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The problems studied are the separable variational inequalities with linearly coupling constraints.
Some existing decomposition methods are very problem specific, and the computation load is
quite costly. Combining the ideas of proximal point algorithm (PPA) and augmented Lagrangian
method (ALM), we propose an asymmetric proximal decomposition method (AsPDM) to solve a
wide variety separable problems. By adding an auxiliary quadratic term to the general Lagrangian
function, our method can take advantage of the separable feature. We also present an inexact
version of AsPDM to reduce the computation load of each iteration. In the computation process,
the inexact version only uses the function values. Moreover, the inexact criterion and the step size
can be implemented in parallel. The convergence of the proposedmethod is proved, and numerical
experiments are employed to show the advantage of AsPDM.

1. Introduction

The original model considered here is the convex minimization problem with linearly
coupling constraints:

minimize
N∑

j=1

θj
(
xj
)

N∑

j=1

Ajxj − bj ≥ 0

⎛

⎝or
N∑

j=1

Ajxj − bj = 0

⎞

⎠,

xi ∈ Xi, i = 1, . . . ,N,

(1.1)
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where Xi ⊂ Rni , Ai are givenm × ni matrixes, bi are givenm-vector, and θi : Rni → R are the
ith block convex differentiable functions for each i = 1, . . . ,N. This special problem is called
convex separable problem. Problems possessing such separable structure arise in discrete-
time deterministic optimal control and in the scheduling of hydroelectric power generation
[1]. Note that θi are differentiable, setting ∇θi(xi) = fi(xi); by the well-known minimum
principle in nonlinear programming, it is easy to get an equivalent form of problem (1.1):
find x∗ = (x∗

1, . . . , x
∗
N) ∈ Ω such that

(
x′
i − x∗

i

)T
fi
(
x∗
i

) ≥ 0, i = 1, . . . ,N, ∀x′ ∈ Ω, (1.2)

where

Ω =

⎧
⎨

⎩(x1, . . . , xN) |
N∑

j=1

Ajxj ≥ b
⎛

⎝or
N∑

j=1

Ajxj = b

⎞

⎠, xi ∈ Xi, i = 1, . . . ,N

⎫
⎬

⎭, b =
N∑

j=1

bj .

(1.3)

Problems of this type are called separable variational inequalities (VIs). We will utilize this
equivalent formulation and provide method for solution of separable VI.

One of the best-known algorithms for solving convex programming or equivalent VI is
the proximal point algorithm (PPA) first proposed by Martinet (see [2]) and had been studied
well by Rockafellar [3, 4]. PPA and its dual version, the method of multipliers, draw on a
large volume of prior work by various authors [5–9]. However, classical PPA and most of its
subsequence papers cannot take advantage of the separability of the original problem, and
this makes them inefficient in solving separable structure problems. One major direction of
PPA’s study is to develop decompositionmethods for separable convex programming and VI.
The motivations for decomposition techniques are splitting the problem into isolate smaller
or easier subproblems and parallelizing computations on specific parallel computing device.
Decomposition-type methods [10–14] for large-scale problems have been widely studied
in optimization as well as in variational problems and are explicitly or implicitly derived
from PPA. However, most of those methods only can solve separable problems with special
equality constraints:

Minimize θ(x) + ψ
(
y
)
,

Ax + y = 0,

x ∈ X, y ∈ Y.
(1.4)

Two very well-known methods for solving equality constrained convex problems and VI are
the augmented Lagrangian method [15, 16] (ALM) and the alternating direction method (ADM)
[17]. The classic ALM has been deeply studied and has many advantages over the general
Lagrange methods; see [18] for more detail. However, it can not preserve separability. ADM
is a different method but closely related to ALM, which essentially can preserve separability
for problems with two operators (N = 2). Recently, separable augmented Lagrangian method
(SALM) [19, 20] overcomes the nonseparability of ALM. For example, for solving problem
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(1.1) with equality constraints, Hamdi and Mahey [19] allocated a resource quantity yi to
each block Aixi − bi leading (1.1) to an enlarged problem in

∏N
j=1Xj × RmN

minimize
N∑

j=1

θj
(
xj
)

N∑

j=1

yj = 0

Aixi − bi + yi = 0, i = 1, . . . ,N,

xi ∈ Xi, yi ∈ Rm, i = 1, . . . ,N.

(1.5)

It is worth mentioning that (1.5) is only equivalent to problem (1.1)with equality constraints.
The expression of the augmented lagrangian function of (1.5) is:

L
(
x, y, u, τ

)
=

N∑

j=1

Lj
(
xj , yj , uj , τ

)
, (1.6)

with

Lj
(
xj , yj , uj , τ

)
= θj

(
xj
) − 〈

uj ,Ajxj − bj + yj
〉
+
τ

2
∥∥Ajxj − bj + yj

∥∥2
. (1.7)

SALM finds a saddle point of problem (1.5) by the following stages:

(i) xk+1i = arg minxi∈Xi
Li(xi, yki , u

k
i , τ);

(ii) yk+1i = arg min∑N
j=1 yj=0

Li(xk+1i , yi, u
k
i , τ);

(iii) uk+1i = uki + τ(Aix
k+1
i − bi + yk+1i ).

Note that the process in SALM for xk+1 allows one to solve N subproblems in parallel. This
has great practical importance from the computation point of view. In fact, SALM belongs
to the family of splitting algorithms and ADM for solving special convex problem (1.4) with
ψ(y) = 0 and

A =

⎛
⎜⎝
A1

. . .
AN

⎞
⎟⎠; (1.8)

SALM has to introduce an additive variable y to exploit the inner separable structure of
the problem, which makes the problem larger. Moreover, SALM is suitable to solve equality
constraints problems and fraught with difficulties in solving inequality constraints problems.

To our best knowledge, there are few dedicated methods for solving inequality
constraints problems (1.1) or VI(1.2)-(1.3), except the decomposition method proposed by
Tseng [21] and the PPA-based contraction method by He et al. [22]. The decomposition
method in [21] decomposes the computation of xk+1 at a fine level without introducing
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additive variable y. But, in each iteration of this method, the minimization subproblems for
xk+1 are dependent on the step size of multiplier, which greatly restricts the computation
of subproblems. The PPA-based contraction method in [22] has a nice decomposable
structure; however, it has to solve the subproblem exactly. To solve (1.1) or VI(1.2)-
(1.3), motivated by PPA-based contraction method and SLAM, we propose an asymmetric
proximal decomposition method (AsPDM) which can well conserve the separability feature
of the problem. Besides, it does not need to introduce the resource variables y like SALM and
the subproblems do not depend on the step size of multiplier. In the following, we briefly
describe our method for (1.1): we add an auxiliary quadratic term to the general Lagrangian
function:

L
(
x, xki , λ

)
=

N∑

j=1

Lj
(
xj , x

k
j , λ

)
, (1.9)

with

Lj
(
xj , x

k
j , λ

)
= θj

(
xj
) − 〈

λ,Ajxj − bj
〉
+
βj

2

∥∥∥xj − xkj
∥∥∥
2
. (1.10)

The general framework of AsPDM is as follows:
Phase I

x̃ki = argmin
xi∈Xi

Li
(
xi, x

k
i , λ

k
)
; (1.11)

Phase II

λ̃k = PΛ

⎡

⎣λk − μ−1
N∑

j=1

(
Ajx̃

k
j − bj

)
⎤

⎦, Λ = Rm
+ (or R

m),

wk+1 = wk − αkG
(
wk − w̃k

)
, w = (x, λ).

(1.12)

Here, βi > 0, μ > 0, αk > 0, and G are proper chosen which will be detailed in the
later sections. Note that the first phase consists ofN isolate subproblems, and each involves
xi, i = 1, . . . ,N only, namely; it can be partitioned into N independent lower-dimension
subproblems. Hence, this method can take advantage of operators’ separability. Since we
mainly focus on solving equivalent separable VI, hence, we present this method under VI
framework and analyze its convergence in the following sections.

2. The Asymmetric Proximal Decomposition Method

2.1. Structured VI

The separable VI(1.2)-(1.3) consists of N partitioned sub-VIs. Introducing a Lagrange
multiplier vector λ ∈ Λ(Λ = Rm

+ or Rm) associated with the linearly coupling constraint
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∑N
j=1Ajxj ≥ b (or

∑N
j=1Ajxj = b), we equivalently formulate the separable VI(1.2)-(1.3) as

an enlarged VI: find w∗ = (x∗, λ∗) ∈ W such that

(
x′
i − x∗

i

)T{
fi
(
x∗
i

) −AT
i λ

∗
}
≥ 0, i = 1, . . . ,N,

(
λ′ − λ∗)T

⎛

⎝
N∑

j=1

Ajx
∗
j − b

⎞

⎠ ≥ 0,
∀w′ ∈ W, (2.1)

where

W = X ×Λ, X =
N∏

j=1

Xj . (2.2)

VI(2.1)-(2.2) is referred as structured variational inequality (SVI), denoted as SVI(W, Q). Here,

Q(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f1(x1) −AT
1λ

...
fN(xN) −AT

Nλ
N∑

j=1

Ajxj − b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3)

2.2. Preliminaries

We summarize some basic properties and related definitions which will be used in the
following discussions.

Definition 2.1. (i) The mapping f is said to be monotone if and only if

(w − w̃)T
(
f(w) − f(w̃)

) ≥ 0, ∀w, w̃. (2.4)

(ii)A function f is said to be Lipschitz continuous if there is a constant L > 0 such that

∥∥f(w) − f(w̃)
∥∥ ≤ L‖w − w̃‖, ∀w, w̃. (2.5)

The projection onto a closed convex set is a basic concept in this paper. Let W ⊂ Rn be any
closed convex set. We use PW(w) to denote the projection of w onto W under the Euclidean
norm; that is,

PW(w) = arg min
{∥∥w −w′∥∥ | w′ ∈ W}

. (2.6)

The following lemmas are useful for the convergence analysis in this paper.
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Lemma 2.2. LetW be a closed convex set in Rn, then one has

(1)

(w − PW(w))T
(
w′ − PW(w)

) ≤ 0 ∀w ∈ Rn, ∀w′ ∈ W, (2.7)

(2)

∥∥PW(w) −w′∥∥2 ≤ ∥∥w −w′∥∥2 − ‖w − PW(w)‖2, ∀w ∈ Rn, w′ ∈ W. (2.8)

Proof. See [23].

Lemma 2.3. LetW be a closed convex set in Rn, then w∗ is a solution of VI(W, Q) if and only if

w∗ = PW
[
w∗ − βQ(w∗)

]
, ∀β > 0. (2.9)

Proof. See [10, page 267].

Hence, solving VI(W, Q) is equivalent to finding a zero point of the residue function

e
(
w, β

)
= w − PW

[
w − βQ(w)

]
, β > 0. (2.10)

Generally, the term ‖e(w)‖ (denotes ‖e(w, 1)‖) is referred to as the error bound of VI(W, Q),
since it measures the distance of u from the solution set.

2.3. The Presentation of the Exact AsPDM

In each iteration, by our proper construction, our method solves N independent sub-VIs
involving each individual variable xi only so that xi can be obtained in parallel. In what
follows, to illustrate our method’s practical significance, we interpret our algorithm process
as a system which has a central authority and N local administrators; each administrator
attempts to unilaterally solve a certain problem under the presumption that the instructions
given by the authority are parametric inputs and the responses of other administrations’
actions are not available; namely, the N local administrators acts synchronously and
independently once they receive the information given by the central authority. We briefly
describe our method which consists of two main phases.

Phase I: For arbitrary (xk1 , . . . , x
k
N, λ

k) given by the central authority, each local
administrator uses his own way to offer the solution (denoted as x̃ki ) of his individual
problem: find x̃ki ∈ Xi, such that

(
x′
i − x̃ki

)T{
fi
(
x̃ki

)
+ βi

(
x̃ki − xki

)
−AT

i λ
k
}
≥ 0, ∀x′

i ∈ Xi. (2.11)
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Phase II: After theN local administrators accomplish their tasks, the central authority
collects the resulting (x̃k1 , . . . , x̃

k
N), moreover, corresponding (f1(x̃k1 ), . . .,fN(x̃kN))which can be

viewed as the feedback information from theN local administrators and sets:

λ̃k = PΛ

⎡

⎣λk − μ−1

⎛

⎝
N∑

j=1

Ajx̃
k
j − b

⎞

⎠

⎤

⎦. (2.12)

Here, μ is suitably chosen by the central authority. So the central authority aims to employ
this feedback information effectively to provide (xk+11 , . . . , xk+1N , λk+1) which will be beneficial
for the next iteration loop. In this paper, our proposed methods will update the new iterate
by the following two forms:

wk+1
1 = wk − αkG

(
wk − w̃k

)
, (2.13)

or

wk+1
2 = PW

[
wk − αkQ

(
w̃k

)]
, (2.14)

where αk > 0 is a specific step size and

G =

⎛
⎜⎜⎜⎝

β1 AT
1

. . .
...

βN AT
N

μI

⎞
⎟⎟⎟⎠. (2.15)

Wemake the standard assumptions to guarantee that the problem under consideration
is solvable and the proposed methods are well defined.

Assumption A. fi(xi) is monotone and Lipschitz continuous, i = 1, . . . ,N.

By this assumption, it is easy to get that Q(w) is monotone.

2.4. Presentation of the Inexact AsPDM

In this section, the inexact version of the AsPDM method is present, and some remarks are
briefly made.

For later analysis convenience, we denote

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β1
2

. . .
βN
2

ηI

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.16)
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At each iteration, we solveN sub-VIs (see (2.11)) independently. No doubt, the computation
load for an exact solution of (2.11) is usually expensive. Hence, it is desirable for us to
consider solving (2.11) inexactly under a relative relaxed inexact criterion. We now describe
and analyze our inexact method. Each iteration consists of two main phases, one of which
provides an inexact solution of (2.11) and the other of which employs the inexact solution to
offer a new iterate for the next iteration.

The first phase of our method works as follows. At the beginning of kth iteration, an
iterate wk = (xk, λk) is given. If xki = PXi[x

k
i − (fi(xki ) − AT

i λ
k)], then xki is the exact solution

of ith sub-VI; there is nothing we need to do with the ith sub-VI. Otherwise, we should find
x̃ki ∈ Xi such that

(
x′
i − x̃ki

)T{
fi
(
x̃ki

)
+ βi

(
x̃ki − xki

)
−AT

i λ
k + ξkxi

}
≥ 0, ∀x′

i ∈ Xi, (2.17)

with

ξkxi = fi
(
xki

)
− fi

(
x̃ki

)
. (2.18)

Here, the obtained βi should satisfy following two inexact criteria:

(
xki − x̃ki

)T
ξkxi ≤

νβi
2

∥∥∥xki − x̃ki
∥∥∥
2
, ν ∈ (0, 1), (2.18∗a)

∥∥∥ξkxi
∥∥∥ ≤ βi√

2

∥∥∥xki − x̃ki
∥∥∥. (2.18∗b)

Once one of the above criteria fails to be satisfied, we will increase βi by βi = βi ∗ 1.8 and turn
back to solve the ith sub-VI of (2.17)with this updated βi. It should be noted that both inexact
criteria are quite easy to check since they do not contain any unknown variables. In addition,
another favorable characterization of these criteria is that they are independent; namely, they
only involve xki , x̃

k
i , irrelevant to x

k
j , x̃

k
j (j /= i).

In what follows, let us describe the second phase. We require

λ̃k = PΛ

⎡

⎣λk − μ−1

⎛

⎝
N∑

j=1

Ajx̃
k
j − b

⎞

⎠

⎤

⎦, (2.19)

where μ ∈ (0,
∑N

j=1(‖AjA
T
j ‖/2βj) + η] (here, η > 0) is suitably chosen to satisfy

(
wk − w̃k

)T
G
(
wk − w̃k

)
≥
∥∥∥wk − w̃k

∥∥∥
2

D
. (2.20)

Now we use this w̃k = (x̃k, λ̃k) (or Q(w̃k)) to construct the new iteration. Here, we provide
two simple forms for the new iteration:

wk+1
1 = wk − αk

[
G
(
wk − w̃k

)
− ξk

]
, ξk =

(
ξkx, 0

)
, ξkx =

(
ξkx1 , . . . , ξ

k
xN

)
, (2.21∗a)
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or

wk+1
2 = PW

[
wk − αkQ

(
w̃k

)]
, (2.21∗b)

where

αk = γα∗k, α∗k =

(
wk − w̃k

)T(
G
(
wk − w̃k

) − ξk)
∥∥G(wk − w̃k) − ξ∥∥2

, γ ∈ (0, 2). (2.21)

In fact, each iteration of the proposed method consists of two main phases. Using the point
of view that the problem is a system with a central authority andN administrators, the first
phase is accomplished by N administrators based on the instruction given by the authority.
That is, ith sub-VI only involves ith administrator’s activities. On the other hand, the second
phase is implemented by the central authority to give new instruction for the next iteration.

Remark 2.4. In the inexact AsPDM, the main task of Phase I is to find a solution for (2.17).
From (2.17), it is easy to get that

x̃ki = PXi

[
x̃ki −

(
fi
(
xki

)
+ βi

(
x̃ki − xki

)
−AT

i λ
k
)]
. (2.22)

It seems that equality (2.22) is an implicit form since both sides of (2.22) contain x̃ki . In fact,
we can transform equality (2.22) to an explicit form. Using the property of the projection, we
have

x̃ki = PXi

{
x̃ki − βi

[(
x̃ki − xki

)
+ βi

−1
(
fi
(
xki

)
−AT

i λ
k
)]}

= PXi

[
xki −

1
βi

(
fi
(
xki

)
−AT

i λ
k
)]
.

(2.23)

Consequently, using the above formula, we can compute x̃ki quite easily.

Remark 2.5. Combining (2.22) and (2.19), we then find that

w̃k = PW
[
w̃k −

(
Q
(
w̃k

)
+G

(
w̃k −wk

)
+ ξk

)]
. (2.24)

If ξk = 0, it yields an exact version. In this special case, it is clear that

w̃k = PW
[
w̃k −

(
Q
(
w̃k

)
+G

(
w̃k −wk

))]
. (2.25)

Wefind that this formula is quite similar to the iterates produced by the classic PPA [3], which
employs

wk+1 = PW
[
wk+1 −

(
Q
(
wk+1

)
+ S

(
wk+1 −wk

))]
(2.26)
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as the new iterate; here, S is a positive symmetry definite matrix. For deeper insight, our
method does not appear fit into any of the known PPA frameworks. It is virtually not
equivalent to PPA even if G is positive definite. The reason why our method can not be
viewed as PPA lies in the fact that G is asymmetry, moreover, may be not positive definite.
This lack of symmetry makes it fail to introduce an inner product as S. Consequently, if one
sets w̃k as the new iterate, one may fail to obtain the convergence. Due to the asymmetric
feature of G, we call our method asymmetric proximal decomposition method.

Remark 2.6. Recalling that λ̃k is obtained by (2.19), it is easy to get that

(
λ′ − λ̃k

)T
⎧
⎨

⎩λ̃k − λk + μ−1

⎛

⎝
N∑

j=1

Ajx̃j − b
⎞

⎠

⎫
⎬

⎭ ≥ 0, ∀λ′ ∈ Rm
+ . (2.27)

Combining (2.17) and (2.27), we have

(
w′ − w̃k

)T(
Q
(
w̃k

)
+G

(
w̃k −wk

)
+ ξk

)
≥ 0, ∀w′ ∈ W. (2.28)

Since w̃k = (x̃k1 , . . . , x̃
k
N, λ̃

k) ∈ W is generated by (2.17)–(2.20) from a given
(xk1 , . . . , x

k
N, λ

k), we have that ‖wk − w̃k‖ = 0 implies ‖ξk‖ = 0 and ‖G(w̃k − wk) + ξk‖ = 0.
According to (2.28), we have

(
w′ − w̃k

)T
Q
(
w̃k

)
≥ 0 ∀w′ ∈ W. (2.29)

In other words, w̃k is a solution of Problem (2.1)-(2.2) if xki = x̃ki (i = 1, . . . ,N) and λk = λ̃k.
Hence, we use ‖wk − w̃k‖ ≤ ε as stopping criterion in the proposed method.

Remark 2.7. The update form (2.21∗a) is based on the fact that G(w̃k − wk) + ξk is a descent
direction of the unknown distance function (1/2)‖w −w∗‖2 at point wk. This property will
be proved in Section 3.1. α∗

k
in (2.21) is the “optimal” step length, which will be detailed

in Section 3.2. We can also use (2.21∗b) to update the new iterate. For fast convergence, the
practical step length should be multiplied by a relaxed factor γ ∈ [1, 2).

Remark 2.8. Note that ‖wk−w̃k‖ = 0 if and only if ‖wk − w̃k‖D = 0. In the case ‖wk − w̃k‖D /= 0,
by choosing a suitable μ ∈ (0,

∑N
j=1(‖AjA

T
j ‖/2βj) + η], (2.20) will be satisfied. We state this

fact in the following lemma.

Lemma 2.9. LetG andD be defined in (2.15) and (2.16), respectively. If μ =
∑N

j=1(‖AjA
T
j ‖/2βj)+η,

for all w = (x1, . . . , xN, λ) ∈ R
∑N

j=1 nj+m, one has

wTGw ≥ ‖w‖2D. (2.30)
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Proof. According to Definition (2.16), we have

wTGw =
N∑

j=1

βj
∥∥xj

∥∥2 +

⎛

⎝
N∑

j=1

∥∥∥AjA
T
j

∥∥∥

2βj
+ η

⎞

⎠‖λ‖2 +
N∑

j=1

xTj A
T
j λ

=
N∑

j=1

βj

2
∥∥xj

∥∥2 + η‖λ‖2 + 1
2

N∑

j=1

∥∥∥∥∥∥∥

√
βjxj +

AT
j λ

√
βj

∥∥∥∥∥∥∥

2

+
N∑

j=1

⎛
⎜⎝

∥∥∥AjA
T
j

∥∥∥‖λ‖2 −
∥∥∥AT

j λ
∥∥∥
2

2βj

⎞
⎟⎠

≥ ‖w‖2D,
(2.31)

and the assertion is obtained.

Set w = wk − w̃k in the above lemma, we get

(
wk − w̃k

)T
G
(
wk − w̃k

)
≥
∥∥∥wk − w̃k

∥∥∥
2

D
. (2.32)

If one chooses μ =
∑N

j=1(‖AjA
T
j ‖/2βj)+η, then the Condition (2.20) is always satisfied; hence,

∑N
j=1(‖AjA

T
j ‖/2βj) + η can be regarded as a safe upper bound for this condition. Note that

we use an inequality in the proof of Lemma 2.9; it seems that there exists some relaxations.
As a result, rather than fix μ =

∑N
j=1(‖AjA

T
j ‖/2βj) + η, let μ be a smaller value, and check if

Condition (2.20) is satisfied. If not, increase μ by μ = min{∑N
j=1(‖AjA

T
j ‖/2βj) + η, 4μ} and try

again. This process enables us to reach a suitable μ ∈ (0, (
∑N

j=1 ‖AjA
T
j ‖ + 1)/2] to meet (2.20).

Note that, in our proposed method, problems VI (2.17) produce x̃ki in a parallel wise.
In addition, instead of taking the solution of the subproblems, the new iterate in the proposed
methods is updated by a simple manipulation, for example, (2.18∗a)-(2.18∗b).

3. Convergence of AsPDM

In the proposed methods, the first phase (accomplished by the local administrators) offers a
descent direction of the unknown distance function, and the second phase (accomplished by
the central authority) determines the “optimal” step length along this direction. This section
gives more theory analysis.

3.1. The Descent Direction in the Proposed AsPDM

For anyw∗ ∈ W∗, (wk −w∗) is the gradient of the unknown distance function (1/2)‖w −w∗‖2
at point wk /∈ W∗. A direction d is called a descent direction of (1/2)‖w −w∗‖2 at point wk

if and only if the inner product 〈wk −w∗, d〉 < 0. Let w̃k = (x̃k1 , . . . , x̃
k
N, λ̃

k) be generated by
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(2.17)–(2.20) from a given wk = (xk1 , . . . , x
k
N, λ

k). A goal of this subsection is to elucidate that,
for any w∗ ∈ W∗,

(
wk −w∗

)T(
G
(
wk − w̃k

)
− ξk

)
≥ (1 − ν)

∥∥∥wk − w̃k
∥∥∥
2

D
. (3.1)

It guarantees that G(w̃k −wk) + ξk is a descent direction of (1/2)‖w −w∗‖2 at pointwk /∈ W∗.
The above inequality plays an important role in the convergence analysis.

Lemma 3.1. Assume that w̃k = (x̃k1 , . . . , x̃
k
N, λ̃

k) is generated by (2.17)–(2.20) from a given wk =
(xk1 , . . . , x

k
N, λ

k), then for any w∗ = (x∗
1, . . . , x

∗
N, λ

∗) ∈ W∗ one has

(
wk −w∗

)T(
G
(
wk − w̃k

)
− ξk

)
≥ (1 − ν)

∥∥∥wk − w̃k
∥∥∥
2

D
. (3.2)

Proof. Since w∗ ∈ W, substituting w′ = w∗ in (2.28), we obtain

(
w∗ − w̃k

)T(
Q
(
w̃k

)
+G

(
w̃k −wk

)
+ ξk

)
≥ 0. (3.3)

Using the monotonicity of Q(w) and applying with w′ = w̃k in (2.1), it is easy to get

(
w̃k −w∗

)T
Q
(
w̃k

)
≥
(
w̃k −w∗

)T
Q(w∗) ≥ 0. (3.4)

Combining (3.3) and (3.4), we then find

(
wk −w∗

)T(
G
(
wk − w̃k

)
− ξk

)
≥
(
wk − w̃k

)T(
G
(
wk − w̃k

)
− ξk

)
. (3.5)

Note that Criterion (2.18∗a) holds; we have

(
wk −wk

)T
ξk ≤ ν

N∑

j=1

βj

2

∥∥∥xkj − x̃kj
∥∥∥
2

≤ ν
∥∥∥wk − w̃k

∥∥∥
2

D

≤ ν
(
wk − w̃k

)T
G
(
wk − w̃k

)
.

(3.6)

The last inequality follows directly from the result of Lemma 2.9. Consequently,

(
wk − w̃k

)T(
G
(
wk − w̃k

)
− ξk

)
≥ (1 − ν)

(
wk − w̃k

)T
G
(
wk − w̃k

)
. (3.7)
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Using the preceding inequality and (2.32) in (3.5) yields

(
wk −w∗

)T(
G
(
wk − w̃k

)
− ξk

)
≥ (1 − ν)

∥∥∥wk − w̃k
∥∥∥
2

D
, (3.8)

completing the proof.

Now, we state the main properties of Q(w̃k) in the lemma below.

Lemma 3.2. Let w̃k = (x̃k1 , . . . , x̃
k
N, λ̃

k) be generated by (2.17)–(2.20) from given wk =
(xk1 , . . . , x

k
N, λ

k). Then for any w′ ∈ W one has

(
w′ − w̃k

)T
Q
(
w̃k

)
≥
(
w′ − w̃k

)T[
G
(
wk − w̃k

)
− ξk

]
. (3.9)

Proof. Recalling that w̃k = PW[w̃k − (Q(w̃k) + G(w̃k − wk) + ξk)] ∈ W, substituting w =
w̃k − (Q(w̃k) +G(w̃k −wk) + ξk) in inequality (2.1), we have, immediately,

(
w′ − w̃k

)T{
w̃k −

[
w̃k −

(
Q
(
w̃k

)
+G

(
w̃k −wk

)
+ ξk

)]}
≥ 0. (3.10)

By some manipulations, our assertion holds immediately.

3.2. The Step Size and the New Iterate

Since G(w̃k − wk) + ξk is a descent direction of (1/2)‖w −w∗‖2 at point wk, the new iterate
will be determined along this direction by choosing a suitable step length. In order to explain
why we have the “optimal” step α∗

k
as defined in (2.21), we let

wk+1
1 (α) = wk − α

[
G
(
wk − w̃k

)
− ξk

]
,

wk+1
2 (α) = PW

[
wk − αQ

(
w̃k

)] (3.11)

be the step-size-dependent new iterate, and let

Θk,i(α) =
∥∥∥wk −w∗

∥∥∥
2 −

∥∥∥wk+1
i (α) −w∗

∥∥∥
2
, i = 1, 2, (3.12)

be the profit function of the kth iteration. Because Θk,i(α) includes the unknown vectorw∗, it
can not be maximized directly. The following lemma offers us a lower bound ofΘk,i(α)which
is a quadratic function of α.

Lemma 3.3. Let w̃k = (x̃k1 , . . . , x̃
k
N, λ̃

k) be generated by (2.17)–(2.20) from a given wk =
(xk1 , . . . , x

k
N, λ

k). Then one has

Θk,i(α) ≥ qk(α), ∀α > 0, i = 1, 2, (3.13)
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where

qk(α) = 2α
(
wk − w̃k

)T(
G
(
wk − w̃k

)
− ξk

)
− α2

∥∥∥G(wk − w̃k) − ξk
∥∥∥
2
. (3.14)

Proof. It follows from Definition (3.12) and inequality (3.5) that

Θk,1(α) =
∥∥∥wk −w∗

∥∥∥
2 −

∥∥∥wk −w∗ − α
[
G
(
wk − w̃k

)
− ξk

]∥∥∥
2

= 2α
(
wk −w∗

)T[
G
(
wk − w̃k

)
− ξk

]
− α2

∥∥∥G(wk − w̃k) − ξk
∥∥∥
2

(3.5)
≥ qk(α).

(3.15)

Let us deal with Θk,2(α) which seems more complicated:

Θk,2(α)
(2.8)
≥

∥∥∥wk −w∗
∥∥∥
2 −

∥∥∥wk −w∗ − αkQ(w̃k)
∥∥∥
2
+
∥∥∥wk −wk+1 − αkQ(w̃k)

∥∥∥
2

= 2α
(
wk+1 −w∗

)T
Q
(
w̃k

)
+
∥∥∥wk −wk+1

∥∥∥
2

≥ 2α
(
wk+1 − w̃k

)T
Q
(
w̃k

)
+
∥∥∥wk −wk+1

∥∥∥
2

(3.9)
≥

∥∥∥wk −wk+1
∥∥∥
2
+ 2α

(
wk+1 − w̃k

)T[
G
(
wk − w̃k

)
− ξk

]

=
∥∥∥wk −wk+1 − α

[
G
(
wk − w̃k

)
− ξk

]∥∥∥
2
+ 2α

(
wk − w̃k

)T[
G
(
wk − w̃k

)
− ξk

]

− α2
∥∥∥G(wk − w̃k) − ξk

∥∥∥
2

≥ 2α
(
wk − w̃k

)T(
G
(
wk − w̃k

)
− ξk

)
− α2

∥∥∥G(wk − w̃k) − ξk
∥∥∥
2
.

(3.16)

Since qk(α) is a quadratic function of α, it reaches its maximum at

α∗k =

(
wk − w̃k

)T(
G
(
wk − w̃k

) − ξk)
∥∥G(wk − w̃k) − ξk∥∥2

; (3.17)

this is just the same defined in (2.21). In practical computation, taking a relaxed factor γ is
wise for fast convergence. Note that for any αk = γα∗

k
, it follows from (3.13), (3.14), and (2.21)

that

Θk,i

(
γα∗k

) ≥ qk
(
γα∗k

)

= 2γα∗k
(
wk − w̃k

)T(
G
(
wk − w̃k

)
− ξk

)
− γ2(α∗k

)(
α∗k

∥∥∥G
(
wk − w̃k

)
− ξk

∥∥∥
2
)

= γ
(
2 − γ)α∗k

(
wk − w̃k

)T(
G
(
wk − w̃k

)
− ξk

)
.

(3.18)

In order to guarantee that the right-hand side of (3.18) is positive, we take γ ∈ (0, 2).
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In fact, α∗k is bounded below by a positive amount which is the subject of the following
lemma.

Lemma 3.4. Assume that w̃k = (x̃k1 , . . . , x̃
k
N, λ̃

k) is generated by (2.17)–(2.20) from a given wk =
(xk1 , . . . , x

k
N, λ

k), then one has

α∗k ≥ 1 − ν
(∥∥GD−1/2∥∥ + 1

)2 . (3.19)

Proof. Using the fact that square matrix D is positive symmetric definite, we have

∥∥∥G
(
wk − w̃k

)∥∥∥ =
∥∥∥GD−1/2D1/2

(
wk − w̃k

)∥∥∥ ≤
∥∥∥GD−1/2

∥∥∥
∥∥∥D1/2

(
wk − w̃k

)∥∥∥. (3.20)

Moreover, Note that Criterion (2.18∗b) implies

∥∥∥ξk
∥∥∥
2 ≤

N∑

j=1

βj

2

∥∥∥xkj − x̃kj
∥∥∥
2
+ η

∥∥∥λk − λ̃k
∥∥∥
2

=
∥∥∥wk − w̃k

∥∥∥
2

D
.

(3.21)

Hence, applying ‖wk − w̃k‖2D = ‖D1/2(wk − w̃k)‖2 in the above inequality, we get

∥∥∥ξk
∥∥∥ ≤

∥∥∥D1/2
(
wk − w̃k

)∥∥∥. (3.22)

Combining (3.20) and (3.22), we have

∥∥∥G
(
wk − w̃k

)
− ξk

∥∥∥ ≤
(∥∥∥GD−1/2

∥∥∥ + 1
)∥∥∥D1/2

(
wk − w̃k

)∥∥∥. (3.23)

Consequently, applying the above inequality, (3.7), and (2.32) to α∗
k
yields

α∗k =

(
wk − w̃k

)T(
G
(
wk − w̃k

) − ξk)
∥∥G(wk − w̃k) − ξk∥∥2

≥ (1 − ν)∥∥wk − w̃k
∥∥2
D(∥∥GD−1/2∥∥ + 1

)2∥∥D1/2(wk − w̃k)
∥∥2

≥ 1 − ν
(∥∥GD−1/2∥∥ + 1

)2 ,

(3.24)

and thus the assertion is proved.

Now, we are in the stage to prove the main convergence theorem of this paper.
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Theorem 3.5. For anyw∗ = (x∗, λ∗) ∈ W∗, the sequence {wk = (xk, λk)} generated by the proposed
method satisfies

∥∥∥wk+1 −w∗
∥∥∥
2 ≤

∥∥∥wk −w∗
∥∥∥
2 − γ

(
2 − γ)(1 − ν)2

(∥∥GD−1/2∥∥ + 1
)2
∥∥∥wk − w̃k

∥∥∥
2

D
. (3.25)

Thus we have

lim
k→∞

∥∥∥wk − w̃k
∥∥∥
2
= 0, (3.26)

and the iteration of the proposed method will terminate in finite loops.

Proof. First, it follows from (3.12) and (3.18) that

∥∥∥wk+1 −w∗
∥∥∥
2 ≤

∥∥∥wk −w∗
∥∥∥
2 − γ(2 − γ)α∗k

(
wk − w̃k

)T(
G
(
wk − w̃k

)
− ξk

)
. (3.27)

Using (2.32), (3.7), and (3.19), we have

α∗k
(
wk − w̃k

)T(
G
(
wk − w̃k

)
− ξk

)
≥ (1 − ν)2
(∥∥GD−1/2∥∥ + 1

)2
∥∥∥wk − w̃k

∥∥∥
2

D
. (3.28)

Substituting (3.28) in (3.27), Assertion (3.25) is proved. Therefore, we have

∞∑

k=0

γ
(
2 − γ)(1 − ν)2

(∥∥GD−1/2∥∥ + 1
)2
∥∥∥wk − w̃k

∥∥∥
2

D
≤
∥∥∥w0 −w∗

∥∥∥
2
, (3.29)

and Assertion (3.26) follows immediately.
Since we use

max
{∥∥∥xk1 − x̃k1

∥∥∥
∞
, . . . ,

∥∥∥xkN − x̃kN
∥∥∥
∞
,
∥∥∥λk − λ̃k

∥∥∥
∞

}
< ε, (3.30)

as the stopping criterium, it follows from (3.26) that the iteration will terminate in finite loops
for any given ε > 0.

4. Numerical Examples

This section describes experiments testifying to the good performance of proposed method.
The algorithms were written in Matlab (version 7.0) and complied on a notebook with CPU
of Intel Core 2 Duo (2.01GHz and RAM of 0.98GB).
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To evaluate the behavior of the proposedmethod, we construct examples about convex
separable quadratic programming (CSQP) with linearly coupling constraints. The convex
separable quadratic programming was generated as follows:

min

{
1
2

N∑

i=1

xTi Hixi − cTi xi | x ∈ Ω

}
, Ω =

{
x ≥ 0 |

N∑

i=1

Aixi ≤ b
}
, (4.1)

whereHi ∈ Rni×ni is a symmetric positive definite matrix,Ai ∈ Rm×ni , b ∈ Rm, and ci ∈ Rni . We
construct matricesAi andHi in the test examples as follows. The elements ofAi are randomly
given in (−5, 5), and the matricesHi are defined by setting

Hi := ViΣiV
T
i , (4.2)

where

Vi = Ini −
2vivTi
vTi vi

, Σi = diag(σk,i), σk,i = cos
kπ

ni + 1
+ 1. (4.3)

In this way, Hi is positive definite and has prescribed eigenvalues between (0, 2). If x∗ is the
solution of Problem (4.1), according to the KKT principle, there is a 0 ≤ y∗ ∈ Rm such that

Hix
∗
i +A

T
i y

∗ − ci ≥ 0, x∗T
(
Hix

∗
i +A

T
i y

∗ − ci
)
= 0, x∗

i ≥ 0,

N∑

i=1

Aix
∗
i ≤ b, y∗T

(
N∑

i=1

Aix
∗
i − b

)
= 0, y∗ ≥ 0.

(4.4)

Let ξi ∈ Rni and z ∈ Rm be random vectors whose elements are between (−1, 1). We set

x∗
i = max(ξi, 0) ∗ τ1, ξ∗i = max(−ξi, 0) ∗ τ2,
y∗ = max(z, 0) ∗ τ3, z∗ = max(−z, 0) ∗ τ4,

(4.5)

where τi, i = 1, 2, 3, 4, are positive parameters. By setting

ci = Hix
∗
i +A

T
i y

∗ − ξ∗i , b =
N∑

i=1

Aix
∗
i + z

∗, (4.6)

we constructed a test problem of (4.1)which has the known solution point x∗ and the optimal
Lagrangian multipliers y∗. We tested such problems with τ1 = 0.5, τ2 = 10, τ3 = 0.5, τ4 =
10. Here, two example sets were considered. The problems in the first set have 3 separable
operators (N = 3), and the second have 2 (N = 2).

In the first experiment, we employ AsPDM with update wk+1
2 to solve CSQP with 3

separable operators. (The reason why we choose wk+1
2 here is that it usually performs better

than wk+1
1 .) The stopping criterion was chosen as ‖e(w)‖∞ < 10−3; the parameters were set

as ν = 0.2, η = 0.5, and γ = 1.8. Table 1 reports the number iterations (denoted as Its.),
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Table 1: AsPDM for CSQP with 3 separable operators.

m n1 n2 n3 Its. Numf

100 50 50 50 674 4066
100 100 100 100 1581 9508
150 150 150 150 1775 10672
200 200 200 200 2108 12670

Table 2: Its. and function eval. for different problem sizes.

m n1 n2 AsPDM PCM
Its. Numf Its. Numf

100 100 100 1089 4371 1343 5393
200 200 200 1265 5075 1649 6621
300 300 300 1655 6635 1765 7087
400 400 400 1573 6307 1834 7365
500 500 500 2299 9211 2218 8901
600 600 600 2267 9083 2289 9187
100 80 80 568 2287 616 2485
100 50 150 1192 4787 1231 4945
200 150 100 567 2283 572 2311
200 100 200 744 2991 846 3407

the total number of function evaluations (denoted as Numf) for different problem-sizes.
Here, Numf =

∑3
i=1 Numfi . Observed form Table 1, the solutions are obtained in a moderate

number of iterations; thus the proposed method is effectively applicable. In addition, the
evaluations of fi per iteration are approximately equal to 2. AsPDM is well suited to solve
separable problems.

Next, we compared the computational efficiency of AsPDM against the method in [7]
(denoted as PCM), regarded as a highly efficient PPA-based method that can be well suited
to solve VI. Iterations were terminated when the criterion ‖e(w)‖∞ < 10−5 was met. Table 2
reports the iterations, the total number of function evaluation for both methods. We observe
that both methods are acceptable to for us to find a solution. Concerning computational
efficiency, we can observe that AsPDM is comparable and clearly faster than PCM; moreover,
function evaluations are also less, except in the case of m = 500, n1 = 500, n2 = 500. In some
cases, AsPDM can reduce about 20% computation cost than PCM. Form = 100, n1 = 100, n2 =
100, we plot the error versus iteration number for both AsPDM and PCM in Figure 1.We have
found that both methods converge quickly for the first hundred iterations but slow down as
the exact solution is reached. The speed of AsPDM is better than PCM.

In addition to being fast, AsPDM can solve the problem separately; that is the most
significant advantage over other methods. Hence, AsPDM is more suitable to solve the real-
life separable problems.

5. Conclusions

We have proposed AsPDM for solving separable problems. It decomposes the original
problem to independent low-dimension subproblems and solves those subproblems in
parallel. Only the function values is required in the process, and the total computational
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Figure 1: Error versus iteration number for the method and for withm = 100, n1 = 100, n2 = 100.

cost is very small. AsPDM is easy to implement and does not appear to require application-
specific tuning. The numerical results also evidenced the efficiency of our method. Thus, the
new method is applicable and recommended in practice.
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