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We present new iterative methods based on refinement process for solving large sparse Sylvester-
observer equations applied in state estimation of a continuous-time system. These methods use
projection methods to produce low-dimensional Sylvester-observer matrix equations that are
solved by the direct methods. Moreover, the refinement process described in this paper has the
capability of improving the results obtained by any other methods. Some numerical results will
be reported to illustrate the efficiency of the proposed methods.

1. Introduction

Consider the continuous-time linear system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(1.1)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rr×n.
We well know that all the state-feedback problems, such as the feedback stabilization,

the LQR, and the state-feedback H∞-control problems, require the state vector x(t) explicitly
[1]. Inmost practical situations, the states are not fully accessible and the designer only knows
the output and the input vectors. The unavailable states somehow need to be estimated
accurately from the knowledge of the matrices A, B, and C, the output vector y(t), and
the input vector u(t). There are two common procedures for state estimation: one via
eigenvalue assignment (EVA) and the other via solution of the Sylvester-observer equation.
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The main step in state estimation via solution of the Sylvester-observer equation is solving
the Sylvester-observer equation of the form

XA − FX = GC, (1.2)

where X, A, F ∈ Rn×n, G ∈ Rn×r , and C ∈ Rr×n. Sylvester-observer equations (1.2) play
vital roles in a number of applications such as control and communications theory [1], model
reduction [2–4], numerical solution of matrix differential Riccati equations [5], and image
processing [6].

The analytical solution of the matrix equation (1.2) has been considered by many
authors; see [7, 8]. Direct methods for solving the matrix equation (1.2) are attractive if
the matrices are of small size. These methods are based on the Schur decomposition, by
which the original equation is transformed into a form that is easy to be solved by a forward
substitution. Moreover, the matrices of the large practical problem are very sparse. Since, the
standard methods for solving the Sylvester equations destroy the sparsity of the problems,
they are only applicable for the matrices of small size; see [9–11]. Iterative projection methods
for solving large Sylvester-observer matrix equations have been developed during the past
years; see [12–16]. These methods use the Arnoldi process to compute an orthonormal basis
of certain Krylov subspace. In this paper, we extend the idea to propose a new projection
method for solving (1.1) based on Weighted block Krylov subspace process. These methods
are based on the reduction of the large sparse Sylvester-observer equation to the low-
dimensional problem by orthogonal similarity that is solved by the direct methods. Moreover,
refinement process presented in Sections 4 and 5 has the capability of improving the results
obtained by any other methods.

The remainder of the paper is organized as follows. In Section 2, we describe some
fundamental results about control theory. Then, we discuss how the states of a continuous-
time system can be estimated in Section 3. In Sections 4 and 5, we introduce two new iterative
methods for solving large sparse Sylvester-observer equation. These methods are based on
the reduction of the large sparse Sylvester-observer equation to the low-dimension problem.
Section 6 is devoted to some numerical tests. Some concluding remarks are given in Section 7.

2. Some Fundamental Results

The two basic concepts in control theory are controllability and observability of a control
system. In this section, we will state some well-known facts about controllability and
observability for convenient use later in the paper. For an excellent account of controllability
and observability and related results, see [1].

Definition 2.1. The system (1.1) is said to be controllable if, starting from any initial state x(0),
the system can be driven to any final state xf in some finite time tf , choosing the input vector
u(t), 0 ≤ t ≤ tf , appropriately.

Observability is the dual concept of controllability.

Definition 2.2. The system (1.1) is said to be observable if there exists t1 > 0 such that the initial
state x(0) can be uniquely determined from the knowledge of u(t) and y(t) for all 0 ≤ t ≤ t1.
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Remark 2.3. Since matrix C does not have any role in the definition of controllability, the
controllability of the system (1.1) (see [1]), is often referred to as the controllability of the
pair (A,B). Similarly, since matrix B does not have any role in the definition of observability,
the observability of the system (1.1) is often referred to as the observability of the pair (A,C).

Some well-known criteria of controllability and observability are now stated in the
next two theorems. The proofs of Theorems 2.4 and 2.5 can be found in [1]. In the following,
A is n × n, B is n ×m (m ≤ n), and C is r × n (r ≤ n).

Theorem 2.4. The pair (A,B) is controllable if and only if any one of the following equivalent
conditions holds.

(1) The controllability matrix

CM =
(
B,AB,A2B, . . . , An−1B

)
, (2.1)

has rank n.

(2) Rank (A − λI, B) = n for every eigenvalue λ of A.

(3) Let (λ, x) be an eigenpair of A, that is, Ay = λy; then Cy /= 0.

Proof. See [1].

Theorem 2.5. The pair (A,C) is observable if and only if any one of the following equivalent
conditions holds

(1) The observability matrix

OM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

CA

CA2

...

CAn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

has rank n.

(2) The matrix
(
λI−A
C

)
has rank n for every eigenvalue λ of A.

(3) Let (λ, y) be an eigenpair of A, that is, Ay = λy; then Cy /= 0.

Proof. See [1].

Definition 2.6. Amatrix A is called a stable matrix if all of the eigenvalues ofA have negative
real parts.



4 Advances in Numerical Analysis

3. State Estimation

In this section, we discuss how the states of a continuous-time linear system (1.1) can be
estimated. The discussions here apply equally to the discrete-time systems possibly with
some minor changes. So we concentrate on the continuous-time case only. We describe two
common procedures for state estimation: one via eigenvalue assignment (EVA) and the
other,via solution of the Sylvester-observer equation.

3.1. State Estimation via Eigenvalue Assignment

Now consider the linear time-invariant system (1.1). Let x̂(t) be an estimate of the state
vector x(t). Obviously, we would like to construct the vector x̂(t) in such a way that the
error e(t) = x(t) − x̂(t) approaches zero as fast as possible, for all initial states x(0) and for
every input u(t). The following theorem shows that the problem of state estimation can be
solved by finding a matrix K such that the matrix A − KC has a suitable desired spectrum.
See [1].

Theorem 3.1. If (A,C) is observable, then the states x(t) of the system (1.1) can be estimated by

˙̂x(t) = (A −KC)x̂(t) +Ky(t) + Bu(t), (3.1)

where K is constructed such that A −KC is a stable matrix. The error e(t) = x(t) − x̂(t) is governed
by

ė(t) = (A −KC)e(t), (3.2)

and e(t) → 0 as t → ∞.

Proof. See [1].

3.2. State Estimation via Sylvester Equation

There is another approach for state estimation. Knowing A, B, C, u(t), and y(t), let us
construct the system

ż(t) = Fz(t) +Gy(t) + Pu(t), (3.3)

where F is n×n,G is n×r, and P is n×m, in such away that for some constant n×n nonsingular
matrix X the error vector e(t) = z(t) − Xx(t) → 0 for all x(0), z(0), and for every input u(t).
The vector z(t) will then be an estimate of Xx(t). The system (3.3) is then said to be the state
observer for the system (1.1). D. Luenberger originated the idea and is hence referred to in
control theory as the Luenberger observer; see [1].

We now show that the system (3.3)will be a state observer if the matrices X, F, G, and
P satisfy certain requirements.
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Theorem 3.2. The system (3.3) is a state observer of the system (1.1), that is, z(t) is an estimate of
Xx(t) in the sense that the error e(t) = z(t) −Xx(t) → 0 as t → ∞ for any initial conditions x(0),
z(0), and u(t) if

(1) XA − FX = GC,
(2) P = XB,
(3) F is stable.

Proof. See [1].

Definition 3.3. The matrix equation

XA − FX = GC, (3.4)

where X, A, F ∈ Rn×n, G ∈ Rn×r , and C ∈ Rr×n, is called the Sylvester-observer equation.

Theorem 3.2 suggests the following method for the observer design; see [1].

Algorithm 3.4 (full-order observer design via Sylvester-observer equation). One has the
following.

Inputs

The system matrices A, B, and C of order n × n, n ×m, and r × n, respectively.

Output

An estimate x̂(t) of the state vector x(t).

Assumptions 1. (A,C) is observable.

Step 1. Find a nonsingular solution of the Sylvester-observer equation (1.2) by choosing F as
a stable matrix and choosing G in such a way that the resulting solution X is nonsingular.

Step 2. Compute P = XB.

Step 3. Construct the observer z(t) by solving the system of differential equations

ẑ(t) = Fz(t) +Gy(t) + Pu(t), z(0) = z0. (3.5)

Step 4. Find an estimate x̂(t) of x(t): x̂(t) = X−1z(t).

3.3. Characterization of Nonsingular Solutions of the Sylvester Equation

In this section, we describe some necessary conditions for a unique solution of the Sylvester
equation to have such properties. The following theorem was proved by Bhattacharyya and
de Souza. The proof here has been taken from [1].
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Theorem 3.5. Let A, F, G, and C, respectively, be of order n × n, n × n, n × r, and r × n. Let X
be a unique solution of the Sylvester-observer equation (1.2). Then, necessary conditions for X to be
nonsingular are that (A,C) is observable and (F,G) is controllable.

Proof. See [1].

Corollary 3.6. If G is n × 1 and C is 1 × n, then necessary and sufficient conditions for the unique
solution X of (1.2) to be nonsingular are that (F,G) is controllable and (A,C) is observable.

Proof. See [1].

Remark 3.7. According to Theorem 3.5 and Corollary 3.6, the controllability of (F,G) and
observability of (A,C) guarantee the existence of a nonsingular solution of the Sylvester-
observer equation (1.2) in Step 1 of Algorithm 3.4. Moreover, there are other choices for F
and G in Step 1 of Algorithm 3.4 provided (F,G) is controllable. Also, we can use Theorems
2.4 and 2.5 for analyzing the controllability of (F,G) and the observability of (A,C).

Example 3.8. In this example we show how the Sylvester-observer equation (1.2) can be
applied in state estimation of a continuous time system (1.1). In this sense, at first we use
the MATLAB function ode23 for directly solving (1.1) with u(t) as the unit step function
and x(0) = (6, 0)T . Then, we apply Algorithm 3.4 for computing the estimate x̂(t). Also,
the differential equation (3.12) was solved with z(0) = 0 and MATLAB function ode23. The
comparison of the state x(t) and estimate x̂(t) for this example is shown in Figure 1. The
solid line corresponds to the exact state and the dotted line corresponds to the estimate state.
Let

A =

(
1 1

1 1

)
, B =

(
1

0

)
, C =

(
1 0
)
. (3.6)

According to criteria 1 of Theorem 2.5, (A,C) is observable. Thus, we can use Algorithm 3.4
for state estimation of (1.1).

Step 5. Choose

G =

(
1

3

)
, F = diag(−1,−3). (3.7)

According to criteria 1 of Theorem 2.4, (F, G) is controllable. Thus, by Corollary 3.6, the
nonsingular solution X of XA − FX = GC is

X =

(
0.6667 −0.3333
0.8000 −0.2000

)
, (3.8)

(computed by MATLAB function lyap).



Advances in Numerical Analysis 7

Step 6. One has

P = XB =

(
0.6667

0.8000

)
. (3.9)

Step 7. An estimate x̂(t) of x(t) is

x̂(t) = X−1z(t) =

(−1.5 2.5

−6 5

)(
z1(t)

z2(t)

)
=

(−1.5z1 + 2.5z2

−6z1 + 5z2

)
, (3.10)

where

z(t) =

(
z1(t)

z2(t)

)
, (3.11)

is given by

ẑ(t) =

(−1 0

0 −3

)
z(t) +

(
1

3

)
y(t) +

(
0.6667

0.8000

)
u(t), z(0) = z0. (3.12)

Remark 3.9. According to Algorithm 3.4 the most important step is Step 1. In the case that n is
small, there are many reliable algorithm s for solving the Sylvester-observer equation and the
states of a continuous-time system can be estimated. However, for large and sparse systems
solving the Sylvester-observer equation by the available methods can be costly. In Sections
4 and 5, we introduce two iterative refinement methods for solving large sparse Sylvester-
observer equations.

4. Block Refinement Method

As we already mentioned, so far many numerical methods have been developed by different
authors; see [1, 13, 17]. For example, the Hessenberg-Schur method is now widely used as an
effective computational method for the Sylvester-observer equation. But numerical stability
of this method has not been investigated. As the iterative methods are very efficient for the
solution of computational problems, we thought it will be good idea to create an iterative
method for solving the Sylvester-observer equation XA − FX = GC where A, F, X ∈ Rn×n,
G ∈ Rn×r , and C ∈ Rr×n. In this section we propose to show that the obtained approximate
solution of the Sylvester-observer equation by any method can be improved, in other words
the accuracy can be increased. If this idea is applicable, then we have found an iterative
method for solving of the Sylvester-observer equation.

Theorem 4.1. Let X0 be the approximate solution obtained by an arbitrary method for the matrix
equation (1.2), and let R(X0) = GC − (X0A − FX0) be the corresponding residual. If m steps of the
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Figure 1: The (a) first and (b) second variables of the state x(t) and estimate x̂(t) for Example 3.8.

block Arnoldi process for matrices AT and F have been run (m � n) and Ym ∈ Rm×m is the solution
of the low-dimensional Sylvester equation

YmÂ
T
m − F̂mYm = WT

mR(X0)Vm, (4.1)

then

R(X1) = R
(
X0 +WmYmV

T
m

)
= 0. (4.2)

Proof. Let Vm = [v1, . . . , vm] and Wm = [w1, . . . , wm] be two orthogonal bases constructed by
the block Arnoldi process for the matrices AT and F, respectively. Thus, we have

V T
mVm = Im, WT

mWm = Im. (4.3)

Also, the square block Hessenberg matrices Âm and F̂m (m = r�, where r and � are the
dimensions of blocks) whose nonzero entries are the scalars âij and f̂ij , constructed by the
Block Arnoldi process, can be expressed as

Âm = V T
mA

TVm, F̂m = WT
mFWm. (4.4)
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If we set

X1 = X0 +WmYmV
T
m, (4.5)

then the corresponding residual R(X1) = GC − (X1A − FX1) satisfies

R(X1) = GC −
((

X0 +WmYmV
T
m

)
A − F

(
X0 +WmYmV

T
m

))
,

= R(X0) −WmYmV
T
mA + FWmYmV

T
m,

= R(X0) −WmYmÂ
T
mV

T
m +WmF̂mYmV

T
m,

= R(X0) −Wm

(
YmÂ

T
m − F̂mYm

)
V T
m.

(4.6)

Since Ym is the solution of (4.1) and by using (4.3), we have

R(X1) = R(X0) −WmW
T
mR0VmV

T
m = 0. (4.7)

According to Theorem 4.1, we can develop an iterative method for solving the
Sylvester-observer equation when the matrices A, F, G, and C are large and sparse. For
achieving this idea, if we choose m < n, then instead of solving XA − FX = GC we can solve
(4.1). In other words, in this method, first we transform the initial Sylvester-obsever equation
to another Sylvester equation with less dimensions and then in each iteration step solve this
matrix equation and extend the obtained solution to the solution of the initial equation by
(4.5). The algorithm is as follows.

Algorithm 4.2 (block refinement method). (1) Start: choose an initial approximate solutionX0,
and a tolerance ε.

(2) Select two numbers r and � for dimensions of block and setm = r�(m < n).
(3) Compute R(X0) = GC − (X0A − FX0).
(4) Construct the orthonormal bases Vm andWm ∈ Rn×m by the block Arnoldi process,

such that

Âm = V T
mA

TVm, F̂m = WT
mFWm. (4.8)

(5) Solve the low-dimensional Sylvester-observer equation YmÂ
T
m − F̂mYm =

WT
mR(X0)Vm with the Hessenberg-Schur method.

(6) Set X1 = X0 +WmYmV
T
m.

(7) Compute R(X1) = GC − (X1A − FX1).
(8) If ‖R(X1)‖F/‖R(X0)‖F ≤ ε stop, otherwise set X0 = X1, R(X0) = R(X1) and go to

step (3).
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Remark 4.3. By choosing m < n, Algorithm 4.2 reduces the original large sparse Sylvester-
observer equation (1.2) to a low-dimensional Sylvester-observer equation (4.1). In step (5),
we solve this low-dimensional matrix equation by any direct method such as the Hessenberg-
Schur method. Then, in step (6) by using relation (4.5), we extend the obtained solution to
the solution of the original matrix equation. Also, according to Theorem 4.1, Algorithm 4.2 is
the convergence for any initial matrix X0.

5. Weighted Block Refinement Method

In this section we discuss a new iterative method based upon a modified block refinement
method. The new process uses instead of the Euclidean scalar product another one, denoted
by (·, ·)D where D is a chosen diagonal matrix. The idea of changing the inner product is
to accelerate the convergence of the components of the residual which are far away from
zero. To achieve this, an appropriate weight is associated to each term of the inner product.
A natural choice of these weights is the entries of the first residual. The following method
is based on reduction of A and F to the Hessenberg matrix with the use of weighted block
Arnoldi process. Before giving a complete description of the new algorithm, let us define the
D-scalar product.

If u and v are two vectors of Rn, their D-scalar product is

(u, v)D = vTDu =
n∑
i=1

diuivi, (5.1)

where D = diag(d1, d2, . . . , dn) is a diagonal matrix.
This inner product is well defined if and only if the matrix D is positive definite, that

is, di > 0, for all i ∈ {1, . . . , n}.
In this case, we can define the D-norm ‖ · ‖D associated with this inner product by

‖u‖D =
√
(u, u)D =

√
uTDu =

√√√√ n∑
i=1

diu
2
i ∀u ∈ Rn. (5.2)

Theorem 5.1. Let X0 be the approximate solution obtained by an arbitrary method for the matrix
equation (1.2), and let R(X0) = GC − (X0A − FX0) be the corresponding residual. If m (m � n)
steps of the weighted block Arnoldi process by the diagonal matricesD and D̂, respectively, for matrices
A and F have been run and Ym ∈ Rm×m is the solution of the low-dimensional Sylvester equation

YmÂm − F̂T
mYm = V T

mR(X0)Um, (5.3)

then

V T
mR(X1)Um = V T

mR
(
X0 + D̂VmYmU

T
mD
)
Um = 0. (5.4)
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Proof. By using the weighted Arnoldi process, we generate the bases Um = [u1, . . . , um] and
Vm = [v1, . . . , vm] that are, respectively,D-orthonormal and D̂-orthonormal; thus it holds that

UT
mDUm = Im, V T

mD̂Vm = Im, (5.5)

where Um,Vm ∈ Rn×m and D, D̂ ∈ Rn×n are two diagonal matrices.
Moreover, the square Hessenberg matrices Âm and F̂m whose nonzero entries are the

scalars âij and f̂ij , constructed by the weighted Arnoldi process, can be expressed in the form

Âm = UT
mDAUm, F̂m = V T

mD̂FVm. (5.6)

Now, we set

X1 = X0 + E0, (5.7)

where E0 = D̂VmYmU
T
mD and Ym ∈ Rm×m is the solution of the Sylvester-obsever equation

(5.3). Thus, the new residual matrix becomes

R(X1) = GC − (X1A − FX1),

= GC − ((X0 + E0)A − F(X0 + E0)),

= R(X0) − (E0A − FE0),

= R(X0) −
(
D̂VmYmU

T
mDA − FD̂VmYmU

T
mD
)
.

(5.8)

Multiplying the above relation on the left by V T
m and on the right by Um, we have

V T
mR(X1)Um = V T

mR(X0)Um −
(
V T
mD̂VmYmU

T
mDAUm − V T

mFD̂VmYmU
T
mDUm

)
. (5.9)

Now, by using (5.3), (5.5), and (5.6) we get

V T
mR(X1)Um = V T

mR(X0)Um −
(
YmÂm − F̂T

mYm

)
= 0. (5.10)

In order to get Ym ∈ Rm×m, we need to solve the low-dimensional Sylvester equation (5.3).
According to the results, we can develop an iterative method for solving of the Sylvester-
observer equation. The algorithm is as follows.

Algorithm 5.2 (weighted block refinement (WBR) method). (1) Start: choose an initial
solution X0, new dimension m lesser than n and a tolerance ε.

(2) Compute R(X0) = GC − (X0A − FX0).
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(3) Construct the D-orthonormal basis Um ∈ Rn×m and D̂-orthonormal basis Vm ∈
Rn×m by the weighted Arnoldi process, such that

Âm = UT
mDAUm, F̂m = V T

mD̂FVm. (5.11)

(4) Solve the low-dimensional Sylvester-observer equation YmÂm − F̂T
mYm =

V T
mR(X0)Um with the Hessenberg-Schur method.

(5) Set X1 = X0 + D̂VmYmU
T
mD.

(6) Compute residual matrix R(X1) = GC − (X1A − FX1).
(7) If ‖R(X1)‖F/‖R(X0)‖F ≤ ε stop, otherwise set X0 = X1, R(X0) = R(X1) and go to

step (2).

Remark 5.3. By choosing m < n, Algorithm 5.2 reduces the original large sparse Sylvester-
observer equation (1.2) to a low-dimensional Sylvester-observer equation (5.3). In step (4),
we solve this low-dimensional matrix equation by any direct method such as the Hessenberg-
Schur method. Also, according to Theorem 5.1, Algorithm 5.2 is the convergence for any
initial matrix X0.

6. Numerical Experiments

In this section, we present some numerical examples to illustrate the effectiveness of our
new iterative methods for solving large sparse Sylvester-obsever equation. In Examples 6.1
and 6.2, we apply Algorithms 2 and 3 for solving matrix equation (1.2). In Example 6.3, we
compare the Hessenberg-Schur method described in [1]with our new algorithms for solving
large sparse Sylvester-obsever equation. In order to show the efficiency of our algorithms,
we choose the matrices A and C arbitrary in these three examples. But in Example 6.4, we
use four matrices from MATLAB matrix collection with the large estimation of condition
numbers.

The initial approximate solution is X0 = 0n×n. The error is monitored by means of the
test

‖R(X1)‖F
‖R(X0)‖F

≤ ε, (6.1)

with the value of ε depending on the examples. The time is given in seconds for all examples.
All numerical tests are performed in MATLAB software on a PC with 2.20GHz with main
memory 2GB.

Example 6.1. For the first test we use two arbitrary matrices A and C. We choose the matrices
F and G completely satisfying the controllability requirement of the pair (G,C). Now We
apply block refinement method for solving Sylvester-observer equation XA − FX = GC with
n = 200. Also, we take ε = 10−6. In Table 1, we report the results for different values of m. In
Table 1, the results show that by increasing the values of m and l, the number of iterations
decreases. The last column of Table 1 also shows the decreasing of time consumption. Note
that the fourth and fifth columns of this table are the errors of the orthogonalization method.
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Table 1: Implementation of block refinement method to solve the Sylvester equation with different values
ofm.

m r � ‖V T
mA

TVm − Âm‖ ‖WT
mFWm − F̂m‖ Iteration Time

10 2 5 4.11E − 014 3.71E − 016 482 12.03
20 2 10 6.32E − 014 5.97E − 015 391 10.08
30 2 15 1.16E − 013 7.34E − 015 319 8.26
40 2 20 3.65E − 013 8.89E − 014 225 6.03
50 2 25 2.01E − 012 9.39E − 014 171 4.47
60 2 30 4.73E − 012 1.44E − 013 67 2.46

The desired accuracy has been chosen as 10−6, but the model works well with any choice of
10−t:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 1.2 .42 .8 2.3 .8 0 . . . . . . 0

1.8 10 1.2 .42 .8 2.3 .8 0
. . . 0

1.6 1.8
. . . . . . . . . . . . . . . . . . 0

...

1.64 1.6
. . . . . . . . . . . . . . . . . . .8 0

1.3 1.64
. . . . . . . . . . . . . . . . . . 2.3 .8

1.61 1.3
. . . . . . . . . . . . . . . . . . .8 2.3

0 1.61
. . . . . . . . . . . . . . . . . . .42 .8

... 0
. . . . . . . . . . . . . . . . . . 1.2 .42

...
... 0 1.61 1.3 1.64 1.6 1.8 10 1.2

0 0 . . . 0 1.61 1.3 1.64 1.6 1.8 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

C = (1, 0, 0, . . . , 0).

(6.2)

Example 6.2. Consider Example 6.1 again. We apply the weighted Block refinement method
for solving XA − FX = GC and take ε = 10−6. In Table 2, we report the results for different
values ofm.

Example 6.3. According to the results in Tables 1 and 2, we see that the weighted block
refinement method in comparison with block refinement methodworks better. Now, consider
thatA and C are the same matrices used in Example 6.1. We apply our two iterative methods
with 2 iterations and the Hessenberg-Schur method to solve the Sylvester-observer equation
when the dimensions of the matrices are large. Results are shown in Table 3.
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Table 2: Implementation of weighted block refinement method to solve the Sylvester-observer equation
with different values of m.

m r � ‖UT
mDAUm − Âm‖ ‖V T

mD̂FVm − F̂m‖ Iteration Time

10 2 5 9.34E − 016 2.27E − 015 311 7.34
20 2 10 1.97E − 015 2.98E − 015 174 5.89
30 2 15 3.17E − 015 3.12E − 015 106 4.48
40 2 20 5.22E − 015 6.05E − 015 67 3.37
50 2 25 7.74E − 015 9.59E − 015 40 2.19
60 2 30 8.82E − 015 1.11E − 014 11 0.984

Table 3: Implementation of new Iterative methods with 2 iterations and the Hessenberg-Schur method for
solving the Sylvester equation.

n Hessenberg-Schur method Block refinement Weighted block refinement Cond (F)
Error Time Error Time Error Time

400 3.87E − 07 4.84 4.12E − 09 3.58 1.78E − 015 1.81 3.17E + 004
800 6.12E − 002 61.89 3.55E − 004 48.24 7.32E − 013 32.11 2.13E + 007
1200 11.01 139.54 0.043 96.25 4.13E − 012 71.43 1.74E + 010
1600 26.29 208.24 11.01 134.32 1.22E − 09 112.55 1.27E + 15
2000 71.98 347.14 39.91 242.11 5.67E − 05 194.78 7.12E + 021

Example 6.4. In this example we show that the convergence of our proposed algorithms
independent of the matrices structure. In this sense, we use four matrices from MATLAB
collection for the matrixA. The first matrix is a sparse, random finite element matrix with the
condition number 1.84E + 03. The second matrix is a symmetric, positive semidefinite (SPD)
Toeplitz matrix that is composed of the sum of 800 rank 2 SPD Toeplitz matrices with the
condition number 6.18E + 04. The third matrix is a row diagonally dominant matrix with the
condition number 1.35E + 010. The last matrix is a sparse singular, row diagonally dominant
matrix resulting from discrediting the Neumann problem with the usual five-point operator
on a regular mesh. The estimated condition number is 5.56E + 017. For all of these examples,
the matrix C is C = sprand(1, n, d), where is a random, sparse matrix with approximately
d · n · n uniformly distributed nonzero entries with d = 0.5. We choose the matrices F and
G completely satisfying the controllability and observability requirement of the pairs (F,G)
and (G,C). We apply the Hessenberg-Schur method and weighted block refinement method
(Algorithm 5.2)with 3 iterations for solving the Sylvester-observer equation XA − FX = GC.
The results are shown in Table 4.

It is also obvious from Table 4 that the performance of the weighted block refinement
method is much better than that of the Hessenberg-Schur method, specifically for the ill-
conditioned matrices.

7. Comments and Conclusion

In this paper, we propose two new iterative algorithm s for solving the large sparse Sylvester-
obsever matrix equations. The existing projection methods use the Arnoldi process, but the
methods described in this paper are based on the weighted block Arnoldi process. Moreover,
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Table 4: Effectiveness of the Hessenberg-Schur method andWBR algorithm with 3 iterations for randomly
generated matrices.

Matrix Hessenberg-Schur WBR method
Error CPU-time Error CPU-time

A = gallery (“wathen′′, 736, 736) 2.19E − 06 66.24 1.01E − 016 49.95
A = gallery (“toeppd”, 800, 800, r and (1,800) 6.01E − 05 72.19 4.98E − 016 54.81
A = gallery (“dorr”, 1200, 0.01) 7.93E − 01 137.113 6.12E − 014 101.02
A = gallery (“neumann”, 1156) 3.24E − 01 122.71 9.21E − 015 94.29

the refinement process presented in Sections 4 and 5 has the capability of improving the
results obtained by an arbitrary method. The numerical examples show the efficiency of the
proposed schemes.
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