, the
equations of motion plus an action principle. Therefore, we think that the complete analysis
of a dynamical system should be done by performing the Dirac’s canonical approach and the
canonical covariant method by taking into account the action principle and its equations of
motion. In order to emphasize these points, let us consider the following action which is the
subject of this paper:

S1[B,A] =
∫
M

[
1
4
BIμνBI

μν − 1
2
BI

μν
(
∂μA

I
ν − ∂νAI

μ + f
I
JKA

J
μA

K
ν

)]
dx4, (1.1)

where BI is a set of (N2 − 1) valued SU(N) 2-forms and FI is the curvature of the connection
1-form AI (see below). This action has been studied in the context of Dirac’s analysis in
[10], concluding that the action has the same number of physical degrees of freedom than
standard Yang-Mills action [YM]; however, it is clear that standard [YM] action and (1.1)
presents a different structure, so, we are in the situation that two different actions yield
the same equations of motion. Nevertheless, we have commented above that the equations
of motion are not an enough element to develop a complete study of the symmetries of
a dynamical system. In fact, standard [YM] action and (1.1) describe, on shell, the same
classical description, but the next question rise: what about the symplectic geometry?

The aim of the present paper is focused on the context of the covariant canonical
formalism, we develop the covariant canonical study of the action (1.1) taking into account
the equations of motion and the action principle. We obtain along the paper a closed and
gauge invariant geometric structure which in turns represents a complete Hamiltonian
description of the covariant phase space, and we show that the action (1.1) in fact,
corresponds at classical level to [YM] theory. In addition, by using the former results we
calculate for (1.1) the corresponding energy-momentum tensor, reproducing on shell the
symmetric and gauge invariant energy-momentum tensor reported for [YM] theory. It is
important to remark, that in order to calculate the energy-momentum tensor, usually it is
calculated by using the standard canonical tensor [11] namely, Tμν = (∂L/∂ηρ,ν)ηρμ − δνμL,
where L represents the Lagrangian density, and ηρ are field variables. However, it is well
known that the energy-momentum tensor obtained in the canonical approach, in general
is neither symmetric nor gauge invariant, and usually Belinfante’s method is required to
symmetrize the tensor. Nonetheless, in order to obtain a symmetric and gauge invariant
tensor without resort to Belinfante’s method, we must apply correctly Noether’s theorem,
this means, we must take into account the action principle and the full equations of motion
of the system under study [12]. In this respect, as a complementary part of this paper, we
calculate the energy-momentum tensor for the action (1.1) by using Noether’s theorem, and
we reproduce on shell the symmetric and gauge invariant energy-momentum tensor for [YM]
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theory; thus, we confirm by means of a different way the results obtained in the covariant
canonical approach.

2. Covariant Canonical Method for [YM] Theory
Expressed as a BF-Like Theory

The action that we shall study in this section is given by [10]

S[A,B] =
∫
M

∗BI ∧ BI − 2BI ∧ ∗FI, (2.1)

where BI = (1/2)BIμνdxμ ∧ dxν is a set of (N2 − 1) SU(N) valued two-forms, FI =
(1/2)FIμνdxμ ∧ dxν, with FIμν = ∂μAI

ν − ∂νAI
μ + f

I
JKA

J
μA

K
ν is the curvature of the connection

1-form AI = AI
μdx

μ. Here, μ, ν = 0, 1, .., 3 are spacetime indices, xμ are the coordinates that
label the points for the 4-dimensional Minkowski manifoldM, and ∗ is the spacetime Hodge-
duality operation.

The action takes the following form:

S[B,A] =
∫
M

[
1
4
BIμνBI

μν − 1
2
BI

μν
(
∂μA

I
ν − ∂νAI

μ + f
I
JKA

J
μA

K
ν

)]
dx4. (2.2)

In order to perform the covariant canonical analysis, we start calculating the variation of the
action (2.2), obtaining

δS[B,A] =
∫
M

[
1
2

(
BIμν − FIμν

)
δBI

μν +DμBI
μνδAI

ν − ∂μ
(
BI

μνδAI
ν

)]
dx4, (2.3)

where the covariant derivative is defined byDαλ
I
μ = ∂αλIμ+f

I
JKA

J
αλ

K
μ . From (2.3), we identify

the following equations of motion:

BIμν = F
I
μν,

DμB
μνI = 0,

(2.4)

and the pure divergence term of the variation:

Ψμ = BIμνδAI
ν, (2.5)

corresponds to the symplectic potential for the theory which does not contribute locally to the
dynamics, but generates the symplectic form on the covariant phase space [5]. We observe
that by substituting the first equation of motion in the second one, (2.4) is reduced on shell
to the usual [YM] equations of motion, we can appreciate at this level the double role of the
action (2.2), as we have already commented above, it gives us the equations of motion (2.4),
and also it fixes the symplectic geometry through (2.5). Furthermore, we would comment
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that the action (2.2) has the important characteristic of being the coupling of two topological
theories in the sense that these terms are lacking if degrees of freedom. There is another
definition for a topological theory as that independent of the metric; however, in this work we
call topological that being devoid of local degrees of freedom. That is, the theory is susceptible
only to global degrees of freedom associated with nontrivial topologies of the manifold in
which they are defined and topologies of the gauge bundle [7]. In fact, the first term of (2.1)
(∗BI ∧ BI) is devoid of physical degrees of freedom, and the second one (BI ∧ ∗FI) as well
[10]. In this manner, the coupling of two topological theories defines a dynamical theory in
the sense that in (2.1) there exist physical degrees of freedom; those of [YM] theory [10], this
feature of (2.1) is present also in Plebanski theory of gravity, where Plebanski action is the
coupling of two topological terms as well [13, 14].

For our aims, we define the fundamental concept in the studio of the canonical
covariant formalism: the covariant phase space for the theory described by (2.1) is the space
of solutions of (2.4), and it will be called Z. Furthermore, we need to obtain a closed and
gauge invariant geometric structure on Z.

To this aim, we are able to obtain the integral kernel of the geometric structure for
the theory by means of the variation (the functional exterior derivative on Z, see [7]) of the
symplectic potential (2.5), obtaining

ω =
∫
Σ
JμdΣμ =

∫
Σ
δΨμdΣμ =

∫
Σ
δBI

μν ∧ δAI
νdΣμ, (2.6)

where Σ is a Cauchy surface.
On the other side, we need to prove that our symplectic form onZ is a (nondegenerate)

closed two-form; the closeness is equivalent to the Jacobi identity in the conventional
Hamiltonian scheme, and the antisymmetry of a two-form represents the antisymmetry
of Poisson brackets. Moreover, the integral kernel of the geometric form Jμ is conserved
(DμJ

μ = 0), which guarantees that ω is independent of Σ. In fact, we can observe that BIμν

and AI
ν correspond to 0-forms on Z, and δBI

μν, δAI
ν are 1-forms on Z, thus our symplectic

structure is a two-form. On the other side, to prove the closeness of ω, we see that δ2AI
ν = 0

and δ2BIμν = 0 because AI
ν and BI

μν are independent 0-forms on the covariant phase space Z
and δ is nilpotent, so by using this fact in ω we find that

δω =
∫
Σ

[
δ2BI

μν ∧ δAI
ν − δBIμν ∧ δ2AI

ν

]
dΣμ = 0. (2.7)

In order to prove that Jμ defined in (2.6) is conserved, it is necessary to calculate the linearized
equations of motion. For this aim, we replace in (2.4)AI

μ → δAI
μ and B

I
μν → δBIμν, keeping

to first order in δ, the linearized equations are given by

δBIμν = DμδA
I
ν −DνδA

I
μ,

DμδBI
μν + fIJ

KδA
J
μBK

μν = 0.
(2.8)
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We also need observe that under the gauge transformations of the theory AI
μ → AI

μ − Dμε
I

and BIμν → BIμν + fLJ
IBJμνε

L [10], for some infinitesimal variation we have

δA′I
μ = δAI

μ − fIJKδAJ
με

K,

δB′
I
μν = δBIμν + fIL

KδBK
μνεL.

(2.9)

In this manner, by using (2.9) one obtains that ω transforms

ω′ =
∫
Σ
δB′

I
μν ∧ δA′

ν
I
dΣμ = ω +

∫
O
(
ε2
)
dΣ. (2.10)

Therefore, ω is an SU(N) singlet. This result allows us to prove that

∂μJ
μ = DμJ

μ = Dμ(δBIμν) ∧ δAI
ν + δBI

μν ∧ δDμA
I
ν

= −fIJKBKμνδAJ
μ ∧ δAI

ν +
1
2
δBI

μν ∧ δBIμν = 0,
(2.11)

where we have used the linearized equations (2.8) and the antisymmetry of 1-forms δAI
ν and

δBI
μν on the phase space.

Thus, with the above results if we perform a Lorentz transformation Σt → Σ′
t and

ω → ω′, that is,

ω′ =
∫
Σ′
t

J ′μdΣ′
μ =

∫
Σt
JμdΣμ = ω. (2.12)

It follows thatω given in (2.6) is Lorentz invariant. In this manner, with these results we have
constructed a Lorentz and gauge invariant symplectic structure on the phase space, and it is
possible to formulate the Hamiltonian theory in a manifestly covariant way.

Now, by considering that upon picking Σ to be the standard initial value surface at
t = 0, (2.6) takes the form

ω =
∫
Σ
δΠa

I ∧ δAI
a, (2.13)

where Πa
I ≡ BI0a and a, b, c = 1, 2, 3.

For two 0-forms f, g defined on Z, the Hamiltonian vector field defined by the
symplectic structure (2.13) is given by [15]

Xf =
∫
Σ

δf

δΠI
a

δ

δAI
a
− δf

δAI
a

δ

δΠI
a , (2.14)
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and the Poisson bracket {f, g} := −Xf(g) is given by

{
f, g

}
=
∫
Σ

δf

δAI
a

δg

δΠI
a − δf

δΠI
a

δg

δAI
a
. (2.15)

In this way, smearing the constraints of this theory with test fields [10]:

γI
[
PI

]
:=

∫
Σ
PI

(
DaΠa

I

)
. (2.16)

By inspection, the functional derivatives different to zero are given by

δγI
[
PI

]
δΠa

I

= −DaP
I,

δγI
[
PI

]
δAI

a

= PLfLI
KΠa

K. (2.17)

Thus, using (2.13) and (2.14) we observe that the motion on Z generated by γI[PI] is given
by

AI
a −→ AI

a − εDaP
I +O

(
ε2
)
,

Πa
I −→ Πa

I − εPLfLIKΠa
K +O

(
ε2
)
,

(2.18)

where ε is an infinitesimal parameter [15]. We can see that the later gauge transformation
(2.18) corresponds to those found by using Dirac’s canonical method reported in [10].

Therefore, as a conclusion of this part, we have constructed a closed and gauge
invariant symplectic form on Z which in turns represent a complete Hamiltonian description
of the covariant phase space for the theory. These results will allow us to analyze the quantum
treatment in forthcoming works by means of an alternative way with respect to that reported
in [10].

Now, the next question a rises: is the energy-momentum tensor for the theory (2.1) the
same as found for [YM] theory? We have seen that the action (2.1) share the same equations
of motion with the usual action of [YM]; however, this fact does not imply that the energy-
momentum tensor will be the same. In fact, we are able to find in the literature that two
actions yielding to the same equations of motion, their corresponding energy-momentum
tensors are quite different [7]. With the results presented above we can answer that question.
For this aim, we remember that the symplectic structure have emerged from the variation of
the symplectic potential, that is,

ψμ = BIμνδA I
ν , (2.19)

thus, by making the contraction of ω with the vector field V = εμ∂μ, where εμ corresponds to
a constant spacetime vector, and using the following identity:

V �ω = Lvψ − δ(v�ψ), (2.20)
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we find

LV ψ
μ = LVBI

μνδA I
ν + BIμνLV δA

I
ν

= εα∂αBIμνδA I
ν + BIμνεα∂αδA I

ν , V �ψμ = BIμνεαFIαν.
(2.21)

Therefore, the contraction of V with the geometric structure gives

V �ω = εα∂αBI
μνδA I

ν + BIμνεα∂αδA I
ν − δ

(
BI

μνεαFIαν
)

= ∂α
(
εαBI

μνδA I
ν − εμBIανδA I

ν

)
+ εμDαBI

ανδA I
ν

+
1
2
εμBI

αν
(
DαδA

I
ν −DνδA

I
α

)
− δ

(
BI

μνεαFIαν
)
.

(2.22)

So, from the equation of motion (2.4), we obtain the desired result:

V �ω =
1
4
εμδ

(
FI

ανFIαν

)
− δ

(
εαFI

μνFIαν
)

= −δ
[
εα
(
FI

μνFIαν − 1
4
ημαFI

ανFIαν

)]
,

(2.23)

where we are able to identify the energy-momemtum tensor for the the action (2.1) given by

Tμα = FIμνFIαν − 1
4
ημαFI

ανFIαν, (2.24)

that correspond to the energy-momentum tensor for [YM] theory [11]. Therefore, the action
(2.1) written as a BF-like theory reproduces on shell the [YM] energy-momentum tensor. It
is important to remark that this result is no longer true off shell, and this fact could yield
to the presence of monopoles charges in the vacuum as is present in other BF-like models
for [YM] [16]. On the other hand, we can appreciate that by using the covariant canonical
approach, the obtained energy-momentum tensor is symmetric and gauge invariant, and we
have not used alternative suppositions as Belinfante’s approach in order to symmetrize it. As
a complement part of this work, in latter sections we will obtain the same energy-momentum
tensor by using Noether’s theorem. Furthermore, it is important to remark that the action
studied in this part could be useful to research the coupling of matter fields with a pure BF
theory; however, this subject is still in progress.

3. Energy-Momentum Tensor for [YM] Theory Expressed as a BF-Like
Theory by Using Noether’s Theorem

In this section, we will use Noether’s theorem in order to find the energy-momentum tensor
for the theory under study, we will confirm the results previously discussed. On the other
hand, it is a nice exercise for applying such theorem to theories with more dynamical
variables than conventional [YM] theory [12].
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Let us start with the following action:

S
[
AI
μ, BIμν

]
=
∫
R

[
1
4
αBIμνB

μν

I − 1
2
αB

μν

I FIμν

]
dx4, (3.1)

where the following Lagrangian density can be identified:

L =
1
4
αBIμνB

μν

I − 1
2
αB

μν

I FIμν, (3.2)

here, R is an arbitrary region of the four-dimensional Minkowski spacetime M. We can
observe that the dynamical variables for the theory are (AI

μ, B
I
μν) and as dynamical ones, both

have a contribution to the energy-momentum tensor, in other words, they should be treated
on an equal footing. So, if we take the variation of the action (3.1) under the transformation
of the variables δ̃AI

μ := ÃI
μ −AI

μ and δ̃BIμν := B̃Iμν −BIμν [11, 12], then we obtain the following
result:

δ̃S =
∫
R

d4x

[
∂L
∂BIμν

δ̃BIμν − ∂ν
(

∂L
∂
(
∂νA

I
μ

)
)
δ̃AI

μ

]
+
∫
∂M4

dΣν

(
∂L

∂
(
∂νA

I
μ

) δ̃AI
μ

)
. (3.3)

Thus, δ̃S = 0 yields the equations of motion:

δS

δBIμν
≡ ∂L
∂BIμν

=
1
2
αBIμν − 1

2
αFIμν = 0,

δS

δAI
μ

≡ −Dν

(
∂L

∂
(
∂νA

I
μ

)
)

= αDνB
μν

I = 0.

(3.4)

We see that

Dν

(
δS

δBIμν

)
=

1
2
αDνB

Iμν − 1
2
αDνF

Iμν

=
1
2
δS

δAI
μ

− 1
2
αDνF

Iμν,

(3.5)

this expression will be used in later calculations.
The action (3.1) is invariant under the Poincaré group, and Noether’s theorem

demands the infinitesimal version of the Poincaré transformations are given by

x′μ = xμ + δxμ, δxμ = 
μ
νx

ν + εμ, (3.6)
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where
μ
ν = −
ν

μ and εμ are the infinitesimal arbitrary constant parameters [11]. Therefore,
to first order we have the following transformations

F ′
Iμν

(
x′) = FIμν +

(
∂νδx

β
)
FIβμ +

(
∂μδx

β
)
FIνβ,

B′
Iμν

(
x′) = BIμν +

(
∂νδx

β
)
BIβμ +

(
∂μδx

β
)
BIνβ,

B′
IμνB

′Iμν = BIμνBIμν + 4
(
∂νδx

β
)
BIβμB

Iμν,

B′
IμνF

′Iμν = BIμνFIμν + 2BIμν
(
∂νδx

β
)
FIβμ + 2

(
∂νδx

β
)
BIβμF

Iμν

(3.7)

thus, the transformed action is given by

S′ =
∫
R′
d4x′L′ =

∫
R
d4x

[
L + α

(
∂νδx

β
)
BIβμB

Iμν−αBIμν
(
∂νδx

β
)
FIβμ−α

(
∂νδx

β
)
BIβμF

Iμν
]

=
∫
R
Ld4x +

∫
R
Ld4x

(
∂βδx

β
)

+
∫
R

d4x
[
α
(
∂νδx

β
)
BIβμB

Iμν−αBIμν
(
∂νδx

β
)
FIβμ−α

(
∂νδx

β
)
BIβμF

Iμν
]

= S +
∫
R

Ld4x
(
∂βδx

β
)
+
∫
R

d4x∂ν
[
αδxβ

(
BIβμB

Iμν − BIμνFIβμ − BIβμFIμν
)]

−
∫
R

d4xαδxβ∂ν
(
BIβμB

Iμν − BIμνFIβμ − BIβμFIμν
)
.

(3.8)

For our aims, we need to rewrite the last three terms of (3.8) as follows.
The term:

−αδxβ∂ν
(
BIβμB

μν

I

)
= − αδxβ

(
∂νB

I
βμ

)
B
μν

I − αδxβBIβμ∂νB
μν

I

= − αδxβ
(
DνB

I
βμ

)
B
μν

I − αδxβBIβμDνB
μν

I

= − 1
2
αδxβ

(
DνB

I
βμ −DμB

I
βν

)
B
μν

I − δxβBIβμ
δS

δAI
μ

= − 1
2
αδxβ

(
DνB

I
βμ +DμB

I
νβ +DβB

I
μν

)
B
μν

I

+
1
2
αδxβB

μν

I DβB
I
μν − δxβBIβμ

δS

δAI
μ

= − 1
2
αδxβ

(
1
2
ερμνβε

ρσγλDσB
I
γλ

)
B
μν

I

− δxβBIβμ
δS

δAI
μ

+
1
2
αδxβB

μν

I DβB
I
μν,

(3.9)
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and the last term of (3.9) can be written as

1
2
αδxβB

μν

I DβB
I
μν =

1
4
αδxβDβ

(
B
μν

I BIμν

)

=
1
4
∂β
(
αδxβB

μν

I BIμν

)
− 1
4
αB

μν

I BIμν∂βδx
β.

(3.10)

The term αδxβ∂ν(B
μν

I Fβμ) of (3.8):

αδxβ∂ν
(
B
μν

I Fβμ
)
= αδxβ∂ν

(
B
μν

I

)
FIβμ + αδx

βB
μν

I ∂νF
I
βμ

= αδxβDν

(
B
μν

I

)
FIβμ + αδx

βB
μν

I DνF
I
βμ

= δxβ
δS

δAI
μ

FIβμ +
1
2
αδxβB

μν

I

(
DνF

I
βμ +DμF

I
νβ +DβF

I
μν

)
− 1
2
αδxβB

μν

I DβF
I
μν

= δxβ
δS

δAI
μ

FIβμ +
1
2
αδxβB

μν

I ΨI
μνβ −

1
2
αδxβB

μν

I DβF
I
μν,

(3.11)

where ΨI
μνβ = DμF

I
νβ +DνF

I
βμ +DβF

I
μν is the Bianchi’s identity.

The last term of (3.8) can be written as

αδxβ∂ν
(
BIβμF

μν

I

)
= αδxβ

(
∂νB

I
βμ

)
F
μν

I + αδxβBIβμ∂νF
μν

I

= αδxβ
(
DνB

I
βμ

)
F
μν

I + αδxβBIβμDνF
μν

I

=
1
2
αδxβ

(
DνB

I
βμ +DμB

I
νβ +DβB

I
μν

)
F
μν

I

− 1
2
αδxβ

(
DβB

I
μν

)
F
μν

I + αδxβBIβμDνF
μν

I

=
1
2
αδxβ

(
1
2
ερμνβε

ρσγλDσB
I
γλ

)
F
μν

I + αδxβBIβμDνF
μν

I

− 1
2
αδxβ

(
DβB

I
μν

)
F
μν

I

=
1
2
δxβ

(
1
2
ερμνβε

ρσγλDσB
I
γλ

)(
αB

μν

I − 2
δS

δBIμν

)

+ δxβBIβμ

[
δS

δAI
μ

− 2Dν

(
δS

δBIμν

)]
− 1
2
αδxβ

(
DβB

I
μν

)
F
μν

I .

(3.12)
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So, by adding (3.11) and (3.12), we obtain

−1
2
αδxβB

μν

I DβF
I
μν −

1
2
αδxβ

(
DβB

I
μν

)
F
μν

I = − 1
2
αδxβDβ

(
BIμνF

μν

I

)

= − 1
2
∂β
(
αδxβBIμνF

μν

I

)

+
1
2
αBIμνF

μν

I ∂βδx
β.

(3.13)

In this manner, by taking into account (3.10)–(3.13) in the transformed action (3.1), we obtain:

S′ = S +
∫
R

d4x∂ν
[
αδxβ

(
BIβμB

μν

I − BμνI FIβμ − BIβμF
μν

I

)]

+
∫
R

d4x∂β

[
αδxβ

(
1
4
B
μν

I BIμν −
1
2
BIμνF

μν

I

)]

+
∫
R

d4x

[
αδxβ

δS

δAI
μ

FIβμ − αδxβBIβμ
δS

δAI
μ

+
1
2
αδxβB

μν

I ΨI
μνβ −

1
2
δxβ

(
ερμνβε

ρσγλDσB
I
γλ

) δS

δBIμν

+δxβBIβμ

[
δS

δAI
μ

− 2Dν

(
δS

δBIμν

)]]

= S +
∫
R

d4x

[
∂βJ

β + δxβ
δS

δAI
μ

FIβμ − δxβBIβμ
δS

δAI
μ

+
1
2
αδxβB

μν

I ΨI
μνβ

−1
2
δxβ

(
ερμνβε

ρσγλDσB
I
γλ

) δS

δBIμν
+ δxβBIβμ

[
δS

δAI
μ

− 2Dν

(
δS

δBIμν

)]]
.

(3.14)

Hence, because the action is invariant under Poincaré transformation, and if equations of
motion hold, we identify the conserved Noether four-current given by

Jβ = αδxγ
(
BIγμB

μβ

I − BμβI FIγμ − BIγμF
μβ

I

)
+ αδxβ

(
1
4
B
μν

I BIμν −
1
2
BIμνF

μν

I

)

= Tβγδxγ ,

(3.15)

where

Tβγ = −α
[
B
βμ

I B
Iγ
μ − BβμI FIγ μ − F

βμ

I BIγ μ − ηβγ
(
1
4
B
μν

I BIμν −
1
2
BIμνF

μν

I

)]
, (3.16)

which corresponds to the energy-momentum tensor for the theory under study. It is clear that
Tβγ = Tγβ, and we have not added by hand any terms to symmetrize the tensor, as opposed
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to Belinfante’s method. In order to recover the energy momentum tensor found in (3.1), we
use the equation of motion (3.4), and the energy-momentum tensor is reduced to

Tμν = −α
[
FIμ

γFIνγ − ημν
1
4
FIβλF

βλ

I

]
. (3.17)

Thus, Tμν is the same energy-momentum tensor for [YM] theory obtained by means a
different approach. Hence, we confirm that the coupling of two topological theories as (3.1)
gives a dynamical theory, in others words, the addition of the BB term in (3.1) breaks down
the topological structure of the first BF term, and the addition of the BF-like term to the
BB term, breaks down the topological structure as well. The coupling, however, allows the
existence of physical degrees of freedom [10], and this fact is manifested in the nonvanishing
energy-momentum tensor (3.17). We finish this paper with some remarks; in the literature
there is a different way towrite [YM] theory as a constrained BF-like theory calledMertellini’s
model [16]. Martellini’s model is a deformation of a BF-like topological field theorywhere it is
possible to show that it gives, on shell, the first-order formulation of [YM] theory, inwhich the
Feynman rules have been studied showing that the standard uv-behaviour is recovered, as
well as new nonlocal observables related to the phase structure of the theory can be defined.
So, we have presented in this paper other alternative to express [YM] theory as a constrained
BF-like theory, and we have established the bases to perform the quantum treatment of the
action (2.1); thus, wewill compare at quantum level the difference among the action analyzed
in this work and the action in Martellini’s model.

4. Conclusions and Prospects

In this paper, the covariant canonical analysis for Yang-Mills theory written as a BF-like
action was performed. By defining a dynamical system with its equations of motion plus
an action principle, we constructed a closed and gauge invariant symplectic form which
contains all the relevant Hamiltonian description of the covariant phase space. Furthermore,
the geometric structure obtained for the theory under study allowed us to calculate the
gauge transformations and a symmetric and gauge invariant energy-momentum tensor
corresponding on shell to the energy-momentum tensor of [YM] theory. On the other
hand, we obtained by using Noether’s theorem a symmetric and gauge invariant energy-
momentum tensor confirming on shell the results obtained in former sections. It is important
to comment, that it was not necessary to implement Belinfante’s approach in order to
symmetrize the energy-momentum tensor. In addition, we saw that the action under study
being the coupling of topological terms, it is not topological anymore because there exist
physical degrees of freedom. Therefore, with the present work we have established the basis
to quantize the theory under study in a covariant framework being a good alternative to
understand the symmetries of this BF-like action at quantum level, all these ideas are already
in progress and will be reported in forthcoming works.
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