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A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of
Rosenau-KdV equation is proposed.The difference scheme simulates two conservative quantities of the problemwell.The existence
and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence
and unconditionally stable. Numerical experiments verify the theoretical results.

1. Introduction

KdV equation has been used in very wide applications and
undergone research which can be used to describe wave
propagation and spread interaction as follows [1–4]:

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0. (1)

In the study of the dynamics of dense discrete systems, the
case of wave-wave and wave-wall interactions cannot be
described using the well-known KdV equation. To overcome
this shortcoming of the KdV equation, Rosenau [5, 6]
proposed the so-called Rosenau equation:

𝑢
𝑡
+ 𝑢
𝑥𝑥𝑥𝑥𝑡

+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
= 0. (2)

The existence and the uniqueness of the solution for (2) were
proved by Park [7], but it is difficult to find the analytical
solution for (2). Since then, much work has been done on
the numerical method for (2) ([8–13] and also the references
therein). On the other hand, for the further consideration
of the nonlinear wave, the viscous term +𝑢

𝑥𝑥𝑥
needs to be

included [14]

𝑢
𝑡
+ 𝑢
𝑥𝑥𝑥𝑥𝑡

+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0. (3)

This equation is usually called the Rosenau-KdV equation.
Zuo [14] discussed the solitary wave solutions and periodic

solutions for (2). Recently, [15–17] discussed the solitary solu-
tions for the generalized Rosenau-KdV equation with usual
power law nonlinearity. In [15, 16], the authors also gave the
two invariants for the generalized Rosenau-KdV equation.
In particular, [16] not only derived the singular 1-solition
solution by the ansatz method but also used perturbation
theory to obtain the adiabatic parameter dynamics of the
water waves. In [17], The ansatz method is applied to obtain
the topological soliton solution of the generalized Rosenau-
KdV equation. The 𝐺󸀠/𝐺method as well as the exp-function
method are also applied to extract a few more solutions
to this equation. But the numerical method to the initial-
boundary value problem of Rosenau-KdV equation has not
been studied till now. In this paper, we propose a conservative
three-level finite difference scheme for the Rosenau-KdV
equation (3) with the boundary conditions

𝑢 (𝑥
𝐿
, 𝑡) = 𝑢 (𝑥

𝑅
, 𝑡) = 0, 𝑢

𝑥
(𝑥
𝐿
, 𝑡) = 𝑢

𝑥
(𝑥
𝑅
, 𝑡) = 0,

𝑢
𝑥𝑥
(𝑥
𝐿
, 𝑡) = 𝑢

𝑥𝑥
(𝑥
𝑅
, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

(4)

and an initial condition

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ [𝑥

𝐿
, 𝑥
𝑅
] . (5)
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The initial boundary value problem (3)–(5) possesses the
following conservative properties [15]:

𝑄 (𝑡) = ∫

𝑥𝑅

𝑥𝐿

𝑢 (𝑥, 𝑡) 𝑑𝑥 = ∫

𝑥𝑅

𝑥𝐿

𝑢
0
(𝑥) 𝑑𝑥 = 𝑄 (0) , (6)

𝐸 (𝑡) = ‖𝑢‖
2

𝐿2
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

𝐿2
= 𝐸 (0) . (7)

The solitary wave solution for (3) is [14, 15]

𝑢 (𝑥, 𝑡) = (−

35

24

+

35

312

√313)

× sech4 [ 1
24

√
−26 + 2√313

× (𝑥 − (

1

2

+

1

26

√313) 𝑡) ] .

(8)

When −𝑥
𝐿
≫ 0, 𝑥

𝑅
≫ 0, the initial-boundary value problem

(3)–(5) and the Cauchy problem (3) are consistent, so the
boundary condition (4) is reasonable.

It is known the conservative scheme is better than the
nonconservative ones. The nonconservative scheme may
easily show nonlinear blow up. A lot of numerical exper-
iments show that the conservative scheme can possesses
some invariant properties of the original differential equation
[18–29]. The conservative scheme is more suitable for long-
time calculations. In [19], Li and Vu-Quoc said “. . . in some
areas, the ability to preserve some invariant properties of
the original differential equation is a criterion to judge the
success of a numerical simulation.” In this paper, we propose
a three-level linear finite difference scheme for the Rosenau-
KdV equation (3)–(5). The difference scheme is conservative
which simulates conservative properties (6) and (7) at the
same time.

The rest of this paper is organized as follows. In Section 2,
we propose a three-level linear finite difference scheme for the
Rosenau-KdV equation and discuss the discrete conservative
properties. In Section 3, we show that the scheme is uniquely
solvable.Then, in Section 4, we prove that the finite difference
scheme is of second-order convergence, unconditionally
stable. Finally, some numerical tests are given in Section 5 to
verify our theoretical analysis.

2. Finite Difference Scheme and
Conservation Properties

Letℎ = (𝑥
𝑅
−𝑥
𝐿
)/𝐽 and 𝜏be the uniform step size in the spatial

and temporal direction, respectively.Denote𝑥
𝑗
= 𝑥
𝐿
+𝑗ℎ (𝑗 =

−1, 0, 1, 2, . . . , 𝐽, 𝐽 + 1), 𝑡
𝑛
= 𝑛𝜏 (𝑛 = 0, 1, 2, . . . , 𝑁, 𝑁 =

[𝑇/𝜏]), 𝑢𝑛
𝑗
≈ 𝑢(𝑥

𝑗
, 𝑡
𝑛
) and 𝑍0

ℎ
= {𝑢 = (𝑢

𝑗
) | 𝑢
−1
= 𝑢
0
=

𝑢
𝐽
= 𝑢
𝐽+1

= 0, 𝑗 = −1, 0, 1, 2, . . . , 𝐽, 𝐽 + 1}. Throughout this
paper, we denote𝐶 as a generic positive constant independent

of ℎ and 𝜏, which may have different values in different
occurrences. We introduce the following notations:

(𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗+1
− 𝑢
𝑛

𝑗

ℎ

, (𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗
− 𝑢
𝑛

𝑗−1

ℎ

,

(𝑢
𝑛

𝑗
)
𝑥
=

𝑢
𝑛

𝑗+1
− 𝑢
𝑛

𝑗−1

2ℎ

, (𝑢
𝑛

𝑗
)
𝑡̂
=

𝑢
𝑛+1

𝑗
− 𝑢
𝑛−1

𝑗

2𝜏

,

𝑢
𝑛

𝑗
=

𝑢
𝑛+1

𝑗
+ 𝑢
𝑛−1

𝑗

2

, ⟨𝑢
𝑛
, V
𝑛
⟩ = ℎ

𝐽−1

∑

𝑗=1

𝑢
𝑛

𝑗
V
𝑛

𝑗
,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

= ⟨𝑢
𝑛
, 𝑢
𝑛
⟩ ,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩∞

= max
1≤𝑗≤𝐽−1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
.

(9)

We propose a three-level linear finite difference scheme
for the solution of (3)–(5) as follows:

(𝑢
𝑛

𝑗
)
𝑡̂
+ (𝑢
𝑛

𝑗
)
𝑥𝑥𝑥𝑥𝑡̂

+ (𝑢
𝑛

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
)
𝑥𝑥𝑥

+

1

3

[𝑢
𝑛

𝑗
(𝑢
𝑛

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
𝑢
𝑛

𝑗
)
𝑥
] = 0,

(10)

𝑗 = 1, 2, 3, . . . , 𝐽 − 1, 𝑛 = 1, 2, 3, . . . , 𝑁 − 1, (11)

𝑢
0

𝑗
= 𝑢
0
(𝑥
𝑗
) , 𝑗 = 0, 1, 2, 3, . . . , 𝐽, (12)

𝑢
𝑛
∈ 𝑍
0

ℎ
, (𝑢

𝑛

0
)
𝑥
= (𝑢
𝑛

𝐽
)
𝑥
= 0,

(𝑢
𝑛

0
)
𝑥𝑥
= (𝑢
𝑛

𝐽
)
𝑥𝑥
= 0, 𝑛 = 1, 2, 3, . . . , 𝑁.

(13)

From the boundary conditions (4), we know that (13) is
reasonable.

Lemma 1. It follows from summation by parts that for any two
mesh functions 𝑢, V ∈ 𝑍0

ℎ
,

⟨𝑢
𝑥
, V⟩ = − ⟨𝑢, V

𝑥
⟩ , ⟨𝑢

𝑥𝑥
, V⟩ = − ⟨𝑢

𝑥
, V
𝑥
⟩ . (14)

Then one has

⟨𝑢
𝑥
, 𝑢⟩ = − ⟨𝑢, 𝑢

𝑥
⟩ , ⟨𝑢

𝑥𝑥
, 𝑢⟩ = − ⟨𝑢

𝑥
, 𝑢
𝑥
⟩ = −

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩

2

.

(15)

Furthermore, if (𝑢
0
)
𝑥𝑥
= (𝑢
𝐽
)
𝑥𝑥
= 0, then

⟨𝑢
𝑥𝑥𝑥𝑥

, 𝑢⟩ =
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

. (16)

The difference scheme (10)–(13) simulates two conserva-
tive properties of the problems (6) and (7) as follows.

Theorem 2. Suppose that 𝑢
0
∈ 𝐻
2

0
[𝑥
𝐿
, 𝑥
𝑅
], 𝑢(𝑥, 𝑡) ∈ 𝐶

5,3,
then the difference scheme (10)–(13) is conservative:

𝑄
𝑛
=

ℎ

2

𝐽−1

∑

𝑗=1

(𝑢
𝑛+1

𝑗
+ 𝑢
𝑛

𝑗
) +

ℎ

6

𝜏

𝐽−1

∑

𝑗=1

𝑢
𝑛

𝑗
(𝑢
𝑛+1

𝑗
)
𝑥
= 𝑄
𝑛−1

= ⋅ ⋅ ⋅ = 𝑄
0
,

(17)

𝐸
𝑛
=

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

) +

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

)

= 𝐸
𝑛−1

= ⋅ ⋅ ⋅ = 𝐸
0
.

(18)
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Proof. Multiplying (10) with ℎ, summing up for 𝑗 from 1 to 𝐽−
1, and considering the boundary condition (13) and Lemma 1,
we get

ℎ

𝐽−1

∑

𝑗=1

𝑢
𝑛+1

𝑗
− 𝑢
𝑛−1

𝑗

2𝜏

+

ℎ

6

𝐽−1

∑

𝑗=1

[𝑢
𝑛

𝑗
(𝑢
𝑛+1

𝑗
)
𝑥
− 𝑢
𝑛−1

𝑗
(𝑢
𝑛

𝑗
)
𝑥
] = 0.

(19)

Then, (17) is gotten from (19).
Taking an inner product of (10) with 2𝑢𝑛 (i.e., 𝑢𝑛+1+𝑢𝑛−1),

considering the boundary condition (13) and Lemma 1, we
obtain

1

2𝜏

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

) +

1

2𝜏

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+ 2 ⟨𝑢
𝑛

𝑥
, 𝑢
𝑛
⟩ + 2 ⟨𝑢

𝑛

𝑥𝑥𝑥
, 𝑢
𝑛
⟩

+ 2 ⟨𝑃, 𝑢
𝑛
⟩ = 0,

(20)

where 𝑃
𝑗
= (1/3)[𝑢

𝑛

𝑗
(𝑢
𝑛

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
𝑢
𝑛

𝑗
)
𝑥
]. According to

⟨𝑢
𝑛

𝑥
, 𝑢
𝑛
⟩ = 0,

⟨𝑢
𝑛

𝑥𝑥𝑥
, 𝑢
𝑛
⟩ = 0,

(21)

⟨𝑃, 𝑢
𝑛
⟩ =

1

3

ℎ

𝐽−1

∑

𝑗=1

[𝑢
𝑛

𝑗
(𝑢
𝑛

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
𝑢
𝑛

𝑗
)
𝑥
] 𝑢
𝑛

𝑗

=

1

12

𝐽−1

∑

𝑗=1

[𝑢
𝑛

𝑗
(𝑢
𝑛+1

𝑗+1
+ 𝑢
𝑛−1

𝑗+1
− 𝑢
𝑛+1

𝑗−1
− 𝑢
𝑛−1

𝑗−1
)

+𝑢
𝑛

𝑗+1
(𝑢
𝑛+1

𝑗+1
+ 𝑢
𝑛−1

𝑗+1
) − 𝑢
𝑛

𝑗−1
(𝑢
𝑛+1

𝑗−1
+ 𝑢
𝑛−1

𝑗−1
)]

× (𝑢
𝑛+1

𝑗
+ 𝑢
𝑛−1

𝑗
)

=

1

12

𝐽−1

∑

𝑗=1

(𝑢
𝑛

𝑗
+ 𝑢
𝑛

𝑗+1
) (𝑢
𝑛+1

𝑗+1
+ 𝑢
𝑛−1

𝑗+1
) (𝑢
𝑛+1

𝑗
+ 𝑢
𝑛−1

𝑗
)

−

1

12

𝐽−1

∑

𝑗=1

(𝑢
𝑛

𝑗
+ 𝑢
𝑛

𝑗−1
) (𝑢
𝑛+1

𝑗
+ 𝑢
𝑛−1

𝑗
) (𝑢
𝑛+1

𝑗−1
+ 𝑢
𝑛−1

𝑗−1
)

= 0,

(22)

we have

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

) + (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

) = 0. (23)

Then, (18) is gotten from (23).

3. Solvability

Theorem 3. There exists 𝑢𝑛 ∈ 𝑍0
ℎ
which satisfies the difference

scheme (10)–(13), (1 ≤ 𝑛 ≤ 𝑁).

Proof. Use mathematical induction to prove it. It is obvious
that 𝑢0 is uniquely determined by the initial condition (12).

We also can get 𝑢1 in order 𝑂(ℎ2 + 𝜏2) by two-level 𝐶-𝑁
scheme (i.e., 𝑢0 and 𝑢

1 are uniquely determined). Now
suppose 𝑢0, 𝑢1, . . . , 𝑢𝑛 (1 ≤ 𝑛 ≤ 𝑁 − 1) is solved uniquely.
Consider the equation of (10) for 𝑢𝑛+1 :

1

2𝜏

𝑢
𝑛+1

𝑗
+

1

2𝜏

(𝑢
𝑛+1

𝑗
)
𝑥𝑥𝑥𝑥

+

1

2

(𝑢
𝑛+1

𝑗
)
𝑥

+

1

2

(𝑢
𝑛+1

𝑗
)
𝑥𝑥𝑥

+

1

6

[𝑢
𝑛

𝑗
(𝑢
𝑛+1

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
𝑢
𝑛+1

𝑗
)
𝑥
] = 0.

(24)

Taking an inner product of (24) with 𝑢𝑛+1, we get

1

2𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+

1

2𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

1

2

⟨𝑢
𝑛+1

𝑥
, 𝑢
𝑛+1
⟩ +

1

2

⟨𝑢
𝑛+1

𝑥𝑥𝑥
, 𝑢
𝑛+1
⟩

+

ℎ

6

𝐽−1

∑

𝑗=1

[𝑢
𝑛

𝑗
(𝑢
𝑛+1

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
𝑢
𝑛+1

𝑗
)
𝑥
] 𝑢
𝑛+1

𝑗
= 0.

(25)

Similar to the proof of (21), we have

⟨𝑢
𝑛+1

𝑥
, 𝑢
𝑛+1
⟩ = 0,

⟨𝑢
𝑛+1

𝑥𝑥𝑥
, 𝑢
𝑛+1
⟩ = 0.

(26)

By

ℎ

6

𝐽−1

∑

𝑗=1

[𝑢
𝑛

𝑗
(𝑢
𝑛+1

𝑗
)
𝑥
+ (𝑢
𝑛

𝑗
𝑢
𝑛+1

𝑗
)
𝑥
] 𝑢
𝑛+1

𝑗

=

1

12

𝐽−1

∑

𝑗=1

[𝑢
𝑛

𝑗
(𝑢
𝑛+1

𝑗+1
− 𝑢
𝑛+1

𝑗−1
) + (𝑢

𝑛

𝑗+1
𝑢
𝑛+1

𝑗+1
− 𝑢
𝑛

𝑗−1
𝑢
𝑛+1

𝑗−1
)] 𝑢
𝑛+1

𝑗

=

1

12

𝐽−1

∑

𝑗=1

[𝑢
𝑛

𝑗
𝑢
𝑛+1

𝑗
𝑢
𝑛+1

𝑗+1
+ 𝑢
𝑛

𝑗+1
𝑢
𝑛+1

𝑗
𝑢
𝑛+1

𝑗+1
]

−

1

12

𝐽−1

∑

𝑗=1

[𝑢
𝑛

𝑗−1
𝑢
𝑛+1

𝑗−1
𝑢
𝑛+1

𝑗
+ 𝑢
𝑛

𝑗
𝑢
𝑛+1

𝑗−1
𝑢
𝑛+1

𝑗
] = 0,

(27)

and from (25)–(27), we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0. (28)

That is, (24) has only a trivial solution. Therefore, (10)
determines 𝑢𝑛+1

𝑗
uniquely. This completes the proof.

4. Convergence and Stability

Let V(𝑥, 𝑡) be the solution of problem (3)–(5), V𝑛
𝑗
= V(𝑥

𝑗
, 𝑡
𝑛
),

then the truncation error of the difference scheme (10)–(13)
is as follows:

𝑟
𝑛

𝑗
= (V
𝑛

𝑗
)
𝑡̂
+ (V
𝑛

𝑗
)
𝑥𝑥𝑥𝑥𝑡̂

+ (V
𝑛

𝑗
)
𝑥

+ (V
𝑛

𝑗
)
𝑥𝑥𝑥

+

1

3

[V
𝑛

𝑗
(V
𝑛

𝑗
)
𝑥
+ (V
𝑛

𝑗
V
𝑛

𝑗
)
𝑥
] .

(29)
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Making use of Taylor expansion, we know that 𝑟𝑛
𝑗
= 𝑂(𝜏

2
+ℎ
2
)

holds if ℎ, 𝜏 → 0.

Lemma 4. Suppose that 𝑢
0
∈ 𝐻
2

0
[𝑥
𝐿
, 𝑥
𝑅
], then the solution 𝑢𝑛

of (3)–(5) satisfies

‖𝑢‖
𝐿2
≤ 𝐶,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩𝐿2

≤ 𝐶,

‖𝑢‖
𝐿∞
≤ 𝐶,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩𝐿∞

≤ 𝐶.

(30)

Proof. It is follows from (7) that

‖𝑢‖
𝐿2
≤ 𝐶,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩𝐿2

≤ 𝐶. (31)

By Holder inequality and Schwarz inequality, we get

󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩

2

𝐿2
= ∫

𝑥𝑅

𝑥𝐿

𝑢
𝑥
𝑢
𝑥
𝑑𝑥 = 𝑢𝑢

𝑥

󵄨
󵄨
󵄨
󵄨

𝑥𝑅

𝑥𝐿
− ∫

𝑥𝑅

𝑥𝐿

𝑢𝑢
𝑥𝑥
𝑑𝑥

= −∫

𝑥𝑅

𝑥𝐿

𝑢𝑢
𝑥𝑥
𝑑𝑥

≤ ‖𝑢‖
𝐿2
⋅
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩𝐿2

≤

1

2

(‖𝑢‖
2

𝐿2
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

𝐿2
) ,

(32)

which implies that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑥

󵄩
󵄩
󵄩
󵄩𝐿2

≤ 𝐶. (33)

Using Sobolev inequality, we get that ‖𝑢‖
𝐿∞

≤ 𝐶, ‖𝑢
𝑥
‖
𝐿∞

≤

𝐶.

Lemma 5 (discrete Sobolev’s inequality [27]). There exist two
constants 𝐶

1
and 𝐶

2
such that

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩∞

≤ 𝐶
1

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩
+ 𝐶
2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩
. (34)

Lemma 6 (discrete Gronwall inequality [27]). Suppose that
𝑤(𝑘) and 𝜌(𝑘) are nonnegative function and 𝜌(𝑘) is nonde-
creasing. If 𝐶 > 0, and

𝑤 (𝑘) ≤ 𝜌 (𝑘) + 𝐶𝜏

𝑘−1

∑

𝑙=0

𝑤 (𝑙) , ∀𝑘, (35)

then

𝑤 (𝑘) ≤ 𝜌 (𝑘) 𝑒
𝐶𝜏𝑘
, ∀𝑘. (36)

Theorem 7. Suppose 𝑢
0
∈ 𝐻
2

0
[𝑥
𝐿
, 𝑥
𝑅
], then the solution of

(10)–(13) satisfies: ‖𝑢𝑛‖ ≤ 𝐶, ‖𝑢
𝑛

𝑥
‖ ≤ 𝐶, ‖𝑢

𝑛

𝑥𝑥
‖ ≤ 𝐶, which

yield ‖𝑢𝑛‖
∞
≤ 𝐶, ‖𝑢

𝑛

𝑥
‖
∞
≤ 𝐶 (𝑛 = 1, 2, . . . , 𝑁).

Proof. It is follows from (18) that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩
≤ 𝐶,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
≤ 𝐶. (37)

According to (15) and Schwarz inequality, we get

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩
⋅
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
≤

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩

2

) ≤ 𝐶. (38)

Using Lemma 5, we have ‖𝑢𝑛‖
∞
≤ 𝐶, ‖𝑢

𝑛

𝑥
‖
∞
≤ 𝐶.

Theorem 8. Suppose 𝑢
0
∈ 𝐻
2

0
[𝑥
𝐿
, 𝑥
𝑅
], 𝑢(𝑥, 𝑡) ∈ 𝐶

5,3, then the
solution 𝑢𝑛 of the difference scheme (10)–(13) converges to the
solution V(𝑥, 𝑡) of the problem (3)–(5) with order𝑂(𝜏2 + ℎ2) in
norm ‖ ⋅ ‖

∞
.

Proof. Subtracting (10) from (29) and letting 𝑒𝑛
𝑗
= V𝑛
𝑗
− 𝑢
𝑛

𝑗
, we

have

𝑟
𝑛

𝑗
= (𝑒
𝑛

𝑗
)
𝑡̂
+ (𝑒
𝑛

𝑗
)
𝑥𝑥𝑥𝑥𝑡̂

+ (𝑒
𝑛

𝑗
)
𝑥
+ (𝑒
𝑛

𝑗
)
𝑥𝑥𝑥

+ 𝑅
1,𝑗
+ 𝑅
2,𝑗
,

(39)

where 𝑅
1,𝑗
= (1/3)[V𝑛

𝑗
(V𝑛
𝑗
)
𝑥
−𝑢
𝑛

𝑗
(𝑢
𝑛

𝑗
)
𝑥
], 𝑅
2,𝑗
= (1/3)[(V𝑛

𝑗
V𝑛
𝑗
)
𝑥
−

(𝑢
𝑛

𝑗
𝑢
𝑛

𝑗
)
𝑥
]. Computing the inner product of (39) with 2𝑒𝑛, we

obtain

⟨𝑟
𝑛
, 2𝑒
𝑛
⟩ =

1

2𝜏

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

) +

1

2𝜏

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+ ⟨𝑒
𝑛

𝑥
, 2𝑒
𝑛
⟩ + ⟨𝑒

𝑛

𝑥𝑥𝑥
, 2𝑒
𝑛
⟩ + ⟨𝑅

1
, 2𝑒
𝑛
⟩ + ⟨𝑅

2
, 2𝑒
𝑛
⟩ .

(40)

Similar to the proof of (21), we have

⟨𝑒
𝑛

𝑥
, 2𝑒
𝑛
⟩ = 0,

⟨𝑒
𝑛

𝑥𝑥𝑥
, 2𝑒
𝑛
⟩ = 0.

(41)

Then, (40) can be rewritten as follows:

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

) + (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

= 2𝜏 ⟨𝑟
𝑛
, 2𝑒
𝑛
⟩ + 2𝜏 ⟨−𝑅

1
, 2𝑒
𝑛
⟩ + 2𝜏 ⟨−𝑅

2
, 2𝑒
𝑛
⟩ .

(42)

Using Lemma 4 andTheorem 7, we get

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑢
𝑛

𝑗
)
𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶, (𝑗 = 0, 1, 2, . . . , 𝐽; 𝑛 = 1, 2, . . . , 𝑁) .

(43)

According to the Schwarz inequality, we obtain

⟨−𝑅
1
, 2𝑒
𝑛
⟩

= −

2

3

ℎ

𝐽−1

∑

𝑗=1

[V
𝑛

𝑗
(V
𝑛

𝑗
)
𝑥
− 𝑢
𝑛

𝑗
(𝑢
𝑛

𝑗
)
𝑥
] 𝑒
𝑛

𝑗

= −

2

3

ℎ

𝐽−1

∑

𝑗=1

[V
𝑛

𝑗
(𝑒
𝑛

𝑗
)
𝑥
+ 𝑒
𝑛

𝑗
(𝑢
𝑛

𝑗
)
𝑥
] 𝑒
𝑛

𝑗

≤

2

3

𝐶ℎ

𝐽−1

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑒
𝑛

𝑗
)
𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 [

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

]

≤ 𝐶 [

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

] ,
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⟨−𝑅
2
, 2𝑒
𝑛
⟩

= −

2

3

ℎ

𝐽−1

∑

𝑗=1

[(V
𝑛

𝑗
V
𝑛

𝑗
)
𝑥
− (𝑢
𝑛

𝑗
𝑢
𝑛

𝑗
)
𝑥
] 𝑒
𝑛

𝑗

=

2

3

ℎ

𝐽−1

∑

𝑗=1

[V
𝑛

𝑗
V
𝑛

𝑗
− 𝑢
𝑛

𝑗
𝑢
𝑛

𝑗
] (𝑒
𝑛

𝑗
)
𝑥

=

2

3

ℎ

𝐽−1

∑

𝑗=1

[V
𝑛

𝑗
𝑒
𝑛

𝑗
+ 𝑒
𝑛

𝑗
𝑢
𝑛

𝑗
] (𝑒
𝑛

𝑗
)
𝑥

≤

2

3

𝐶ℎ

𝐽−1

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑒
𝑛

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑒
𝑛

𝑗
)
𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶 [
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

]

≤ 𝐶 [

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

] .

(44)

Noting that

⟨𝑟
𝑛
, 2𝑒
𝑛
⟩ = ⟨𝑟

𝑛
, 𝑒
𝑛+1

+ 𝑒
𝑛−1
⟩

≤
󵄩
󵄩
󵄩
󵄩
𝑟
𝑛󵄩
󵄩
󵄩
󵄩

2

+

1

2

[

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩
󵄩
󵄩
󵄩

2

] ,

(45)

and from (42)–(45), we have

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1󵄩󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
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2

) + (
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−
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)
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+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛+1

𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
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] + 2𝜏
󵄩
󵄩
󵄩
󵄩
𝑟
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󵄩
󵄩
󵄩

2
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(46)

Similar to the proof of (38), we have
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Then, (46) can be rewritten as

(
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+
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+
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𝑟
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(48)

Let 𝐵𝑛 = ‖𝑒𝑛+1‖2 + ‖𝑒𝑛+1
𝑥𝑥
‖

2

+ ‖𝑒
𝑛
‖
2
+ ‖𝑒
𝑛

𝑥𝑥
‖
2. Then, (48) can be

rewritten as follows:

𝐵
𝑛
− 𝐵
𝑛−1

≤ 𝐶𝜏 (𝐵
𝑛
+ 𝐵
𝑛−1
) + 2𝜏

󵄩
󵄩
󵄩
󵄩
𝑟
𝑛󵄩
󵄩
󵄩
󵄩

2

, (49)

which yields

(1 − 𝐶𝜏) (𝐵
𝑛
− 𝐵
𝑛−1
) ≤ 2𝐶𝜏𝐵

𝑛−1
+ 2𝜏

󵄩
󵄩
󵄩
󵄩
𝑟
𝑛󵄩
󵄩
󵄩
󵄩

2

. (50)

If 𝜏 is sufficiently small, which satisfies 1 − 𝐶𝜏 > 0, then

𝐵
𝑛
− 𝐵
𝑛−1

≤ 𝐶𝜏𝐵
𝑛−1

+ 𝐶𝜏
󵄩
󵄩
󵄩
󵄩
𝑟
𝑛󵄩
󵄩
󵄩
󵄩

2

. (51)

Summing up (51) from 1 to 𝑛, we have

𝐵
𝑛
≤ 𝐵
0
+ 𝐶𝜏

𝑛

∑

𝑙=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑟
𝑙󵄩󵄩
󵄩
󵄩
󵄩

2

+ 𝐶𝜏

𝑛−1

∑

𝑙=0

𝐵
𝑙
. (52)

First, we can get 𝑢1 in order 𝑂(𝜏2 + ℎ2) that satisfies 𝐵0 =
𝑂(𝜏
2
+ ℎ
2
)
2 by two-level 𝐶-𝑁 scheme. Since

𝜏

𝑛

∑

𝑙=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑟
𝑙󵄩󵄩
󵄩
󵄩
󵄩

2

≤ 𝑛𝜏max
1≤𝑙≤𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
𝑟
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󵄩
󵄩
󵄩

2

≤ 𝑇 ⋅ 𝑂(𝜏
2
+ ℎ
2
)

2

, (53)

then we obtain

𝐵
𝑛
≤ 𝑂(𝜏

2
+ ℎ
2
)

2

+ 𝐶𝜏

𝑛−1

∑

𝑙=0

𝐵
𝑙
. (54)

From Lemma 6 we get

𝐵
𝑛
≤ 𝑂(𝜏

2
+ ℎ
2
)

2

, (55)

which implies that

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩
≤ 𝑂 (𝜏

2
+ ℎ
2
) ,

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥𝑥

󵄩
󵄩
󵄩
󵄩
≤ 𝑂 (𝜏

2
+ ℎ
2
) . (56)

From (47) we have
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

𝑥

󵄩
󵄩
󵄩
󵄩
≤ 𝑂 (𝜏

2
+ ℎ
2
) . (57)

By Lemma 5 we obtain

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩∞

≤ 𝑂 (𝜏
2
+ ℎ
2
) . (58)

Finally, we can similarly prove results as follows.

Theorem 9. Under the conditions of Theorem 8, the solution
𝑢
𝑛 of (10)–(13) is stable in norm ‖ ⋅ ‖

∞
.

5. Numerical Simulations

Since the three-level implicit finite difference scheme cannot
start by itself, we need to select other two-level schemes (such
as the 𝐶-𝑁 Scheme) to get 𝑢1. Then, be reusing initial value
𝑢
0, we can work out 𝑢2, 𝑢3, . . .. Iterative numerical calculation

is not required, for this scheme is linear, so it saves computing
time. Let 𝑥

𝐿
= −70, 𝑥

𝑅
= 100, and 𝑇 = 40,

𝑢
0
(𝑥) = (−

35

24

+

35

312

√313) sech4 ( 1
24

√
−26 + 2√313𝑥) .

(59)
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Table 1: The error at various time steps.

𝜏 = ℎ = 0.1 𝜏 = ℎ = 0.05 𝜏 = ℎ = 0.025

‖𝑒
𝑛
‖ ‖𝑒

𝑛
‖
∞

‖𝑒
𝑛
‖ ‖𝑒

𝑛
‖
∞

‖𝑒
𝑛
‖ ‖𝑒

𝑛
‖
∞

𝑡 = 10 1.641934𝑒 − 3 6.314193𝑒 − 4 4.113510𝑒 − 4 1.582641𝑒 − 4 1.028173𝑒 − 4 3.965867𝑒 − 5

𝑡 = 20 3.045414𝑒 − 3 1.131442𝑒 − 3 7.631169𝑒 − 4 2.835874𝑒 − 4 1.905450𝑒 − 4 7.097948𝑒 − 5

𝑡 = 30 4.241827𝑒 − 3 1.533771𝑒 − 3 1.062971𝑒 − 3 3.843906𝑒 − 4 2.650990𝑒 − 4 9.610332𝑒 − 5

𝑡 = 40 5.297873𝑒 − 3 1.878952𝑒 − 3 1.327645𝑒 − 3 4.709118𝑒 − 4 3.306738𝑒 − 4 1.176011𝑒 − 4

Table 2: The verification of the second convergence.

‖𝑒
𝑛
(ℎ, 𝜏)‖/‖𝑒

2𝑛
(ℎ/2, 𝜏/2)‖ ‖𝑒

𝑛
(ℎ, 𝜏)‖

∞
/‖𝑒
2𝑛
(ℎ/2, 𝜏/2)‖

∞

𝜏 = ℎ = 0.1 𝜏 = ℎ = 0.05 𝜏 = ℎ = 0.025 𝜏 = ℎ = 0.1 𝜏 = ℎ = 0.05 𝜏 = ℎ = 0.025

𝑡 = 10 — 3.991564 4.000797 — 3.989657 3.990655
𝑡 = 20 — 3.990757 4.004916 — 3.989749 3.995343
𝑡 = 30 — 3.990539 4.009713 — 3.990136 3.999764
𝑡 = 40 — 3.990427 4.014970 — 3.990030 4.004314

Table 3: Numerical simulations on the two conservation invariants 𝑄𝑛 and 𝐸𝑛.

𝜏 = ℎ = 0.1 𝜏 = ℎ = 0.05 𝜏 = ℎ = 0.025

𝑄
𝑛

𝐸
𝑛

𝑄
𝑛

𝐸
𝑛

𝑄
𝑛

𝐸
𝑛

𝑡 = 0 5.497722548019 1.984553365290 5.498060684522 1.984390175264 5.498145418391 1.984349335263
𝑡 = 10 5.497724936513 1.984595075859 5.498060837192 1.984401029470 5.498145479109 1.984352109750
𝑡 = 20 5.497728744900 1.984645964099 5.498061080542 1.984414367496 5.498145545374 1.984355520610
𝑡 = 30 5.497731963790 1.984679827211 5.498061287046 1.984423270337 5.498145609535 1.984357811266
𝑡 = 40 5.497734235191 1.984701501262 5.498061398506 1.984428974030 5.498145659050 1.984359292230
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Figure 1: When 𝜏 = ℎ = 0.1, the wave graph of 𝑢(𝑥, 𝑡) at various
times.

In Table 1, we give the error at various time steps. Using
the method in [30, 31], we verified the second convergence of
the difference scheme in Table 2. Numerical simulations on
two conservation invariants 𝑄𝑛 and 𝐸𝑛 are given in Table 3.
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Figure 2: When 𝜏 = ℎ = 0.025, the wave graph of 𝑢(𝑥, 𝑡) at various
times.

The wave graph comparison of 𝑢(𝑥, 𝑡) between 𝜏 = ℎ =
0.1 and 𝜏 = ℎ = 0.025 at various times is given in Figures 1
and 2.

Numerical simulations show that the finite difference
scheme is efficient.



Advances in Mathematical Physics 7

Acknowledgments

The work was supported by Scientific Research Fund of
Sichuan Provincial EducationDepartment (11ZB009) and the
fund of Key Disciplinary of Computer Software and Theory,
Sichuan, Grant no. SZD0802-09-1.

References

[1] Y. Cui and D.-k. Mao, “Numerical method satisfying the first
two conservation laws for the Korteweg-de Vries equation,”
Journal of Computational Physics, vol. 227, no. 1, pp. 376–399,
2007.

[2] S. Zhu and J. Zhao, “The alternating segment explicit-implicit
scheme for the dispersive equation,” Applied Mathematics Let-
ters, vol. 14, no. 6, pp. 657–662, 2001.

[3] A. R. Bahadır, “Exponential finite-difference method applied to
Korteweg-de Vries equation for small times,” Applied Mathe-
matics and Computation, vol. 160, no. 3, pp. 675–682, 2005.
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