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The unsteady, buoyancy-induced, hydromagnetic, thermal convection flow in a semi-infinite
porous regime adjacent to an infinite hot vertical plate moving with constant velocity, is studied in
the presence of significant thermal radiation. The momentum and energy conservation equations
are normalized and then solved using both the Laplace transform technique and Network
Numerical Simulation. Excellent agreement is obtained between both analytical and numerical
methods. An increase in Hartmann number (M?) strongly decelerates the flow and for very
high strength magnetic fields (M? = 20), the flow is reversed after a short time interval. The
classical velocity overshoot is also detected close to the plate surface for low to intermediate
values of M? at both small and large times; however this overshoot vanishes for larger strengths
of the transverse magnetic field (M? = 10). An increase in radiation-conduction parameter (K,)
significantly increases temperature throughout the porous regime at both small and larger times,
adjacent to the plate, but decreases the shear stress magnitudes at the plate. Temperature gradient
is reduced at the plate surface for all times, with a rise in radiation-conduction parameter (K,).
Shear stress is reduced considerably with an increase in Darcian drag parameter (K}).

1. Introduction

Transient MHD (magnetohydrodynamic) flows with and without heat transfer in electrically-
conducting fluids have attracted substantial interest in the context of metallurgical fluid
dynamics, re-entry aerothermodynamics, astronautics, geophysics, nuclear engineering,
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and applied mathematics. An early study was presented by Carrier and Greenspan [1]
who considered unsteady hydromagnetic flows past a semi-infinite flat plate moving
impulsively in its own plane. Gupta [2] considered unsteady magneto-convection under
buoyancy forces. Singer [3] further assessed the unsteady free convection heat transfer
with magnetohydrodynamic effects in a channel regime. Pop [4] reported on transient
buoyancy-driven convective hydromagnetics from a vertical surface. Yu and Yang [5]
investigated the influence of channel wall conductance on hydromagnetic convection. Rao
[6] analyzed the unsteady magnetohydrodynamic convection heat transfer past an infinite
plane. Further excellent studies of unsteady free convection magnetohydrodynamic flows
were reported by Antimirov and Kolyshkin [7] for a vertical pipe and Rajaram and Yu
for a parallel-plate channel [8]. Tokis [9] used Laplace transforms to analyze the three-
dimensional free-convection hydromagnetic flow near an infinite vertical plate moving in
a rotating fluid when the plate temperature undergoes a thermal transient. The influence of
oscillatory pressure gradient on transient rotating hydromagnetic flow was considered by
Ghosh [10]. Other transient MHD studies include the papers by Sacheti et al. [11], Attia
[12] who included viscosity variation effects, Al-Nimr and Alkam [13] who considered
open-ended vertical annuli, and Takhar et al. [14] who employed a numerical method
to study flat-plate magnetohydrodynamic unsteady convection flow. Eswara et al. [15]
examined the transient laminar magnetohydrodynamic convection in a cone due to a
point sink, with the free stream velocity varying continuously with time and also for
the case of an impulsive change either in the strength of the point sink or in the wall
temperature. They showed numerically that magnetic field increases the skin friction but
decreases heat transfer and that the transient nature of the convection flow is active for
short durations with suction present and greater times with injection. Chamkha [16] has
analyzed the unsteady MHD free three-dimensional convection over an inclined permeable
surface with heat generation/absorption. Jha [17] presented exact solutions for transient-
free convection MHD Couette channel flow with impulsive motion of one of the plates
discussed. More recent communications on unsteady hydromagnetic heat transfer flows
include the articles by Seddeek [18] incorporating variable viscosity effects, Zakaria [19]
who considered a polar fluid, and Ghosh and Pop [20] who included Hall currents [21].
Zueco presented network simulation solutions for the transient natural convection MHD
flow with viscous heating effects. Bég et al. [22] studied the free convective MHD flow from
a spinning sphere with impulsive motion using the Blottner difference method. Duwairi
et al. [23] analyzed the unsteady MHD natural convection for the non-Boussinesq case
that is, using a nonlinear density relationship for water at low temperatures. Bozkaya
and Tezer-sezgin [24] have presented boundary element numerical solutions for transient
magnetohydrodynamic flow in a rectangular duct with insulating walls, showing that n
increase in Hartmann number causes the formation of boundary layers for both the velocity
and the induced magnetic field with the velocity becoming uniform at duct centre. With
increasing magnetic field, the time for reaching steady-state solution is also reduced. In many
industrial applications, hydromagnetic flows also occur at very high temperatures in which
thermal radiation effects become significant. The vast majority of radiation-convection flows
have utilized algebraic flux approximations to simplify the general equations of radiative
transfer [25]. The most popular of these simplifications remains the Rosseland diffusion
approximation which has been employed by for example, Ali et al. [26] and later by
Hossain et al. [27]. Radiation magnetohydrodynamic convection flows are also important
in astrophysical and geophysical regimes. Raptis and Massalas [28] considered induced
magnetic field effects in their study of unsteady hydromagnetic-radiative free convection.
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Figure 1: Physical regime and coordinate system.

Abd El-Naby et al. [29] numerically studied magnetohydrodynamic (MHD) transient natural
convection-radiation boundary layer flow with variable surface temperature, showing that
velocity, temperature, and skin friction are enhanced with a rise in radiation parameter
increases, whereas Nusselt number is reduced. Ogulu and Motsa [30] studied the transient
radiation-magnetohydrodynamic Couette flow in a channel with wall conductance variation,
showing that heat transfer rates are boosted with a reduction in Hartmann number when
the wall is nonconducting, but conversely increase with a rise in values of the magnetic
Reynolds number at a given value of electrical conductance. Abd-El Aziz [31] studied
the thermal radiation flux effects on unsteady MHD micropolar fluid convection. Ogulu
and Prakash [32] obtained analytical solutions for variable suction and radiation effects on
dissipative-free convective, optically-thin, magnetohydrodynamic flow using a differential
approximation to describe the radiative flux. More recent studies involving thermal radiation
and transient hydromagnetic convection include the analyses by Prasad et al. [33] which
included species transfer and Zueco [34] who also considered viscous heating. In numerous
geophysical and metallurgical flows, porous media may also arise. Classically the Darcian
model is used to simulate the bulk effects of porous materials on flow dynamics and is
valid for Reynolds numbers based on the pore radius, up to approximately 10. Chamkha
[35] studied the transient-free convection magnetohydrodynamic boundary layer flow in a
fluid-saturated porous medium channel, and later [36] extended this study to consider the
influence of temperature-dependent properties and inertial effects on the convection regime.
Bég et al. [37] presented perturbation solutions for the transient oscillatory hydromagnetic
convection in a Darcian porous media with a heat source present. Chaudhary and Jain
[38] studied the influence of oscillating temperature on magnetohydrodynamic convection
heat transfer past a vertical plane in a Darcian porous medium. In the present study, we
shall consider the transient radiation-convection magnetohydrodynamic flow past a vertical
plate adjacent to a Darcian regime. Both analytical and numerical solutions have been
obtained.

2. Mathematical Model

Consider the unsteady free convective hydromagnetic flow of an incompressible, viscous
incompressible, electrically-conducting fluid along an infinite hot vertical plate moving with
constant velocity, adjacent to a saturated porous regime. The physical scenario is shown
in Figure 1. The x'-axis is oriented along the plate from the leading edge in the vertically
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upward direction, and the y/'-axis is perpendicular to this. A uniform magnetic field, By, is
applied parallel to the y'-axis that is, transversely to the plate. Thermal radiation acts as
a unidirectional flux in the y'-direction. The fluid is gray and absorbing-emitting but non-
scattering, and the magnetic Reynolds number is assumed to be small enough to neglect
induced magnetic field effects. Hall and ionslip current effects are also neglected. The
electromotive force generated by a magnetic field is a function of the speed of the fluid and
the magnetic field strength. Following Shercliff [39], we define the electrical field intensity, E,
using Maxwell’s equation:

0B
VxE= —y, (21)
where t' is time. The magnetic flux density, B, is defined as follows:
B = uEH, (2.2)

where H is the magnetic field strength and j, is the magnetic permeability. The generalized
Ohm'’s law defines the total current flow as follows:

J=0(E+V xB), (2.3)

where V is the velocity vector and o is the electrical conductivity of the fluid. The electromag-
netic retarding force, Finagnetic, to be incorporated into the momentum conservation equation,
then takes the form:

Fmagnetic =] xB= G(V X B) x B. (24:)

Incorporating this magnetic retarding force in the momentum boundary layer equation, the
appropriate conservation equations, under the Boussinesq approximation for the flow under
the above assumptions, may be expressed as

a_u, + a_U’ =0
ox oy
5 " o (2.5)
u/ u' A vu'  obj
W :VW +gﬁ(T _Too —?—TU,
o  k &*T 1 0gr
—,:—1—,2——i,. (2.6)
o pCpoy? pC, 0y
The appropriate boundary conditions at the wall and in the free stream are
u =0, T=T, fory >0,t<0,
u =1, T=T, fory =01t>0, (2.7)

u' =0, T —T, fory — oo,
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where #' is the velocity along the plate, v’ is velocity normal to the plate, v is the kinematic
viscosity of the conducting fluid, g denotes gravity, p is the coefficient of thermal expansion,
T' is fluid temperature, T, is free stream temperature, k; is thermal conductivity of the
fluid, C, is the specific heat capacity, p is the fluid density, g, is radiative heat flux, K is the
permeability of the porous regime, By the component of magnetic field in the x'-direction,
T., is the plate temperature (isothermal), and U is the velocity of the plate. Following
Isachenko et al. [40], we employ a diffusion-type radiation heat transfer approximation,

namely,

40* BT
qr = T3 a_y" (2.8)

where 0* and k* are respectively the Stefan-Boltzmann constant and the spectral mean
absorption coefficient of the saturated medium. Assuming that the temperature differences
within the saturated porous regime are sufficiently small such that T* may be expressed as
a linear function of the temperature, a power-series expansion of T* about T/, neglecting
higher order terms leads to

T = 4T3T - 3T, (2.9)
Implementing (2.8) and (2.9) in (2.6), we arrive at the modified energy conservation equation:

o ky T 1 40* 0T

3~ pCy oy%  7Gy 3K oy (210

In order to render solutions to the boundary value problem described by (2.5) and (2.10)
subject to the spatial and temporal conditions specified in (2.7), we introduce a group of
nondimensional transformations, defined as follows:

o _yu _tu? o- T-T, P pvCy
u=-=, y - 7 t= 7 = r = ’
u v v Tw - Too k1
(2.11)
_ 8P (T, - Ts,) _ 160"Tg, 2 8 o 9B
r u3 7 r 3k*k1 7 14 Kuzl Pu2 7

where u is dimensionless x'-direction velocity, y is dimensionless coordinate normal to the
plane, t is dimensionless time, 0 is dimensionless temperature, P, is Prandtl number, G, is
Grashof number, K, is the radiation-conduction parameter, K,z, is the Darcian drag force coef-
ficient (inverse permeability parameter), and M? is the Hartmann magnetohydrodynamic
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parameter. The transformed equations are thereby reduced to the following pair of coupled,
second-order partial differential equations:

ou u ) )
E = a—yz + GrQ - Kpu - M u, (212)
2
1+ K,)g—yz - Prg - 0. (2.13)

The corresponding transformed boundary conditions become

u=0, 0=0 fory>0,t<0,
u=1, 0=1 fory=0,t>0, (2.14)

u=0, 0 — 0 fory— oo.

We note that the optically-thick radiative approximation is valid for relatively low values
of the parameter, K. The electrically nonconducting version (i.e., with M? = 0) of (2.12) has
recently been studied by Ghosh and Bég [41] where extensive computations were provided of
the influence of thermal radiation on the flow field. In the present study, we shall consider the
supplementary influence of transverse magnetic field for the case where the fluid is saturated
with air for which the Prandtl number is assumed to take the value 0.7.

3. Analytical Solution

The Laplace transform technique is now employed to generate closed-form solutions for
the coupled, linear partial differential equations (2.12) and (2.13) subject to the boundary
conditions (2.14). The solutions for the transient velocity (1) and transient temperature (0)
take the following expressions:

=15 o 2 152

G
+ H; erfc

<y P, > G y (v2-1)r”
2

1+K)t) " Doyx 2

2 2
AT AN GV Ly b
X [exp{ <4t +D t>} e exp< o 1+Kr>],
_ ¥ 1/ by
0(y,t) = erfc<2 a +Kr)t>'

(3.1)
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The spatial gradients of these functions provide expressions for the dimensionless shear stress
(i.e., related to the skin friction) and temperature gradient (i.e., related to the Nusselt number)
at the plate surface:

N R —
1
Gr 1 Pr Gr 1 - Pr
5| m]*amW—l)tZ[eXp{—m}_ 1+Kr], o)
00

_ 1 P,
o VA AT+K)E

in which D? = M? + Kg.

dy

4. Network Numerical Solution

Numerical solutions to the two-point boundary value problem have also been obtained
with the Network Simulation Method (NSM). This powerful and robust computational
method has been employed extensively by the authors in a wide spectrum of both linear
and nonlinear steady and unsteady magnetohydrodynamic and thermal convection flows.
Zueco [42] recently studied the periodic temperature variation effect on thermal convection
in a horizontal channel. Other very recent studies employing NSM include the works of Bég
et al. [43] considered unsteady rotating Couette flow in a porous medium channel, [44]
analyzed the magnetohydrdoynamic rotating flow in a Darcian channel with dissipation
effects and Hall/ionslip currents, and [45] examined the effects of thermal stratification and
non-Darcian drag on natural convection boundary layers in a porous regime. In the NSM
technique, a second-order central-difference scheme is utilized to discretize the momentum
and energy conservation equations and the resulting system of finite difference equations are
solved employing the Pspice program [46]. A network model is subsequently designed, with
component equations which are formally equivalent to the discretized ones. The electrical
analogy relates the electrical current (J) with the velocity flux (0u/0y) and temperature flux
(08/0y), while the electrical potential (®) is equivalent to the velocity, # and temperature
0. A number of networks are connected in series to make up the whole medium. After
experimenting with a few sets of mesh sizes, a region of integration of 200 cells has
been selected. Boundary conditions are subsequently added by means of special electrical
devices (current or voltage control-sources) that is, resistors, capacitors, and so forth. Once
the complete network model is designed, the Pspice code is employed for the numerical
simulations. This code is designated the “electric circuits simulator”. Using the Fourier Law,
the spatial discretization of (2.12) and (2.13) gives

Aydu; _ (hi-ay—ti) (i = thiray) +G,0;Ay — AyK2u; - AyM?u;
dt (Ay/2) (Ay/2) P ’

(4.1)
AyP.  de; _ (Bi-ay — 6i) - (6i - Bisny)
(1+K,) dt (Ay/2) (Ay/2)
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Figure 2: Electronic network model for the momentum equation (2.12).

The electrical analogy is applied to (4.1) together with Kirchhoff’s law for the currents.
To implement the boundary conditions at ¥ = 0 and y = 1, constant voltage sources are
employed for both conditions. The principal advantage of the NSM approach is that it
avoids the necessity in traditional numerical difference schemes of manipulation of difference
equations and the specified constraints concerning the convergence of numerical solutions.
For example, the time-step used in transient problems, which is required for convergence
is not a prerequisite as Pspice achieves this via sophisticated numerical algorithms largely
analagous to those intrinsic to the standard difference numerical solvers, as described by
Nagel [47]. Design of the model does require a comprehensive appreciation of electrical
circuit theory. Momentum balance “currents” are defined systematically for each of the
discretized equations and errors can be quantified in terms of the quantity of control volumes.
The network model is shown in Figure 2 for the momentum equation (2.12) and Figure 3 for
the energy equation (2.13).

5. Results and Discussion

We have obtained a comprehensive range of solutions to the transformed conservation
equations. To test the validity of our numerical NSM computations, we have compared
the velocity and shear stress distributions in Tables 1 and 2 with the Laplace transform
solutions. Very good correlation is apparent. In all computations the key thermophysical
parameters have been prescribed as follows, unless otherwise stated: G, = 10, K, = 2.0,
K, = 1.0, M*> = 50, P, = 0.7, and t = 0.25, corresponding to free convection of air in a
highly porous regime with strong magnetic field and high thermal radiation flux at intermediate time.
Both Tables 1 and 2 correspond to distributions computed a short time after the initiation
of motion that is, at + = 0.2. In Table 1, we observe that an increase in Hartmann number
(M?) from 5.0 through 8 to 10 (strong magnetic flux density) causes a significant decrease
in the flow velocity, u with distance normal to the plate surface into the boundary layer (y).
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Figure 3: Electronic network model for the energy equation (2.13).

Table 1: Dimensionless spatial velocity distribution (u) for G, = 2.0K, =1.0, K, =1.0, P, =0.7,and t = 0.2
for the effect of Hartmann number (M?).

y M? 5.0 Laplace/NSM M? 8.0 Laplace/NSM M?10.0 Laplace/NSM
0.0 1.0/1.0 1.0/1.0 1.0/1.0

0.5 0.38047/0.35236 0.29907/0.28788 0.26028/0.25409

1.0 0.13844/0.10987 0.09607/0.08472 0.07858/0.07234

1.5 0.04490/0.03069 0.02992/0.02458 0.02424/0.02158

2.0 0.01205/0.00813 0.00800/0.00694 0.00651/0.00627

Table 2: Dimensionless shear stress (9u/0y| y:O) for G, = 2.0, K, = 1.0, P, = 0.7, and t = 0.2 for the combined
effects of radiation-conduction parameters (K,) and Hartmann number (M?2).

M? K, 0.5 Laplace/NSM K, 1.0 Laplace/NSM K, 2.0 Laplace/NSM
5.0 -1.99207/-2.04602 -1.94960/-2.0252 -1.89922/-1.9960
8.0 —2.56726/-2.58341 —2.53894/-2.56581 —-2.50535/-2.54190
10.0 —2.90074/-2.90404 —-2.87757/-2.8840 —-2.85009/-2.86732
12.0 -3.20605/-3.20051 —3.18645/-3.18633 -3.16320/-3.16505

This trend is consistent with many classical studies on magneto-convection showing that the
hydromagnetic body force retards the flow that is, decelerates the fluid causing a thinning
in the boundary layer thickness. Very high Hartmann numbers (i.e., M? > 1) are usually
associated with the formation of a Hartmann boundary layer [39]. In Table 2, the shear stress,
ou/dyl,_, , is found to be decreased significantly with an increase in Hartmann number (M?)
from 5.0 through 8.0, 10.0 to 12.0, for all values of the radiation-conduction parameter, K,.
In all cases, the shear stresses are negative since the high values of Hartmann number, M?,
retard the flow in the boundary layer to such an extent that reversal of the flow is caused. This
result is significant in the design of, for example, MHD generators since a critical magnetic
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flux density may be applied (i.e., Hartmann number) to reverse the flow dynamics during
operation. The change in shear stresses with an increase in radiation-conduction parameter
indicates that an increase in thermal radiation has a positive effect on the flow that is, reduces
the degree of flow reversal. For example, for M? = 5.0, shear stress, ou/ oy y=0 increases
(for the NSM solutions) from —2.04602 for K, = 0.5 (thermal conduction exceeds thermal
radiation) to —2.0252 for K, = 1.0 (for which the thermal radiation and thermal conduction
mode contributions are approximately the same), to —1.9960 for K, = 2.0 (thermal radiation
exceeds thermal conduction). Therefore, for very high-strength magnetic field operating
conditions, thermal radiation mitigates to some extent flow reversal effects. In Figure 4,
the dimensionless shear stress profiles in time for different Hartmann numbers (M?) are
illustrated. A strong decrease is observed in shear stress from t = 0 to t = 0.05, after which
profiles, although they continue to decrease with increasing M? values, tend for M? = 0, 5, 10,
and 15, to the steady state. For these values of Hartmann number, profiles are always positive
indicating that flow reversal does not occur. Comparing with the trends in Table 2, we can
note that while the values of K;, K, , and P, are identical for the third column, the Grashof
number (G, ) is lower in Table 2 at 2.0, compared with the value of 10.0 in Figure 4. As such the
flow is more strongly assisted by buoyancy forces in Figure 4 which prevents the reversal of
flow for all the profiles, with the exception of M? = 20 (very strong transverse magnetic field)
which becomes negative for t > 0.4, Thermal buoyancy force, +G,0 , is directly proportional
to the Grashof free convection parameter (G,) and therefore would appear to assist the flow,
whereas magnetic field inhibits flow acceleration in the regime. In Figure 5, temperature
gradient profiles in time for the influence of radiation-conduction parameter (K,) are presented.
In all cases, profiles are a maximum initially at the isothermal plate and decay quickly from
the wall with time. An increase in K, from 0.1 through 0.5, 1, 1.5 to 2.0 is seen to markedly
reduce heat transfer gradient especially at shorter times (0 < t < 0.2); with further elapse of
time all profiles converge that is, radiation effects are negligible for large times. Increasing
K, implies a greater augmentation of heat transfer by thermal radiation which will serve
to increase fluid temperatures in the regime; the spatial heat transfer rate 08/0y|,_, that is,
temperature gradient at the wall will therefore be reduced as greater thermal energy (heat)
will be imparted to the fluid-saturated regime raising temperatures within the porous regime.
In Figure 6, the influence of the Darcian drag force parameter, K, on the time evolution of
shear stress profiles, is depicted. As K, increases from 0.1 through 0.5, 1, 2 to 5, a very large
escalation in Darcian drag force is caused, as expressed in (2.12) in the linear term, -K2,
which decelerates the flow and reduces the shear stress at the plate. Steady-state values
are achieved faster with lower Darcian drag (K, = 0.1) than with higher Darcian drag
(Kp = 5). The effect of Grashof number on velocity gradient (i.e., shear stress) through time
is presented in Figure 7. Increasing G, for the case of very low Darcian drag (i.e., highly
permeable medium, K, = 0.1) strongly increases shear stress values at the wall that is,
accelerates the flow over time. We note that values become negative for very low G, values
since the magnetic impedance force (M? = 5.0) will dominate and have a greater inhibiting
influence with low buoyancy that is, flow reversal accompanies lower thermal buoyancy forces
for higher permeability regimes. In Figure 8, the effect of the Prandtl number (P;) on the
temporal shear stress distribution is shown again for G, = 10.0, K, = 2.0, M? = 5.0 but
with K, = 1.0. Increasing P, strongly boosts the flow and increases shear stress profile
values which remain positive for small times; however, with increasing elapse of time shear
stress, values become negative indicating backflow occurs at the plate. For lower P, values
(0.7, 0.1), negative values are attained more quickly that is, backflow takes place quicker. In
Figure 9, an increase in P, is observed to the enhance temperature gradient. Prandtl number
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controls the relative thickness of the momentum and thermal boundary layers. When P, is
of low value, heat diffusion exceeds momentum diffusion. For P, < 1, the thickness of the
thermal boundary layer therefore exceeds the thickness of the velocity boundary layer that
is, temperatures will be greater. In Figure 10, temperatures are seen to decrease considerably
with an increase in P, values (for a fixed time, t = 0.25) as we progress into the boundary
layer regime; profiles also decay much more sharply for higher P, values since momentum
diffusion exceeds energy (heat) diffusion for P, > 1. For the case of P, = 1, the boundary
layer thicknesses will be approximately of the same order of magnitude. For P, = 0.1, the
profile is approximately linear for a substantial distance from the plate. Spatial velocity
(u) distributions, for two time values are illustrated in Figure 11, for the effect of Hartmann
hydromagnetic parameter (M?). This parameter represents the ratio of the hydromagnetic
retarding force to the viscous hydrodynamic force in the boundary layer. The classical velocity
overshoot is identified [1, 2, 4, 39] near the moving plate surface for lower values of M?
that is, 1.0 and 5.0; with M? = 10.0 this overshoot is clearly suppressed owing to stronger
resistance to the flow. We note that for t = 1.0, the profiles are always greater in value than
for t = 0.25 that is, the flow is accelerated considerably with time, although velocities are
strongly reduced with an increase in Hartmann number. All profiles decrease towards zero
in the free stream, although this state is attained much faster for higher magnetic field values
(M? = 10) and for shorter times. In Figure 12, the combined effects of time () and radiation-
conduction parameter (K,) on spatial distribution of temperature (6) through the boundary
layer is shown. An increase in K, serves to supplement fluid thermal conductivity with
radiation contribution and significantly heats the fluid-saturated regime that is, increases
temperature values. Similar results were reported by Ali et al. [26], Hossain et al. [28], and
very recently by Ghosh and Bég [41]. A large difference is observed between the profiles
computed at t = 1.0 and ¢ = 0.25, indicating that thermal radiation effects are amplified at
greater times, compared with smaller times where the flow is still developing. After greater
times a greater quantity of thermal energy will be absorbed into the fluid regime via the
imposed flux causing enhanced heating of the fluid. For example, for t = 1.0, at y = 2,
for K, = 5 (maximum thermal radiation effect), 6 reaches a value of approximately 0.65,
whereas the corresponding value for ¢ = 0.25 is much lower at 0.35. Finally in Figure 13 we
have plotted the spatial variation of velocity for the combined effects of radiation-conduction
parameter (K,) and time (t). Again a velocity overshoot is observed in the close vicinity of the
plate; however, this overshoot is distinctly greater for the highest value of K, (= 2.0) and
greater time values (t = 1.0); all profiles descend gradually to zero far from the wall. Thermal
radiation therefore augments the flow that is, accelerates the flow in the porous regime.
Velocities are minimized when thermal conduction swamps thermal radiation that is, for
K, =0.1.

6. Conclusions

Closed form and numerical (NSM) solutions have been presented for the transient hydro-
magnetic natural convection boundary layer flow past a moving vertical plane adjacent to
a Darcian porous regime with thermal radiation flux present. It has been shown that thermal
radiation strongly increases fluid temperatures and accelerates the flow; conversely magnetic
field as simulated via the Hartmann number serves to impede the flow and reduce velocity
gradient (shear stress) values. The effects of both parameters are enhanced with a greater
elapse of time. Darcian drag is seen to decelerate the flow, whereas increasing free convection
serves to accelerate the flow owing to the assistance of thermal buoyancy forces in the regime.
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Figure 4: Temporal shear stress distribution (0u/ 6y|y=0) with G, = 10.0, K, = 2.0, K, = 1.0, and P, = 0.7
for the effect of Hartmann hydromagnetic parameter (M?2).
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Figure 5: Temporal temperature gradient distribution (00/ ay|y=0) with G, = 10.0, M? = 5, K, =10, and
P, = 0.7 for the effect of radiation-conduction number (K, ).
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Figure 6: Temporal shear stress distribution (0u/ ay|y:0) with G, = 10.0, M2 =5, K, = 2.0, and P, = 0.7 for
the effect of Darcian drag parameter (K}).
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Figure 7: Temporal shear stress distribution (0u/ ay|y=0) with K, = 0.1, M?=5,K, =2.0,and P, = 0.7 for
the effect of the Grashof number (G;).
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Figure 8: Temporal shear stress distribution (0u/ ay|y:0) with K, =1, M?=5,K, =2.0,and G, = 10.0, for

the effect of Prandtl number (P,).
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Figure 10: Spatial temperature distribution (0) with K, = 1, M?=5,K, =20, and G, = 10.0, for the effect
of Prandtl number (P,) at t = 0.25.
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Figure 11: Spatial velocity distribution (1) with K, = 1, G, = 10, K, = 2.0, and P, = 0.7 for the effect of
Hartmann hydromagnetic parameter at t = 0.25 and t = 1.
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Figure 12: Spatial temperature distribution (6) with K, = 1, G, = 10, M? =10, and P, = 0.7 for the effect of
radiation-conduction parameter (K,) att =0.25and f = 1.
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Figure 13: Spatial velocity distribution (z) with G, = 10.0, M? =5,K, =2.0,and P, = 0.7 for the effect of
radiation-conduction parameter (K, ).

A rise in Prandtl number however decreases temperatures in the regime, but accelerates
the flow that is, increases velocity gradient values. A velocity overshoot is observed with
magnetic field effects but vanishes for very high values of the Hartmann number.
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