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We present a geometric framework to analyze optimal control problems of uncoupled spin
1/2 particles occurring in nuclear magnetic resonance. According to the Pontryagin’s maximum
principle, the optimal trajectories are solutions of a pseudo-Hamiltonian system. This computation
is completed by sufficient optimality conditions based on the concept of conjugate points related to
Lagrangian singularities. This approach is applied to analyze two relevant optimal control issues
in NMR: the saturation control problem, that is, the problem of steering in minimum time a single
spin 1/2 particle from the equilibrium point to the zero magnetization vector, and the contrast
imaging problem. The analysis is completed by numerical computations and experimental results.

1. Introduction

The dynamics of a spin 1/2 particle in nuclear magnetic resonance (NMR) is described by
the Bloch equation

d �M

dt
= �M ∧ �ω − R

(
�M − �M0

)
, (1.1)

where �M is the magnetization vector of the particle, �ω is the radio-frequency control magnetic
field, and R is the relaxation matrix [1, 2]. Such a system is an example of bilinear system in
control theory [3]

dx

dt
= (Ax + a) +

m∑
i=1

ui(Bix + bi), (1.2)
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where x ∈ R
n, (A,B1, . . . , Bm) are real constant n × n matrices, and a, b1, . . . , bm ∈ R

n. In this
paper, in view of applications, we will concentrate our analysis to two different cases, a time
optimal control and a Mayer control problem which consist of minimizing a cost function
C : minu(·)C(x(tf)) where tf is the transfer time. In both cases, according to the Maximum
Principle [4], if the control u(·) is constrained to a control domain U, minimizers are solutions
of the Hamiltonian equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, (1.3)

where H(x, p, u) = 〈p, F(x, u)〉, ẋ = F(x, u) being the control system and p the adjoint vector.
The function H depending upon u is called the pseudo-Hamiltonian and the optimal control
has to satisfy for almost every time the maximization condition [4]

H
(
x, p, u

)
= max

v∈U
H
(
x, p, v

)
. (1.4)

The solutions of (1.3) and (1.4) are called extremals, and they can be classified into two types:

(i) singular extremals if they satisfy the relation ∂H/∂u = 0,

(ii) regular extremals if the control takes its values in the boundary of the control
domain.

General extremals are the concatenation of singular and regular arcs. An important example
in our study is the case of single-input control systems ẋ = F(x) + uG(x), where the
control domain is |u| ≤ 1. A regular extremal is formed by bang arcs defined by u(t) =
sign[〈p(t), G(x(t))〉], while the singular extremals satisfy 〈p(t), G(x(t))〉 = 0. The optimal
control problem reduces to find the sequence BSBS . . ., where B is a bang arc with u = ±1
and S a singular arc. For linear systems ẋ = Ax + Bu, under the mild Kalman controllability
condition rank [B, . . . , An−1B] = n, there exists no singular arc, and optimal solutions satisfy
a bang-bang principle [5]. The situation is quite different in a bilinear system, which
corresponds to a kind of universal nonlinear model, since in the analytic case, the input-
output of any system can be approximated by the one of a bilinear system, see [6]. One
objective of this paper is to show the ubiquity of the singular arcs in the optimal control
of spin 1/2 particles. This point can already be detected in the example of a single spin [7].
The corresponding time-optimal control problem will be discussed in details in this paper
since the discussion is surprisingly very intricate. Also it will serve as an introduction to the
contrast problem in NMR imaging.

Except in some cases, for example, time minimal control for linear systems, the maxi-
mum principle is only a necessary optimality condition, and sufficient conditions are related
to the concept of extremal field and Hamilton-Jacobi-Bellman equation. This leads to the
introduction in optimal control of the difficult notion of conjugate points. Based on recent
works [8, 9], a review of this concept is presented in this paper for singular extremals. The
important part consists in clarifying the relation between the geometric concept associated
to Lagrangian singularities of the projection of the extremal flow on the state space and
the problem of optimality which is characterized by the openness properties in a suitable
topology of the input-output mapping

Ex0,tf : u(·) �−→ x
(
tf , x0, u

)
, (1.5)
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where x(·) is the response at time tf of the system to the control u(·), and x0 is the initial state.
Similar results exist in the bang-bang case, but they will not be used in the present paper,
see [10]. In two final sections, the different concepts are used to analyze the two following
problems.

(i) Time Minimum Problem for a Single Spin. Under suitable coordinates, the system
takes the form

dx

dt
= −Γx + u2z,

dy

dt
= −Γy − u1z,

dz

dt
= γ(1 − z) + u1y − u2x,

(1.6)

where the state variable q = (x, y, z) belongs to the Bloch ball |q| ≤ 1 which is
invariant for the dynamics since the parameters belong to the set Λ : 2Γ ≥ γ ≥ 0.
The control field is u = u1 + iu2 = |u|eiϕ where the amplitude is bounded by a given
m. A complete derivation of (1.6) will be done in Section 5.

(ii) Contrast Imaging Problem. In this case, a simplified model is formed by coupling
two systems (1.6) with different relaxation parameters:

dq1

dt
= F1

(
q1,Λ1, u

)
,

dq2

dt
= F2

(
q2,Λ2, u

)
, (1.7)

written shortly as dx/dt = F(x, u) where x = (q1, q2) belongs to the product of
two Bloch balls. Both spins interact through the same magnetic field represented
by u(·). The associated optimal control problem is the following. Starting from the
equilibrium point x0 = ((0, 0, 1), (0, 0, 1)), the goal is to reach in a given transfer time
tf the final state q1(tf) = 0 (corresponding to zero magnetization of the first spin)
while maximizing |q2(tf)|2 [11].

2. Necessary Optimality Conditions: Maximum Principle

We consider a control system of the form

dx(t)
dt

= F(x(t), u(t)), (2.1)

where F : R
n × R

m �→ R
n is a C∞ mapping. The class of admissible control U is the set

{u : [0, tf] → U} of bounded and measurable maps where U ⊂ R
m is the control domain.

Given an initial condition x0 ∈ R
n and u(·) ∈ U, we denote by x(t, x0, u) the solution of the

control system initiating from x0 and defined on a subinterval of [0, tf]. We fix a C∞ terminal
manifold M defined by g(x) = 0 where g : R

n → R
k. We will consider the two following

optimal control problems.
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(i) Time Minimum Control Problem. Reach in minimum time from x0 the terminal
manifold M.

(ii) Mayer Problem. Steer x0 to M while minu(·)∈UC(x(tf)) where tf is a fixed transfer
time, and the cost function C is a C∞ regular function from R

n into R.

We denote the accessibility set at time tf by A(x0, tf) = ∪u(·)∈Ux(tf , x0, u).
Let us consider the Hamiltonian function

H
(
x, p, u

)
=
〈
p, F(x, u)

〉
, (2.2)

where 〈·, ·〉 is the usual scalar product in R
n, and p ∈ R

n \ {0} is the adjoint vector. H is
called the pseudo-Hamiltonian, and we introduce the maximized Hamiltonian M(x, p) =
maxv∈UH(x, p, v).

It is well known that the Pontryagin maximum principle is a set of necessary
conditions for our optimal control problem [3, 4].

2.1. The Pontryagin Maximum Principle

Let u∗(·) be an admissible control whose corresponding trajectory x∗(·) = x(·, u∗, x0) is
optimal, then there exists a vector function p∗(·) ∈ R

n \ {0} such that the following conditions
are satisfied:

ẋ∗ =
∂H

∂p

(
x∗, p∗, u∗), ṗ∗ = −∂H

∂x

(
x∗, p∗, u∗), (2.3)

with the maximality condition

H
(
x∗(t), p∗(t), u∗(t)

)
= M

(
x∗(t), p∗(t)

)
, (2.4)

where M is a constant which can be chosen positive in the time minimal case. The following
boundary conditions are satisfied for the two respective problems:

(i) time minimum case: at the final time tf ,

g
(
x∗(tf

))
= 0, p∗

(
tf
) ⊥ ∂g

∂x

(
x∗(tf

))
, (2.5)

(ii) Mayer problem: at the final time tf ,

g
(
x∗(tf

))
= 0,

p∗
(
tf
)
= p0

∂C

∂x

(
x∗(tf

))
+

k∑
i=1

δi
∂gi
∂x

(
x∗(tf

))
,

δ = (δ1, . . . , δk) ∈ R
k, p0 ≤ 0.

(2.6)

The boundary conditions on the adjoint vector are called transversality conditions.
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Geometric Interpretation

Both optimal problems satisfy the same Hamiltonian dynamics defined by (2.3), (2.4) and
the triples (x(·), p(·), u(·)) solutions of this system are called extremals. Geometrically they
correspond to necessary conditions for the terminal point x(tf) to be in the boundary of the
accessibility set A(x0, tf).

The respective boundary conditions define the so-called BC-extremals:

(i) time minimum case: p∗(tf) ⊥ M,

(ii) Mayer problem: let us fix m ∈ R and introduce the manifold Mm = {x, g(x) = 0,
C(x) = m}. One must have for the optimal solution p∗(tf) ⊥ Mm, where m is such
that the cost is minimum.

2.2. Singular Extremals and the Weak Maximum Principle

The weak maximum principle consists in replacing the maximality condition (2.4) by
(∂H/∂u)(x, p, u) = 0. The following results are well known.

Definition 2.1. Relaxing u ∈ U, a singular trajectory of the system ẋ = F(x, u) on [0, tf] is a
control trajectory pair (x, u) such that the input-output mapping

Ex0,tf : u(·) ∈ L∞[0, tf
] �−→ x

(
tf , x0, u

)
(2.7)

is singular.

Proposition 2.2. One then deduces the following results.

(1) If (x, u) is not singular on [0, tf], then the input-output mapping is open at u(·) for the
L∞[0, tf]-norm topology.

(2) If (x, u) is singular on [0, tf], then there exists p(·) ∈ R
n \ {0} such that (x, p, u) satisfies

a.e. on [0, tf] the weak maximum principle

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
,

∂H

∂u
= 0. (2.8)

Next, we make computations of extremals which will be used in the sequel.

2.3. Bi-Input Affine Case

A system such that the control enters linearly is called affine. We consider a situation for
which F(x, u) = F0(x) + u1F1(x) + u2F2(x), where the Fi are C∞-vector fields and u = (u1, u2),
with the control domain U : |u| ≤ 1. Let us denote by Hi = 〈p, Fi(x)〉 the Hamiltonian
lifts, then the pseudo-Hamiltonian H(x, p, u) takes the form H0 +

∑2
i=1 uiHi. The maximality

condition (2.4) leads to the following parameterization of the extremal controls:

u1 =
H1√

H2
1 +H2

2

, u2 =
H2√

H2
1 +H2

2

, (2.9)
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outside the switching surface Σ : H1 = H2 = 0. Plugging such u into the Hamiltonian gives
the true Hamiltonian Hn = H0 + (H2

1 + H2
2)

1/2. The smooth solutions of the corresponding
Hamiltonian field are called extremals of order zero.

The relation u2
1 + u2

2 = 1 leads to the following interpretation.

Proposition 2.3. Extremals of order zero correspond to the singularity of the input-output mapping

Ex0,tf : u ∈ L∞[0, tf
] ∩ {|u| = 1} �−→ x

(
tf , x0, u

)
. (2.10)

2.4. Single-Input Affine Case

The system is of the form F(x, u) = F(x) + uG(x) and |u| ≤ 1. Applying the maximality
condition, one gets two types of extremals.

(i) Regular extremals: the control is given by u(t) = sign[HG(z(t))], z = (x, p), and
HG = 〈p,G〉. If u = ±1, it is called a bang arc and if the number of switchings is
finite, it is called bang-bang.

(ii) Singular extremals: since the system is linear in u, the condition (2.4) leads in the
singular case to the condition HG = 0, identically. Differentiating twice with respect
to time, we get the relations

{HG,HF} = {{HG,HF},HF} + u{{HG,HF},HG} = 0, (2.11)

and from this second condition, one derives when the denominator is not vanishing
the corresponding singular control

uS = −{{HG,HF},HF}
{{HG,HF},HG} . (2.12)

Plugging such uS into the pseudo-Hamiltonian defines the singular flow solution of the
Hamiltonian vector field denoted as HS and starting at t = 0 from the two constraints
HG = {HG,HF} = 0 and |uS| ≤ 1. They have the following interpretation.

Proposition 2.4. Singular extremals correspond to the singularities of the input-output mapping

Ex0,tf : u ∈ L∞[0, tf
] �−→ x

(
tf , x0, u

)
. (2.13)

2.5. Higher-Order Maximum Principle and the Generalized
Legendre-Clebsch Condition

From the maximality condition, one has the necessary optimality condition called the
Legendre-Clebsch condition

∂2H

∂u2
≤ 0, (2.14)
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and if it is strict, it is called the strict Legendre-Clebsch condition. In the singular case,
one has ∂2H/∂u2 = 0. A refined necessary condition has to be satisfied for optimality
which is deduced from the higher-order maximum principle [12]. It is called the generalized
Legendre-Clebsch condition

∂

∂u

d2

dt2
∂H

∂u
= {HG, {HG,HF}} ≤ 0. (2.15)

2.6. The Relation between the Bi-Input and the Single Input Cases

An important relation in our analysis comes from the work of [9]. For an extremal of order
zero, one has u2

1 + u2
2 = 1, and one can consider the extension of the control system by setting

u1 = sinα, u2 = cosα, and α̇ = v where (x, α) is the extended state space and v is the new
control.

For the single-input case, one can define a reduction of the system, using the so-called
Goh transformation. Assuming that G is nonzero, there exists a coordinate system (x1, . . . , xn)
on an open set V such that G = ∂/∂xn. Denoting x = (x′, xn), the system splits into

ẋ′ = F
(
x′, xn

)
, ẋn = F ′

0
(
x′) + u, (2.16)

where the system F ′ defined on an open set V ′ with xn, taken as the control variable, is called
the reduced system.

For both cases, the extremals are in correspondence, due to the intrinsic interpretation
of the singular trajectories as singularities of the input-output mapping. Moreover,
introducing the reduced Hamiltonian H ′(x′, p′, xn) = 〈p′, F ′(x′, xn)〉, one has

d

dt

∂H

∂u
= {HG,HF} = −∂H

′

∂xn
,

∂

∂u

d2

dt2
∂H

∂u
= {{HG,HF},HG} = −∂

2H ′

∂x2
n

.

(2.17)

These formulas establish the relation between the Legendre-Clebsch and the generalized
Legendre-Clebsch of the corresponding systems.

3. Second-Order Optimality Condition

We will present the results needed in our analysis to get sufficient second-order optimality
conditions under generic assumptions in the singular case. The smooth system is ẋ = F(x, u),
u ∈ U, and x ∈ X, and the pseudo-Hamiltonian can be written as H(z, u) = 〈p, F(x, u)〉,
where z = (x, p). One can consider a reference singular extremal (z, u) solution on [0, tf] of

ẋ =
∂H

∂p

(
x, p, u

)
, ṗ = −∂H

∂x

(
x, p, u

)
,

∂H

∂u
= 0. (3.1)

Our first assumption is the strong-Legendre condition:

(A1) The quadratic form ∂2H/∂u2 is negative definite along the reference solution.
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Using the implicit function theorem, the extremal control is then locally defined as a
smooth function u(z), and plugging this function into H defines a smooth true Hamiltonian,
still denoted as H, and the extremal is solution of ż = �H(z) with initial condition z0 = (x0, p0).

3.1. The Geometric Concept of Conjugate Point

Definition 3.1. Let z = (x, p) be the reference extremal defined on [0, tf]. The variational
equation

δż = d �H(z(t))δz (3.2)

is called the Jacobi equation. A Jacobi field is a nontrivial solution δz = (δx, δp), and it is
said to be vertical at time t if δx(t) = dΠz(t)δz(t) = 0 where Π : (x, p) �→ x is the canonical
projection.

The following geometric result is crucial [13].

Proposition 3.2. Let L0 be the fiber T ∗
x0
X, and let Lt = exp[t �H(L0)] be its image by the one-

parameter subgroup generated by H, then Lt is a Lagrangian manifold whose tangent space at z(t) is
spanned by the Jacobi fields vertical at t = 0. Moreover, the rank of the restriction to Lt ofΠ is at most
n − 1.

This leads to the following definition.

Definition 3.3. We define the exponential mapping

expx0,t

(
p0
)
= Π

(
z
(
t, x0, p0

))
(3.3)

as the projection on the state space of the integral curve of �H with initial condition z0 =
(x0, p0), where p0 can be restricted by linearity to the sphere |p0| = 1. If z = (x, p) is the
reference extremal, a time tc > 0 is said to be geometrically conjugate to 0 if the mapping p0 �→
expx0,t

is not of rank (n − 1) at t = tc, and the associated point x(tc) is said to be geometrically
conjugate to x0. We denote by t1c the first conjugate time and C(x0) is the conjugate locus
formed by the set of first conjugate points.

An algorithm can be deduced.

Testing Conjugacy

Let z(t) = (x(t), p(t)) be the reference extremal, and consider the vector space of dimension
n − 1 generated by the Jacobi fields δzi = (δxi, δpi), i = 1, . . . , n − 1 vertical at t = 0 and such
that δpi(0) is orthogonal to p0. At a conjugate time tc, one has

rank[δx1(tc), . . . , δxn−1(tc)] < n − 1. (3.4)
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Seminal works in optimal control are to relate this concept to the optimality properties [8, 13].
In relation with Mayer problem, this question is translated into openness of the input-output
mapping. One needs to introduce the ad hoc (generic) assumptions completing (A1).

(A2) The extremal trajectory z(t), t ∈ [0, tf] associated to u(·) is by definition a singularity
of the input-output mapping Ex0,tf . One assumes that on each subinterval [t0, t1],
0 < t0 < t1 ≤ tf , the singularity of E on u|[t0,t1] is of codimension one.

(A3) We are in the nonexceptional case where H /= 0 along the reference extremal.

Theorem 3.4. Under our assumptions, the first geometric conjugate time t1c is the first time t such
that if t < t1c, the input-output mapping Ex0,t is not open at u|[0,t], and if t > t1c, it becomes open at
u|[0,t] for the L∞-norm topology.

Corollary 3.5. Consider the control system F(x, u) = F0(x) + u1F1(x) + u2F2(x), |u| ≤ 1, and let
(x, p, u) be a reference extremal of order zero solution of H0 + (H2

1 + H2
2)

1/2 such that assumptions
(A2), (A3) are satisfied, then the first time t1c such that the input-output mapping becomes open along
x(·) which is the first geometric conjugate time.

Combined with the CotCot code [14], this gives the practical point of view used to test
optimality in the time minimal case and the contrast problem along an extremal of order zero,
since nonopenness of the input-output mapping along any such arc is a necessary optimality
condition.

A more complicate and subtle question is to consider the same problem along singular
arcs for the single-input affine control system ẋ = F(x) + uG(x), |u| ≤ 1. The corresponding
theoretical results are presented in [9] based on the relation between the bi and single input
cases using Goh transformation explained above. The conclusion is that, again in this case,
the conjugate point analysis can be applied to test optimality in such situations.

3.2. Focal Type Conditions

The concept of conjugate point is associated to optimal control problems with fixed end-
points conditions. In the contrast problem, it has to be adapted to the problem with fixed
initial condition x(0) = x0, but with variable final condition x(tf) ∈ Mm. From the maximum
principle, the transversality condition defined a Lagrangian manifold z(tf) = (x(tf), p(tf)) ∈
M⊥

m which again defines along a singular extremal a train of Lagrangian manifolds Lt,
integrating backwards t ≤ tf . Optimality can be deduced from the geometric concept of focal
points corresponding to the singularities of (Lt,Π).

3.3. Extremal Fields and Hamilton-Jacobi-Bellman Equation

For simplicity, we consider here the time-minimal control problem. We pick up a reference
extremal trajectory t �→ x(t), t ∈ [0, tf] such that (A1), (A2), and (A3) are satisfied. Moreover,
we assume that the reference trajectory is one-to-one and that there exists no conjugate point
on [0, tf], then we can embed locally the reference extremal into a central field F formed
by all extremal trajectories starting from x0 = x(0). One restricts the adjoint vector with the
normalization H = 1 and the assumption (A3). One introduces

L = {(H = 1) ∩ (∪t≥0Lt)}, (3.5)
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where Lt is the train of Lagrangian manifolds generated by the Hamiltonian flow �H, with
L0 = T ∗

x0
X being the initial condition. By construction, F is the projection of L on the state

space X.

Proposition 3.6. Excluding x0, there exists an open neighborhood W of the reference trajectory and
two smooth mappings V : W �→ R, û : W → U such that for each (x, u) ∈ W ×U, the maximization
condition

H(x, dV (x), û(x)) ≥ H(x, dV (x), u). (3.6)

The reference trajectory is optimal with respect to all smooth trajectories of the system, with the same
extremities and contained in W . The Lagrangian manifold L is a graph, and V is the generating
mapping {x ∈ W, p = ∂V/∂x}.

In the next sections, our geometric tools will be applied to our two case studies.

4. The Single Spin 1/2 Case

One considers the time minimal control of steering the state (0, 0, 1) to the center of the Bloch
ball. Due to the symmetry of revolution, one can restrict the problem to the 2D-single input
system q̇ = F + uG,

dy

dt
= −Γy − uz,

dz

dt
= γ(1 − z) + uy, |u| ≤ m. (4.1)

Despite the apparent simplicity of the equations, the problem is very rich, and most of the
geometric tools of the 2D-optimal control theory are needed to analyze the problem. One will
use [13, 15] as general references for the concepts and techniques. To handle the problem, one
introduces two steps:

(1) given a point q0 = (y, z), find the time minimal solution in a small neighborhood V
of q0, according to the Lie algebraic structure of the system at q0;

(2) glue together the local solutions to get the global time optimal solution. More
precisely, we will describe the global synthesis to steer N = (0, 0, 1) to any point of
the Bloch ball. By symmetry, one can only consider the domain y ≤ 0. This amounts
to compute the switching locus Σ formed by points where the optimal solutions
switch and the separating locus L where there exist two different optimal solutions
which intersect.

4.1. Computations of Lie Brackets and Singular Trajectories Properties

One has

F = −Γy ∂

∂y
+ γ(1 − z)

∂

∂z
,

G = −z ∂

∂y
+ y

∂

∂z

(4.2)
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and the Lie brackets up to order three are

[G,F] =
(−γ + δz

) ∂

∂y
+ δy

∂

∂z
, (4.3)

where δ = γ − Γ,

[[G,F], F] =
(
γ
(
γ − 2Γ

) − δ2z
) ∂

∂y
+ δ2y

∂

∂z
,

[[G,F], G] = 2δy
∂

∂y
+
(
γ − 2δz

) ∂

∂z
.

(4.4)

The singular trajectories are contained in the set S defined by det(G, [G,F]) = 0 which leads
to y(−2δz + γ) = 0. Hence, the singular locus is the union of the two singular lines: the line
y = 0 corresponding to the axis of revolution and the horizontal axis z0 = γ/(2δ). Eliminating
p, the singular control is given by D′ + usD = 0 where D′ = det(G, [[G,F], F]) and D =
det(G, [[G,F], G]). Computing, one gets

(i) for y = 0, this simplifies into D′ = 0 and D = −z(γ−2δz). Hence, the singular control
is zero, and the dynamics is governed by the equation ż = γ(1 − z),

(ii) for z0 = γ/(2δ), we get D′ = −yγ(2δ − γ) and D = −2δy2, which gives

uS =
γ
(
γ − 2δ

)

2δy
, (4.5)

where γ − 2δ = 2Γ − γ ≥ 0. The flow on the horizontal direction is given by

ẏ = −Γy − γ2 2Γ − γ

4δ2y
. (4.6)

4.2. Parameter Conditions

The interesting case is when δ < 0 and |γ/2δ| < 1. This leads to

Γ >
3γ
2
. (4.7)

In this case, uS → +∞ when y → 0−. Moreover, we have the following estimate. Setting
α = γ2(2Γ − γ)/(4γ2), we get near 0 that ẏ � −α/y, and the trajectory reaching zero in y < 0
is of order O(

√
t), the singular control being of order O(1/

√
t). In particular, one deduces the

following.

Lemma 4.1. The singular control in the neighborhood of the point y = 0, along the horizontal
direction is of order O(1/

√
t) and is in the L1 but not L2 category.

4.3. Optimality Problem

For small time, the optimality status of the singular arc can be deduced from the generalized
Legendre-Clebsch conditions. In order to be optimal, we have H ≥ 0 from the maximum
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principle, and from the Legendre-Clebsch condition (2.15), we deduce that {HG, {HG,HF}} ≤
0. More precisely, if we introduce D′′ = det(G,F) = γz(z − 1) + Γy2, one arrives at

(i) hyperbolic case DD′′ > 0, the singular direction is small time minimizing;

(ii) elliptic case DD′′ < 0, the singular trajectory is small time maximizing.

Applying this test when Γ > 3γ/2, one has

(i) the horizontal singular line is a fast direction;

(ii) the vertical singular line is fast provided z0 < z < 1.

In particular, this test excludes the standard policy in NMR called the inversion recovery
sequence [16, 17]. In this case, the spin is first steered close to the south pole (0,−1) with a
bang pulse, a zero control is then applied to reach the target along the horizontal axis, using
in particular the −1 ≤ z < z0 time maximizing singular arc.

In order to complete the optimality analysis, one introduces for 2D-system the fol-
lowing clock-form ω. The collinear set C is defined by det(F,G) = 0. From a straightforward
computation, one deduces that it will form an oval curve defined by γz(z − 1) + Γy2 = 0,
which shrinks into a point if γ = 0. Outside this set, ω = pdx is defined by ω(F) = 1 and
ω(G) = 0, the sign of dω being given by y(γ − 2δz). This form allows to compare the time to
travel different trajectories not crossing C by using the Stokes theorem. We have also dω = 0
on the singular set S. Using the form ω, one deduces the following lemma.

Lemma 4.2. Assume m = +∞, then the small broken arc formed by the concatenation of small pieces
of horizontal and vertical singular lines is time optimal.

The analysis is completed by the optimality properties of bang-bang extremals. The
two main tools are the classification of the regular extremals near the switching surface Σ′ =
{w = (q, p)/〈p,G(q)〉 = 0}, see, for instance, [18], and the concept of conjugate points for
bang-bang extremals which is described in [19, 20].

4.4. Classification of Regular Extremals Near Σ′

The singular extremals are contained in the subset HG = {HG,HF} = 0, and we denote by δ+
and δ− bang arcs u = ±1 for the system dx/dt = F + uG, |u| ≤ 1. We denote by δS a singular
arc and by δ1δ2 an arc δ1 followed by an arc δ2. We have the following.

Ordinary switching arc: it is a time t such that a bang arc switches with the condition
Φ(t) = 0 and Φ̇(t) = {HG,HF}(w(t))/= 0 where Φ(t) = HG(w(t)) is the switching function
evaluated along an extremal arc w(·). According to the maximum principle, near Σ′, the
extremal is of the form δ+δ− (resp., δ−δ+) if Φ̇(t) > 0 (resp., Φ̇(t) < 0).

Fold case: denoting Φ̈±(t) = {{HG,HF},HF} ± {{HG,HF},HG}(z(t)) the second-order
derivative along a bang arc ±1, the fold case is the situation where Φ±(t) = Φ̇±(t) = 0 and
Φ̈± /= 0. We have three cases.

(i) Hyperbolic Case. at the contact point with Σ′, Φ̇+(t) > 0 and Φ̇−(t) < 0. The
connection with a singular extremal with |uS| < 1 and satisfying the strong
generalized condition is possible. The extremals near such a point are of the form
δ±δSδ±.

(ii) Elliptic Case. at the contact point with Σ′, Φ̇+(t) < 0 and Φ̇−(t) > 0. The connection
with a singular extremal is not possible, and locally every extremal is bang-bang but
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with no uniform bound on the number of switchings. From the theory of conjugate
points in the 2D-bang-bang case, every time optimal solution is locally of the form
δ+δ− or δ−δ+.

(iii) Parabolic Case. Here, Φ̇+(t) and Φ̇−(t) have the same sign at the contact point. One
can check that the singular extremal is not admissible, and every extremal curve
is locally bang-bang with at most two switchings: δ+δ−δ+ if Φ̇+(t) > 0 or δ−δ+δ− if
Φ̇−(t) < 0.

This classification is far from being sufficient to analyze locally our problems. In
particular, we have the following situations.

4.5. Saturating Singular Case

It is a transition between the hyperbolic and the parabolic cases. The singular control uS

saturates at a point B. This situation was analyzed in the literature, see, for instance, [15]. At
the point B, there is a birth of a switching curve which can be estimated using the techniques
of local models [13]. B is identified to 0, the singular arc is normalized to the x-axis, and the
model can be written as

ẋ = 1 − y2, ẏ = −(x + 1) + u, |u| ≤ 1. (4.8)

The singular control is uS = 1 + x, and it is not admissible for x > 0. Near 0, we have optimal
policies of the form δ+δSδ+δ−.

Even more complicated situation can occur, and the most interesting is the one related
to the interaction between the two singular lines, which is described next.

4.6. The SiSi Singularity

Assume that Γ > 3γ/2 and the control bound m is large enough such that the bang arc u = m
starting from the north pole intersects the singular arc z0 = γ/(2δ), Then for the problem
of reaching zero magnetization, the horizontal singular arc is saturating at a point denoted
as B and from the analysis of [7]; they are local optimal policies of the form δmδShδmδSv
where δm is an arc associated to u = m, and δSh and δSv are, respectively, singular horizontal
and vertical arcs. Note in particular that the horizontal singular arc is not followed up to the
saturating point B. Hence, we introduce the following definition.

Definition 4.3. One calls a bridge between the horizontal and the vertical singular arcs the
bang arc such that the concatenation singular-bang-singular arc is optimal.

In our study, the existence of a bridge is related to the following phenomenon. At the
saturating point B, there is a birth of a switching locus which meets the horizontal singular
arc.

Next, we present a geometric method to evaluate switching points for 2D-systems.
This method is effective if the system is bilinear. The geometric process is described in details
in [15].
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4.7. Effective Evaluation of Switching Points

Instead of using the adjoint equation to determine the switching sequences, we introduce the
following coordinate invariant point of view. Assume 0, t to be two consecutive switching
times on an arc δ+ or δ− where the control is u = ε = ±1. We must have

〈
p(0), G

(
q(0)

)〉
=
〈
p(t), G

(
q(t)

)〉
= 0. (4.9)

We denote by V (·) the solution of the variational equation V̇ = ((∂F/∂q) + ε(∂G/∂q))V
such that V (t) = G(q(t)), where the equation is integrated backwards from time t to 0. By
construction 〈p(0), V (0)〉 = 0 (since 〈p(t), V (t)〉 = 0 and the derivative is zero) and hence
at time t = 0, p(0) is orthogonal to G(q(0)) and to V (0). Therefore, V (0) and G(q(0)) are
collinear. We denote by θ(t) the angle between G(q(0)) and V (t) measured counterclockwise.
One deduces that switching occurs when θ(t) = 0[mod(π)]. Moreover, θ̇ = 0 on the singular
set det(G, [G,F]) = 0.

We have by definition

V (t) = e−tad(F+εG)G
(
q(t)

)
, (4.10)

and in the analytic case, the ad-formula gives, for small t,

V (0) =
∑
n≥0

(−t)n
n!

adn(F + εG)G
(
q(t)

)
. (4.11)

The computation can be made explicit in the bilinear case F(q) = Aq + a, G(q) = Bq.
The system can be lifted into an invariant system on the semidirect product Lie group
GL(2,R)×SR

2 identified with the set of matrices of GL(3,R):

{(
1 0

g w

)
, g ∈ GL(2,R), w ∈ R

2

}
, (4.12)

acting on the subspace of vector in R
3 :

(
1
q

)
. Lie brackets of two affine vector fields (A′, a′),

(B′, b′) being defined by

((
A′, a′), B′, b′

)
=
([
A′, B′], A′b′ − B′a′), (4.13)

the computation of the exponential exp[−t ad(F + εG)] is a standard exercise in linear algebra
which amounts to compute a Jordan normal form of ad(F + εG), see [21] for the details of the
computations.

4.8. Global Synthesis

In order to complete the global time minimal synthesis with initial point at the north pole,
we must glue together the local syntheses, and the final result is represented in Figure 1. We
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Figure 1: Global synthesis from the north pole. The switching locus Σ is formed by the union of the surfaces
Σi. Due to the symmetry of revolution, the cut locus corresponds to the z-axis.

have assumed that Γ > 3γ/2 and m � Γ. Using the symmetry of revolution with respect to the
z-axis, one can restrict the study to the domain y ≤ 0. The north pole being a singular point
for the optimal control, the first applied control is taken as u = m and will form a boundary
arc of the accessibility domain. The collinear set is a parabola connecting O to the north pole.
The main feature of the synthesis is the SiSi singularity. The switching locus Σ is composed
of the arc (denoted Σ1) starting from the north pole and reaching the horizontal singular arc
at A, the horizontal line segment Σ2 between A and B, the singular control saturating at B,
the switching locus Σ3 due to the saturating phenomenon ending on the vertical axis at D,
and the vertical singular line segment denoted as Σ4 between D and O. The bang arc u = −m
starting from A separates the synthesis in two domains, one with a bang-bang policy δmδ−m
and the other where the optimal policy contains a nontrivial horizontal singular line. Due to
the symmetry of revolution, the separating locus L reduces to the z-axis.

Note that different works have shown that such optimal control field can be
implemented with a very good accuracy in NMR experiments, the standard error being of
the order of few percents [7, 22]. This point is illustrated in Figure 2 for the saturation control
problem where a reasonable match between theory and experiments has been obtained. This
result confirms that the optimized pulse sequence can really be implemented with modern
NMR spectrometers.

5. The Contrast Problem

For simplicity, we will limit our analysis to the single-input case. The system can be written
shortly as

dx

dt
= F(x) + uG(x), (5.1)
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Figure 2: Plot of the optimal trajectories (left) and of the inversion recovery sequence (right) in the plane
(y, z). Experimental parameters are taken to be T1 = 740 ms, T2 = 60 ms, and ωmax/(2π) = 32.3 Hz. The
experimentally measured trajectories are represented by filled squares and open diamonds. In the upper
panel, the small insert represents a zoom of the optimal trajectory near the origin. The dotted line is the
switching curve originating from the horizontal singular line. The solid curve is the optimal trajectory
near the origin. The lower panel displays the corresponding control laws. τ is the reduced time defined by
τ = (ωmax/(2π))t.

where x = (q1, q2), qi = (yi, zi) representing the state of each spin 1/2 particle. From Bloch
equation, we get

F =
2∑
i=1

(
−yiΓi

∂

∂yi
+ γi(1 − zi)

∂

∂zi

)
,

G =
2∑
i=1

(
−zi ∂

∂yi
+ yi

∂

∂zi

)
,

(5.2)

where Λi = (Γi, γi) are the relaxation parameters characterizing each spin.

5.1. BC Singular Extremals

According to the general computations of Section 2, a singular extremal is contained in the
constrained set

Σ′′ :
〈
p,G(x)

〉
=
〈
p, [G,F](x)

〉
= 0, (5.3)
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while the singular control is defined by

uS = −
〈
p, [[G,F], F](x)

〉
〈
p, [[G,F], G](x)

〉 , (5.4)

the Lie brackets being computed in Section 2.
In order to be optimal, the singular extremals have to satisfy the generalized Legendre-

Clebsch condition 〈p, [G, [G,F]]〉 ≤ 0 and the transversality condition at the final time.
Decomposing the adjoint vector in the form p = (p1, p2) where pi is associated to the spin
i, one has

p2
(
tf
)
= −2p0q2

(
tf
)
, p0 ≤ 0, (5.5)

and if p0 /= 0, it can be normalized by homogeneity to p0 = −1/2. The case p0 = 0 has the
following straightforward interpretation.

Lemma 5.1. The time-optimal solution of the first spin system is solution of the contrast problem
provided the transfer time tf is fixed to the optimal time.

5.2. Exceptional Singular Extremals

If the transfer time is not fixed, then according to the maximum principle, this leads to the
additional constraint M = maxu(·)[HF + uHG] = 0, which gives 〈p, F(x)〉 = 0 in the singular
case. With this restriction, the adjoint vector can be eliminated, and the singular control in
this exceptional case is given by

ue
S = −D

′(x)
D(x)

, (5.6)

where

D = det(F,G, [G,F], [[G,F], G]),

D′ = det(F,G, [G,F], [[G,F], F]),
(5.7)

with the corresponding vector fields defined by

dx

dt
= F(x) − D′(x)

D(x)
G(x). (5.8)

Observe that in the general case, a similar computation shows that the singular extremals are
solutions of an equation of the form

dx

dt
= F(x) − D′(x, λ)

D(x, λ)
G(x), (5.9)

where λ is a one-dimensional time-dependent parameter whose dynamics is deduced from
the adjoint equation.
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5.3. Desingularization

Meromorphic differential equations of the form (5.8) can be desingularized as

dx

ds
= DF(x) −D′G(x), (5.10)

using the time reparameterization ds = dt/D(x(t)). According to the formula (5.4), the
singular control can explode near D = 0, in particular saturating the constraint |u| ≤ m. This is
connected to the bridge phenomenon described in Section 3. Some of the singular extremals
can cross the singular surface D = 0, provided D′ = 0.

5.4. Feedback Classification and the Contrast Problem

An important object to analyze our problem is the action of the feedback group Gf on the set
of systems. One will restrict our presentation to the single-input affine case, and we denote
by C = (F,G) the set of all such (smooth) systems on a state space X � R

n.

Definition 5.2. Let (F,G), (F ′, G′) be two elements of C. They are called feedback equivalent if
there exists a smooth diffeomorphism ϕ of R

n on a feedback u = α(x) + uβ(x) where α, β are
smooth, β is invertible such that

(i) F ′ = ϕ ∗ F + ϕ ∗ (G · α),
(ii) G′ = ϕ ∗ (G · β),

(5.11)

where ϕ ∗Z is the vector field image given by ϕ ∗Z = (∂ϕ−1/∂x)(Z ◦ ϕ). This action defines a
group structure on the set of triplets (ϕ, α, β); this group is denoted as G.

Definition 5.3. Let (F,G) ∈ C and let λ be the map which associates to (F,G) the
constrained differential equation whose solutions are singular extremals. The constraint is
given by Σ′′ : HG = {HG,HF} = 0, and the equation is FS = F + uSG where uS =
−{{HG,HF},HF}/{{HG,HF},HG}. We define the action of (ϕ, α, β) on (Σ, FS) by the action
of the symplectic change of coordinates

�ϕ : x = ϕ(X), p = P
∂ϕ−1

∂X
, (5.12)

a feedback acting trivially.

We have the following theorem [23].

Theorem 5.4. The following diagram is commutative:

C −→ λ(C)
Gf ↓ ↓ Gf

C −→ λ(C)
. (5.13)

In other words, λ is a covariant.
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Moreover, under mild assumption, λ is a complete covariant. In particular, an
important geometric problem is to relate the set of parameters (Γ1, γ1,Γ2, γ2) to geometric
invariants of the singular flow and optimality properties. The research program is the
following.

5.5. Classification of the Distribution G

A feedback u = α(x) + β(x)v acts on the control direction G as G → βG, which corresponds
to the classification of the one-dimensional distribution x → SpanG(x).

5.6. Collinear Set

The collinear set C is the set of points where F and G are collinear and is feedback invariant.
Geometrically, it will form a one-dimensional curve.

5.7. The Singular Trajectories

It is defined by the constrained Hamiltonian equations given by

ẋ = F(x) + uS

(
x, p

)
G(x),

ṗ = −p
(
∂F

∂x
+ uS

(
x, p

)∂G
∂x

(x)
)
,

(5.14)

restricted to the surface

Σ′′ : HG = {HG,HF} = 0, (5.15)

where uS is given by the formulae (2.14).
This set of equations defines a Hamiltonian vector field on Σ′′, restricting the standard

symplectic form ω = dx ∧ dp.
We introduce the two Poisson brackets:

D = {{HG,HF},HG}, D′ = {{HG,HF},HF}, (5.16)

and the differential equation (5.14) can be desingularized using the time reparameterization
ds = dt/(D(x(t), p(t))). One gets the equations

dx

ds
= DF − D′G,

dp

ds
= −p

(
D∂F

∂x
− D′ ∂G

∂x

)
,

(5.17)

which restricted to Σ′′ are a semicovariant.
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Geometric invariants are related to the surface {D = D′ = 0}∩Σ′′ and to the singularities
of (5.17) in this surface. The geometric framework to analyze such nonisolated singularities
is presented in [24, 25].

6. Geometric and Numerical Methods

The object of this section is to combine geometric and numerical methods to analyze the
contrast problem. The first step is to construct along a reference singular trajectory a C0-
synthesis in the limit case m � Γ, γ . This result is based on [9, 26].

6.1. Synthesis for a Reference Singular Arc

We consider the control system dx/dt = F(x)+uG(x), |u| ≤ 1, and let uS be a smooth singular
control such that |uS| < 1 with corresponding trajectory x(t). We have the following.

Theorem 6.1. Under generic assumptions, the first conjugate time t1c is the time along the singular
arc such that a policy δ±δSδ± is time extremizing in a C0-neighborhood of the reference singular arc.

If we apply this result to the contrast problem, one can deduce the simplest result about
an extremal policy which provides a local optimal solution. The initial point is the north pole
of the Bloch ball, and such a point is singular for the singular flow. Hence, the first control
to be applied is u = +1 or u = −1 (the maximum bound m being normalized to 1), and by
symmetry of revolution, one can assume that u = +1. At the final time tf , one must have
p2(tf) = q2(tf), and moreover HG(tf) = 0. The final point concentrates a switching. Hence,
one gets the following.

Lemma 6.2. The simplest possible sequence is of the form BS, where B is a bang arc and S is a singular
arc.

More complicated sequences can occur, and from our geometric analysis, this can be
related to two phenomena which can be easily computed:

(i) existence of a conjugate time,

(ii) saturation of the control and birth of a bridge, which leads to a BSBS policy.

6.2. Numerical Continuation Method

A standard regularization process is the one used in the LQ-control which is an application
of Tychonov theorem to control system [27]. The dynamics is linear of the form ẋ = Ax + Bu,
and the cost can be written as

∫ tf
0

tuRudt. The regular case corresponds to R > 0, and the
singular case called cheap control is the case where R ≥ 0, and some control components
(u1, u2, . . . , up) are not penalized. A regularization process consists of adding quadratic
penalties in the cost ε(

∑p

i=1 u
2
i ) to get a regular problem for which an optimal solution is

computed. This can be done by solving the shooting equation on the set of extremals solution
of the maximum principle. The cheap case is obtained by taking ε → 0, and the solutions
converge thanks to Tychonov theorem.
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Figure 3: Projection of the singular flow onto the planes (y1, z1) and (y2, z2) in the cerebrospinal
fluid/water case. The trajectories are plotted in black (solid line) and in red (dashed line). The control
fields of the dashed extremals diverge. The trajectories have been plotted up to the explosion of the field
(the absolute value is then larger than 105). The horizontal and vertical dashed lines represent the y- and
z-axes of the Bloch ball. Note the contrast that can be obtained between the two spins, which illustrates the
role of the singular flow in this problem.

In our nonlinear situation, the convergence is more intricate, but the contrast problem
which is a Mayer problem can be interpreted as a cheap control problem. The regularization
amounts to the standard homotopy in the cost: minu(·)(C(x(tf))+(1−λ)

∫ tf
0 u(t)2dt), λ ∈ [0, 1].

For the regularized problem, one considers only normal extremals associated to the pseudo-
Hamiltonian

Hλ = HF + uHG − 1
2
(1 − λ)u2. (6.1)

The control is computed in the normal case by solving ∂Hλ/∂u = 0, un = HG/(1 − λ).
Saturation occurs if |un| > 1, and the control is given by (SignHG)/(1 − λ).

Another regularization process is to use the refined cost minu(·)(C(x(tf)) + (1 −
λ)

∫ tf
0 |u|2−λdt). The analysis of the convergence is related to the comparison of the limit

between the normal extremals of the regularized system and the original singular extremals.
This point goes however beyond the scope of this paper. This regularizing process can replace
the so-called GRAPE algorithm which is a standard gradient method commonly used in NMR
[28]. To use the GRAPE algorithm in this situation, one replaces the boundary condition
q1(tf) = 0 and the cost −|q2

2(tf)| by a cost function of the form

Cα = α
∣∣∣q2

1

(
tf
)∣∣∣ −

∣∣∣q2
2
(
tf
)∣∣∣, (6.2)

where α is a weight parameter. Another advantage of the homotopy method is, once the
structure of the extremal trajectory is determined by the continuation method, the structure
being a sequence of saturating controls and normal extremals, the true sequence BSBS . . . for
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Figure 4: It is the same as Figure 3, but the singular flow is followed for longer times to show the attracting
property of the north pole for the singular flow.
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Figure 5: It is the same as Figure 3, but the conjugate points are computed along the singular extremals.
Their positions are represented by red crosses.
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Figure 6: Zoom of the results of Figure 5.
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Figure 7: Evolution of the control field u for different values of the homotopy parameter λ, which is equal
to 0, 0.6, 0.8, 0.9 from (a) to (d). The transfer time normalized to 1 is equal to 2Tmin.

the contrast problem is computed, replacing each normal arc by a singular one. This leads to
a true BC-extremal sequence satisfying the maximum principle and which is computed using
a multiple shooting method. Such an algorithm is implemented in the HAMPATH code [29].
Moreover, the conjugate point test can be used for every singular arc of the sequence.

6.3. Numerical Results

We apply in this section the different tools presented above on a realistic NMR contrast
problem corresponding to the cerebrospinal fluid/water case [11]. As stated below, we
consider a simple model of two uncoupled spin 1/2 particles with different relaxation
parameters. Each spin 1/2 particle is governed by the Bloch equation

dMx

dt
= −Mx

T2
+ωyMz,

dMy

dt
= −My

T2
−ωxMz,

dMz

dt
=

(M0 −Mz)
T1

+ωxMy −ωyMx,

(6.3)
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Figure 8: Trajectories of the magnetization vector for the first and second spins for the control field
represented in the bottom panel. This field is the solution of the homotopy problem for λ = 0.93. The
red points indicate the possible structure of the solution in terms of bang and singular extremals (see the
text).

where the coordinates of the magnetization vector are (Mx,My,Mz), T1 and T2 are the
relaxation times, and (ωx,ωy) are the two components of the magnetic field ω which is
bounded by |ω| ≤ ωmax. We use the normalized coordinates (x, y, z) = (Mx,My,Mz)/M0,
which entails that the initial state is by definition the north pole (0, 0, 1) of the Bloch sphere.
The normalized control is defined as u = (ux, uy) = (2π/ωmax)(ωx,ωy), leading to |u| ≤ 2π ,
while the normalized time is given by τ = ωmaxt/(2π). In these new coordinates, the system
takes the form

ẋ = −Γx + uyz,

ẏ = −Γy − uxz,

ż = γ(1 − z) + uxy − uyx,

(6.4)

with Γ = 2π/(ωmaxT2) and γ = 2π/(ωmaxT1). From an experimental point of view, ωmax/(2π)
can be chosen up to 15 000 Hz, but the value 32.3 Hz will be considered in this work. In
the case of the cerebrospinal fluid/water sample, the relaxation parameters for the first spin



Advances in Mathematical Physics 25

1

0.5

0

−0.5

−1
10.50−0.5−1

z
1

y1

(a)

1

0.5

0

−0.5

−1
10.50−0.5−1

z
2

y2

(b)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

u

t

−1

(c)

Figure 9: It is the same as Figure 8, but for a control field with a BSBS structure. Note the similarity of this
result with the one of Figure 8.

describing the fluid are T1 = 2000 ms and T2 = 200 ms, while for the second spin T1 = T2 =
2500 ms.

We next present some numerical computations. We first analyze the structure of the
singular flow. For that purpose, we plot in Figure 3 the projection of this flow onto the
planes (y1, z1) and (y2, z2). In this example, we assume that a bang pulse of large amplitude
has been first applied to the system. The initial point of the singular flow is of coordinates

((−
√

1 − z2
0, z0), (−

√
1 − z2

0, z0)) where z = z0 is the horizontal singular line of the first spin.
Note that this first bang is necessary so that the singular trajectory of the first spin reaches
the center of the Bloch ball, as expected in the contrast problem. One clearly sees in Figure 3
the excellent contrast that can be obtained with this very simple control field of the form
bang-singular. Note that some singular control fields diverge as displayed in Figure 3. The
attracting property of the north pole for the singular flow is represented on Figure 4. This
singular flow is followed for longer times in Figure 5, which shows that this flow is attracted
toward the north pole of the Bloch ball. We have also computed the position of the conjugate
points for each singular extremal. Figures 5 and 6 show that the structure bang-singular is
not optimal since the first conjugate point occurs before the time where the magnetization of
the first spin vanishes. A more complicated pulse sequence composed of different bang and
singular pulses has therefore to be used.
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Figure 10: It is the same as Figure 9 but for a control field of the form BSBSBS with tf = 1.1Tmin.
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Figure 11: Evolution of the final contrast as a function of the transfer time.
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(a) (b)

(c)

Figure 12: Experimental results on the contrast problems. The inner disk mimics the spin 1, while the
outside ring mimics the spin 2. The two surfaces are separated by a thin black circle. (a) is a reference image
before the application of the control field when the two spins are at the north pole of the Bloch sphere. (b)
represent the contrast after a real experiment. The panel (b) corresponds to |My |, while the panel (c) to
|Mz|, that is, the remaining y and z magnetization components after the optimized pulse. A color has been
associated to each value of the contrast between 0 and 1, 0 and 1 corresponding, respectively, to the colors
black and white. In the experiment, relaxation parameters are taken to be T1 = 1.3 ms, T2 = 50 ms for the
inner sample and T1 = 1.3 ms, T2 = 200 ms for the outside sample.

In order to improve the contrast, a locally optimal BS-sequence solution of the
maximum principle is computed as follows. The transfer time tf is fixed, and the Mayer
problem is regularized by using a cost of the form

C
(
x
(
tf
))

+ (1 − λ)
∫ tf

0
|u|2−λdt. (6.5)

The objective of this continuation is to determine the structure of the extremal control at
the limit λ = 1. We use the Hampath code [29] in the numerical simulations. Once this
structure obtained, an extremal solution is computed for the initial optimal control problem in
which the exact switching times are computed from a multiple shooting method. The results
which are displayed in Figures 7–11 depend on the chosen transfer time. In Figure 7, we
represent the evolution of the control field for different values of the homotopy parameter
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λ; the transfer time is fixed to 2Tmin where Tmin is the minimum time to transfer the first
spin to 0. Figure 8 displays the control and the state variable when λ = 0.93. This gives
the structure BSBS of the extremal trajectory, as shown by the dots in this figure. The exact
control is then computed from this solution in the limit Mayer case as can be seen in Figure 9
with the corresponding state trajectories. In Figure 10, we represent the same results but with
tf = 1.1Tmin, and the extremal solution has a more complicate sequence of the form BSBSBS.
In Figure 11, we represent the evolution of the final contrast as a function of the transfer time.
This contrast varies between 0.69 and 0.78 when the time increases from 1.1 to 2Tmin.

We conclude this paper by illustrating our numerical results with the first results of a
contrast experiment. We consider two surfaces as displayed in Figure 12 filled in with spins 1
or 2 in a homogeneous manner. We apply the optimal control field, and we associate a color to
the final modulus of the magnetization vector of the spin 2. This color is white if the modulus
is equal to 1, black if it is zero, and a grey variant is in between. One clearly sees in Figure 12
the excellent contrasts that can be obtained in this example.
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[14] B. Bonnard, J. B. Caillau, and E. Trélat, “Second order optimality conditions in the smooth case and
applications in optimal control,” ESAIM—Control, Optimisation and Calculus of Variations, vol. 13, no.
2, pp. 207–236, 2007.

[15] U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2Dmanifolds, vol. 43 of Mathematiques
and Applications, Springer, Berlin, Germany, 2004.

[16] G. M. Bydder, J. V. Hajnal, and I. R. Young, “MRI: use of the inversion recovery pulse sequence,”
Clinical Radiology, vol. 53, no. 3, pp. 159–176, 1998.

[17] S. L. Patt and B. D. Sykes, “Water eliminated fourier transform NMR spectroscopy,” The Journal of
Chemical Physics, vol. 56, no. 6, pp. 3182–3184, 1972.

[18] I. Kupka, “Geometric theory of extremals in optimal control problems. I. The fold and Maxwell case,”
Transactions of the American Mathematical Society, vol. 299, no. 1, pp. 225–243, 1987.

[19] H. J. Sussmann, “The structure of time-optimal trajectories for single-input systems in the plane: the
general real analytic case,” SIAM Journal on Control and Optimization, vol. 25, no. 4, pp. 868–904, 1987.

[20] H. Schättler, “Regularity properties of optimal trajectories: recently developed techniques,” in
Nonlinear Controllability and Optimal Control, vol. 133 of Monographs and Textbooks in Pure and Applied
Mathematics, New York, NY, USA, 1990.

[21] B. Bonnard, M. Chyba, and D. Sugny, “Time-minimal control of dissipative two-level quantum
systems: the generic case,” IEEE Transactions on Automatic Control, vol. 54, no. 11, p. 2598, 2009.
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