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In the survey of the continuous nonlinear resource allocation problem, Patriksson pointed out that Newton-type algorithms have
not been proposed for solving the problem of search theory in the theoretical perspective. In this paper, we propose a Newton-type
algorithm to solve the problem. We prove that the proposed algorithm has global and superlinear convergence. Some numerical
results indicate that the proposed algorithm is promising.

1. Introduction

We consider the problem

max
x∈𝑋

𝑛

∑
𝑖=1

a
𝑖
(1 − exp (−b

𝑖
x
𝑖
)) , (1)

where 𝑋 = {x ∈ R𝑛
+
| e𝑇x = 𝑐}, a, b ∈ R𝑛

++
, 𝑐 > 0, and

e ∈ R𝑛 is the vector of ones. The problem described by (1)
is called the theory of search by Koopman [1] and Patriksson
[2]. It has the following interpretation: an object is inside box
𝑖 with probability a

𝑖
, and −b

𝑖
is proportional to the difficulty

of searching inside the box. If the searcher spends x
𝑖
time

units looking inside box 𝑖, then he/she will find the object
with probability 1− exp(−b

𝑖
x
𝑖
). The problem described by (1)

represents the optimum search strategy if the available time is
limited to 𝑐 time units. Such problems in the form of (1) arise,
for example, in searching for a lost object, in distribution of
destructive effort such as a weapons allocation problem [3],
in drilling for oil, and so forth [2]. Patriksson [2] surveyed
the history and applications as well as algorithms of Problem
(1); see [2, Sections 2.1.4, 2.1.5, and 3.1.2]. Patriksson pointed
out that Newton-type algorithms have not been theoretically
analyzed for the problem described by (1) in the references
listed in [2].

Recently, related problems and methods were considered
in many articles, for example, [4–6]. For example, a projected
pegging algorithm was proposed in [5] for solving convex

quadratic minimization. However, the question proposed
by Patriksson [2] was not answered in the literature. In
this paper, we design a Newton-type algorithm to solve
the problem described by (1). We show that the proposed
algorithm has global and superlinear convergence.

According to the Fischer-Burmeister function [7], the
problemdescribed by (1) can be transformed to a semismooth
equation. Based on the framework of the algorithms in
[8, 9], a smoothing Newton-type algorithm is proposed to
solve the semismooth equation. It is shown that the pro-
posed algorithm can generate a bounded iteration sequence.
Moreover, the iteration sequence superlinearly converges to
an accumulation point which is a solution to the problem
described by (1). Numerical results indicate that the proposed
algorithm has good performance even for 𝑛 = 10000.

The rest of this paper is organized as follows.TheNewton-
type algorithm is proposed in Section 2. The global and
superlinear convergence is established in Section 3. Section 4
reports some numerical results. Finally, Section 5 gives some
concluding remarks.

The following notation will be used throughout this
paper. All vectors are column ones, the subscript 𝑇 denotes
transpose, R𝑛 (resp., R) denotes the space of 𝑛-dimensional
real column vectors (resp., real numbers), and R𝑛

+
and R

++

denote the nonnegative and positive orthants of R𝑛 and R,
respectively. Let Φ󸀠 denote the derivative of the function Φ.
We define𝑁 := {1, 2, . . . , 𝑛}. For any vector x ∈ R𝑛, we denote
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by diag{x
𝑖
: 𝑖 ∈ 𝑁} the diagonal matrix whose 𝑖th diagonal

element is x
𝑖
and vec{x

𝑖
: 𝑖 ∈ 𝑁} the vector x. The symbol

‖ ⋅ ‖ stands for the 2-norm. We denote by 𝑆 the solution set of
Problem (1). For any 𝛼, 𝛽 > 0, 𝛼 = 𝑂(𝛽) (resp., 𝛼 = 𝑜(𝛽))
means 𝛼/𝛽 is uniformly bounded (resp., tends to zero) as
𝛽 → 0.

2. Algorithm Description

In this section, we formulate the problem described by (1) as a
semismooth equation and develop a smoothingNewton-type
algorithm to solve the semismooth equation.

We first briefly recall the concepts of NCP, semismooth
and smoothing functions [10–12].

Definition 1. A function 𝜙 : R2 → R is called an NCP
function if

𝜙 (𝑢, 𝑣) = 0 ⇐⇒ 𝑢 ≥ 0, 𝑣 ≥ 0, 𝑢𝑣 = 0. (2)

Definition 2. A locally Lipschitz function 𝐹 : R𝑛 → R𝑚 is
called semismooth at x ∈ R𝑛 if𝐹 is directionally differentiable
at x and for all 𝑄 ∈ 𝜕𝐹(x + d) and d → 0,

𝐹 (x + d) − 𝐹 (x) − 𝑄d = 𝑜 (‖d‖) , (3)

where 𝜕𝐹 is the generalized Jacobian of 𝐹 in the sense of
Clarke [13].

𝐹 is called strongly semismooth at x ∈ R𝑛 if 𝐹 is
semismooth at x and for all 𝑄 ∈ 𝜕𝐹(x + d) and d → 0,

𝐹 (x + d) − 𝐹 (x) − 𝑄d = 𝑂 (‖d‖2) . (4)

Definition 3. Let 𝜇 ̸= 0 be a parameter. Function 𝐹
𝜇
(x) is

called a smoothing function of a semismooth function 𝐹(x)
if it is continuously differentiable everywhere and there is a
constant 𝑐 > 0 independent of 𝜇 such that

󵄩󵄩󵄩󵄩󵄩𝐹𝜇 (x) − 𝐹 (x)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑐𝜇, ∀x. (5)

The Fischer-Burmeister function [7] is one of the well-
known NCP functions:

𝜙 (𝑢, 𝑣) = 𝑢 + 𝑣 − √𝑢2 + 𝑣2. (6)

Clearly, the Fischer-Burmeister function defined by (6) is not
smooth, but it is strongly semismooth [14]. Let 𝜑 : R3 → R

be the perturbed Fischer-Burmeister function defined by

𝜑 (𝜇, 𝑢, 𝑣) = 𝑢 + 𝑣 − √𝑢2 + 𝑣2 + 𝜇2. (7)

It is obvious that for any 𝜇 > 0, 𝜑 is differentiable everywhere
and for each 𝜇 ≥ 0, we have

󵄨󵄨󵄨󵄨𝜑 (𝜇, 𝑢, 𝑣) − 𝜙 (𝑢, 𝑣)
󵄨󵄨󵄨󵄨 ≤ 𝜇, ∀ (𝑢, 𝑣) ∈ R

2. (8)

In particular, 𝜑(0, 𝑢, 𝑣) = 𝜙(𝑢, 𝑣) for all (𝑢, 𝑣) ∈ R2. Namely,
𝜑 defined by (7) is a smoothing function of 𝜙 defined by (6).

According to Kuhn-Tucker theorem, the problem
described by (1) can be transformed to

e𝑇x = 𝑐,

x
𝑖
≥ 0, 𝑠 − a

𝑖
b
𝑖
exp (−b

𝑖
x
𝑖
) ≥ 0, ∀𝑖 ∈ 𝑁,

x
𝑖
(𝑠 − a

𝑖
b
𝑖
exp (−b

𝑖
x
𝑖
)) = 0, ∀𝑖 ∈ 𝑁,

(9)

where 𝑠 ∈ R.
Define

Ψ (𝑠, x) := (

...
𝜙 (x
𝑖
, 𝑠 − a

𝑖
b
𝑖
exp (−b

𝑖
x
𝑖
))

...

)

𝑖∈𝑁

,

𝐻 (𝑠, x) := (e
𝑇x − 𝑐
Ψ (𝑠, x)) .

(10)

According to the Fischer-Burmeister function defined by (6),
we formulate (9) as the following semismooth equation:

𝐻(𝑠, x) = 0. (11)

Based on the perturbed Fischer-Burmeister function defined
by (7), we obtain the following smooth equation:

𝐺 (y) := 𝐺 (𝜇, 𝑠, x) := (
𝜇

e𝑇x − 𝑐
Φ (𝜇, 𝑠, x)

) = 0, (12)

where

Φ(𝜇, 𝑠, x) := (

...
𝜑(𝜇, x

𝑖
, 𝑠 − a

𝑖
b
𝑖
exp(−b

𝑖
x
𝑖
))

...

)

𝑖∈𝑁

. (13)

Clearly, if y∗ = (0, 𝑠∗, x∗) is a solution to (12) then x∗ is an
optimal solution to the problem described by (1).

We give some properties of the function 𝐺 in the follow-
ing lemma, which will be used in the sequel.

Lemma 4. Let 𝐺 be defined by (12). Then 𝐺 is semismooth
on R𝑛+2 and continuously differentiable at any y = (𝜇, 𝑠, x) ∈
R
++

×R𝑛+1 with its Jacobian

𝐺󸀠 (y) = (
1 0 0
0 0 e𝑇
Φ󸀠
𝜇
Φ󸀠
𝑠
Φ󸀠x

) , (14)

where

Φ󸀠
𝜇
:= vec{−

𝜇
𝑤
𝑖

: 𝑖 ∈ 𝑁} ,

Φ󸀠
𝑠
:= vec{1 −

(𝑠 − a
𝑖
b
𝑖
exp (−b

𝑖
x
𝑖
))

𝑤
𝑖

: 𝑖 ∈ 𝑁} ,

Φ󸀠x := diag{(1 −
x
𝑖

𝑤
𝑖

) + a
𝑖
b2
𝑖
exp (−b

𝑖
x
𝑖
) (Φ󸀠
𝑠
)
𝑖

: 𝑖 ∈ 𝑁} ,

(15)
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with 𝑤
𝑖
:= √(x

𝑖
)2 + (𝑠 − a

𝑖
b
𝑖
exp(−b

𝑖
x
𝑖
))2 + 𝜇2, 𝑖 ∈ 𝑁. More-

over, the matrix 𝐺󸀠(y) is nonsingular on R
++

×R𝑛+1.

Proof. 𝐺 is semismooth on R𝑛+2 due to the strong semis-
moothness of 𝜙(𝑢, 𝑣). 𝐺 is continuously differentiable on
R
++

× R𝑛+1. For any 𝜇 > 0, (14) can be obtained by a
straightforward calculation from (12). Clearly, we have for any
𝜇 > 0,

0 < 1 −
x
𝑖

𝑤
𝑖

< 2, 0 < (Φ󸀠
𝑠
)
𝑖

< 2,

a
𝑖
b2
𝑖
exp (−b

𝑖
x
𝑖
) > 0, ∀𝑖 ∈ 𝑁,

(16)

which implies that (Φ󸀠x)𝑖𝑖 > 0 for all 𝑖 ∈ 𝑁. Let

(
1 0 0
0 0 e𝑇
Φ󸀠
𝜇
Φ󸀠
𝑠
Φ󸀠x

)(
𝑢
𝑣
z
) = 0. (17)

Then, we have 𝑢 = 0 and
𝑛

∑
𝑖=1

z
𝑖
= 0, (Φ󸀠

𝑠
)
𝑖
𝑣 + (Φ󸀠x)

𝑖𝑖

z
𝑖
= 0, ∀𝑖 ∈ 𝑁. (18)

The second equality in (18) implies

z
𝑖
=
−(Φ󸀠
𝑠
)
𝑖

(Φ󸀠x)𝑖𝑖
𝑣, 𝑖 ∈ 𝑁. (19)

Since (Φ󸀠
𝑠
)
𝑖
> 0 and (Φ󸀠x)𝑖𝑖 > 0 for 𝑖 ∈ 𝑁, the first equality in

(18) yields 𝑣 = 0 and hence z = 0. Therefore, the matrix 𝐺󸀠(y)
defined by (14) is nonsingular for 𝜇 > 0.

We now propose a smoothingNewton-type algorithm for
solving the smooth equation in (12). It is a modified version
of the smoothing Newton method proposed in [8]. The main
difference is that we add a different perturbed item inNewton
equation, which allows the algorithm to generate a bounded
iteration sequence. Let y = (𝜇, 𝑠, x) ∈ R𝑛+2 and 𝛾 ∈ (0, 1).
Define a function 𝜌 : R𝑛+2 → R

+
by

𝜌 (y) := 𝛾 󵄩󵄩󵄩󵄩𝐺 (y)󵄩󵄩󵄩󵄩min {1, 󵄩󵄩󵄩󵄩𝐺 (y)󵄩󵄩󵄩󵄩} . (20)

Algorithm 5

Step 0. Choose 𝛿, 𝜎 ∈ (0, 1) and 𝜇0 > 0. Let u := (𝜇0, 0, 0) ∈
R
++
×R×R𝑛. Let 𝑠0 ∈ R and x0 ∈ R𝑛 be arbitrary points. Let

y0 := (𝜇0, 𝑠0, x0). Choose 𝛾 ∈ (0, 1) such that 𝛾‖𝐺(y0)‖ < 1
and 𝛾𝜇0 < 1. Set 𝑘 := 0.

Step 1. If 𝐺(y𝑘) = 0, stop. Otherwise, let 𝜌
𝑘
:= 𝜌(y𝑘).

Step 2. Compute Δy𝑘 := (Δ𝜇𝑘, Δ𝑠𝑘, Δx𝑘) ∈ R𝑛+2 by

𝐺(y𝑘) + 𝐺󸀠 (y𝑘) Δy𝑘 = 𝜌
𝑘
u. (21)

Step 3. Let𝑚
𝑘
be the smallest nonnegative integer such that

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘 + 𝛿𝑚𝑘Δy𝑘)󵄩󵄩󵄩󵄩󵄩 ≤ [1 − 𝜎 (1 − 𝛾𝜇0) 𝛿𝑚𝑘] 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 .
(22)

Let 𝜆
𝑘
:= 𝛿𝑚𝑘 .

Step 4. Set y𝑘+1 := y𝑘 + 𝜆
𝑘
Δy𝑘 and 𝑘 := 𝑘 + 1. Go to Step 1.

The following theorem proves that Algorithm 5 is well
defined.

Theorem5. Algorithm 5 is well defined. If it finitely terminates
at 𝑘th iteration then x𝑘 is an optimal solution to the problem
described by (1). Otherwise, it generates an infinite sequence
{y𝑘 = (𝜇𝑘, 𝑠𝑘, x𝑘)} with 𝜇𝑘 > 0 and 𝜇𝑘 ≥ 𝜌

𝑘
𝜇0.

Proof. If𝜇𝑘 > 0 then Lemma 4 shows that thematrix𝐺󸀠(y𝑘) is
nonsingular. Hence, Step 2 is well defined at the 𝑘th iteration.
For any 0 < 𝛼 ≤ 1, define

𝑅 (𝛼) := 𝐺 (y𝑘 + 𝛼Δy𝑘) − 𝐺 (y𝑘) − 𝛼𝐺󸀠 (y𝑘) Δy𝑘. (23)

It follows from (21) that

Δ𝜇𝑘 = −𝜇𝑘 + 𝜌
𝑘
𝜇0. (24)

Hence, for any 0 < 𝛼 ≤ 1, we have

𝜇𝑘 + 𝛼Δ𝜇𝑘 = (1 − 𝛼) 𝜇𝑘 + 𝛼𝜌
𝑘
𝜇0 > 0. (25)

From Lemma 4, 𝐺 is continuously differentiable around y𝑘.
Thus, (23) implies that

‖𝑅 (𝛼)‖ = 𝑜 (𝛼) . (26)

On the other hand, (20) yields

𝜌
𝑘
≤ 𝛾 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 , 𝜌

𝑘
≤ 𝛾󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩

2

. (27)

Therefore, for any sufficiently small 𝛼 ∈ (0, 1],
󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘 + 𝛼Δy𝑘)󵄩󵄩󵄩󵄩󵄩 ≤ ‖𝑅 (𝛼)‖ + (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 + 𝛼𝜌𝑘𝜇

0

≤ (1 − 𝛼) 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 + 𝛼𝛾𝜇
0 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 + 𝑜 (𝛼)

= [1 − (1 − 𝛾𝜇0) 𝛼] 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 + 𝑜 (𝛼) ,
(28)

where the first inequality follows from (21) and (23), and the
second one follows from (26) and (27). Inequality in (28)
implies that there exists a constant 0 < 𝛼̃ ≤ 1 such that

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘 + 𝛼Δy𝑘)󵄩󵄩󵄩󵄩󵄩 ≤ [1 − 𝜎 (1 − 𝛾𝜇0) 𝛼] 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 ,

∀𝛼 ∈ (0, 𝛼̃] .
(29)

This inequality shows that Step 3 is well defined at the 𝑘th
iteration. In addition, by (24), Steps 3 and 4 in Algorithm 5,
we have

𝜇𝑘+1 = (1 − 𝜆
𝑘
) 𝜇𝑘 + 𝜆

𝑘
𝜌
𝑘
𝜇0 > 0 (30)

holds since 0 < 𝜆
𝑘
≤ 1 and𝜇𝑘 > 0. Consequently, from𝜇0 > 0

and the above statements, we obtain that Algorithm 5 is well
defined.

It is obvious that if Algorithm 5 finitely terminates at 𝑘th
iteration then 𝐺(y𝑘) = 0, which implies that 𝜇𝑘 = 0 and
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(𝑠𝑘, x𝑘) satisfies (9). Hence, x𝑘 is an optimal solution to the
problem described by (1).

Subsequently, we assume that Algorithm 5 does not
finitely terminate. Let {y𝑘 = (𝜇𝑘, 𝑠𝑘, x𝑘)} be the sequence
generated by the algorithm. It follows that 𝜇𝑘 > 0. We want
to prove that {y𝑘} satisfies 𝜇𝑘 ≥ 𝜌

𝑘
𝜇0 through the induction

method. Clearly, 𝜌(y0) ≤ 𝛾‖𝐺(y0)‖ < 1, which yields y0 ∈ Ω.
Assume that 𝜇𝑘 ≥ 𝜌

𝑘
𝜇0; then (24) yields

𝜇𝑘+1 − 𝜌
𝑘+1

𝜇0 = 𝜇𝑘 + 𝜆
𝑘
Δ𝜇𝑘

= (1 − 𝜆
𝑘
) 𝜇𝑘 + 𝜆

𝑘
𝜌
𝑘
𝜇0 − 𝜌

𝑘+1
𝜇0

≥ (1 − 𝜆
𝑘
) 𝜌
𝑘
𝜇0 + 𝜆

𝑘
𝜌
𝑘
𝜇0 − 𝜌

𝑘+1
𝜇0

≥ 𝜇0 (𝜌
𝑘
− 𝜌
𝑘+1

) .

(31)

Clearly,

𝜌
𝑘
= {𝛾

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩
2

, if 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 < 1,
𝛾 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 , otherwise.

(32)

It follows from (20) and (22) that
󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘+1)󵄩󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 ,

𝜌
𝑘+1

≤ 𝛾 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘+1)󵄩󵄩󵄩󵄩󵄩 ,

𝜌
𝑘+1

≤ 𝛾󵄩󵄩󵄩󵄩󵄩𝐺(y
𝑘+1)󵄩󵄩󵄩󵄩󵄩
2

.

(33)

Hence, combining (31), (32), and (33), we obtain that 𝜇𝑘+1 ≥
𝜌
𝑘+1

𝜇0 which gives the desired result.

3. Convergence Analysis

In this section we establish the convergence property for
Algorithm 5. We show that the sequence {y𝑘 = (𝜇𝑘, 𝑠𝑘, x𝑘)}
generated by Algorithm 5 is bounded and its any accu-
mulation point yields an optimal solution to the problem
described by (1). Furthermore,we show that the sequence {y𝑘}
is superlinearly convergent.

Theorem 6. The sequence {y𝑘 = (𝜇𝑘, 𝑠𝑘, x𝑘)} generated by
Algorithm 5 is bounded. Let y∗ = (𝜇∗, 𝑠∗, x∗) denote an
accumulation point of {y𝑘}. Then 𝜇∗ = 0, and x∗ is the optimal
solution of the problem described by (1).

Proof. ByTheorem 5,

𝜇𝑘+1 = (1 − 𝜆
𝑘
) 𝜇𝑘 + 𝜆

𝑘
𝜌
𝑘
𝜇0

≤ (1 − 𝜆
𝑘
) 𝜇𝑘 + 𝜆

𝑘
𝜇𝑘 = 𝜇𝑘,

(34)

which implies that {𝜇𝑘} is monotonically decreasing and
hence converges. It follows from (22) that

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘+1)󵄩󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 , ∀𝑘. (35)

Hence, {‖𝐺(y𝑘)‖} also converges. Consequently, there exists a
constant𝑀 > 0 such that ‖𝐺(y𝑘)‖ ≤ 𝑀 for all 𝑘. This implies
that {𝜇𝑘} and {x𝑘} are bounded, and that for any 𝑘 and 𝑖 ∈ 𝑁,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
x𝑘
𝑖
+ (𝑠𝑘 − a

𝑖
b
𝑖
exp (−b

𝑖
x𝑘
𝑖
))

−√(x𝑘
𝑖
)2 + (𝑠𝑘 − a

𝑖
b
𝑖
exp (−b

𝑖
x𝑘
𝑖
))2 + (𝜇𝑘)2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀.

(36)

This shows that {𝑠𝑘} is also bounded. Consequently, {y𝑘} is
bounded. Let y∗ = (𝜇∗, 𝑠∗, x∗) be an accumulation point
of {y𝑘}. We assume, without loss of generality, that {y𝑘}
converges to y∗. Then, we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝐺 (y∗)󵄩󵄩󵄩󵄩 , lim

𝑘→∞

𝜇𝑘 = 𝜇∗. (37)

By (20),

lim
𝑘→∞

𝜌
𝑘
= 𝜌
∗
:= 𝛾 󵄩󵄩󵄩󵄩𝐺 (y∗)󵄩󵄩󵄩󵄩min {1, 󵄩󵄩󵄩󵄩𝐺 (y∗)󵄩󵄩󵄩󵄩} . (38)

Suppose ‖𝐺(y∗)‖ > 0 by contradiction. Then 𝜌
∗
> 0. From

Theorem 5 and (22), we have

𝜇∗ ≥ 𝜌
∗
𝜇0 > 0, lim

𝑘→∞

𝜆
𝑘
= 0. (39)

Hence, from Step 3 of Algorithm 5, we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐺(y𝑘 + (𝜆𝑘

𝛿
)Δy𝑘)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
> [1 − 𝜎 (1 − 𝛾𝜇0) (

𝜆
𝑘

𝛿
)] 󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩 .

(40)

Taking 𝑘 → ∞ in (40) and then combining with (21), we
have

−󵄩󵄩󵄩󵄩𝐺 (y∗)󵄩󵄩󵄩󵄩
2 + 𝜌
∗
𝐺(y∗)𝑇u ≥ −𝜎 (1 − 𝛾𝜇0) 󵄩󵄩󵄩󵄩𝐺(y

∗)󵄩󵄩󵄩󵄩
2, (41)

which yields

𝜌
∗
𝜇0 ≥ [1 − 𝜎 (1 − 𝛾𝜇0)] 󵄩󵄩󵄩󵄩𝐺 (y∗)󵄩󵄩󵄩󵄩 . (42)

Since 𝜌
∗
≤ 𝛾‖𝐺(y∗)‖, (42) implies

(1 − 𝜎) (1 − 𝛾𝜇0) ≤ 0, (43)

which contradicts 𝜎 < 1 and 𝛾𝜇0 < 1. Therefore, ‖𝐺(y∗)‖ = 0
and then 𝜇∗ = 0. Consequently, x∗ is the optimal solution of
the problem described by (1).

We next analyze the rate of convergence for Algorithm
5. By Theorem 6, we know that Algorithm 5 generates a
bounded iteration sequence {y𝑘} and it has at least one
accumulation point. The following lemma will be used in the
sequel.

Lemma 7. Suppose that y∗ = (𝜇∗, 𝑠∗, x∗) is an accumulation
point of the iteration sequence {y𝑘} generated by Algorithm
5. Let 𝑄 be a matrix in 𝜕𝐻(𝑠∗, x∗). Then the matrix 𝑄 is
nonsingular.
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Proof. Define two index sets:

𝑁
1
:= {𝑖 ∈ 𝑁 : (x∗

𝑖
)2 + (𝑠∗ − a

𝑖
b
𝑖
exp (−b

𝑖
x∗
𝑖
))2 ̸= 0} ,

𝑁
2
:= {𝑗 ∈ 𝑁 : x∗

𝑗
= 0, 𝑠∗ = a

𝑗
b
𝑗
} .

(44)

By a direct computation, we get

𝑄 = (
0 e𝑇
𝛼 𝐴
𝛽 𝐵

) , (45)

where 𝐴 is an |𝑁
1
| × 𝑛 matrix with all elements being zero

except the (𝑖, 𝑖)-th as𝐴
𝑖
for 𝑖 ∈ 𝑁

1
,𝐵 is an |𝑁

2
|×𝑛matrix with

all elements being zero except the (𝑗, 𝑗)-th as 𝐵
𝑗
for 𝑗 ∈ 𝑁

2
,

and

𝛼 = vec
{{
{{
{

1 −
𝑠∗ − a

𝑖
b
𝑖
exp (−b

𝑖
x∗
𝑖
)

√(x∗
𝑖
)2 + (𝑠∗ − a

𝑖
b
𝑖
exp (−b

𝑖
x∗
𝑖
))2

: 𝑖 ∈ 𝑁
1

}}
}}
}

,

𝐴
𝑖
= 1 −

x∗
𝑖

√(x∗
𝑖
)2 + (𝑠∗ − a

𝑖
b
𝑖
exp (−b

𝑖
x∗
𝑖
))2

+ a
𝑖
b2
𝑖
exp (−b

𝑖
x∗
𝑖
)𝛼
𝑖
, 𝑖 ∈ 𝑁

1
,

(𝛽
𝑗
, 𝐵
𝑗
) ∈ {(𝑢, 𝑣 + a

𝑗
b2
𝑗
𝑢) : (𝑢 − 1)2 + (𝑣 − 1)2 ≤ 1} ,

𝑗 ∈ 𝑁
2
.
(46)

Obviously,

0 < 𝛼
𝑖
< 2, 0 < 𝐴

𝑖
< 2 (1 + a

𝑖
b2
𝑖
) , 𝑖 ∈ 𝑁

1
,

𝛽
𝑗
≥ 0, 𝐵

𝑗
> 0, 𝑗 ∈ 𝑁

2
.

(47)

Let 𝑄(𝑤, z) = 0. Then we have

∑
𝑖∈𝑁1

z
𝑖
+ ∑
𝑗∈𝑁2

z
𝑗
= 0;

𝛼
𝑖
𝑤 + 𝐴

𝑖
z
𝑖
= 0, 𝑖 ∈ 𝑁

1
;

𝛽
𝑗
𝑤 + 𝐵

𝑗
z
𝑗
= 0, 𝑗 ∈ 𝑁

2
,

(48)

which implies

z
𝑖
= −
𝛼
𝑖

𝐴
𝑖

𝑤, 𝑖 ∈ 𝑁
1
; z

𝑗
= −
𝛽
𝑗

𝐵
𝑗

𝑤, 𝑗 ∈ 𝑁
2
. (49)

Therefore,

(∑
𝑖∈𝑁1

𝛼
𝑖

𝐴
𝑖

+ ∑
𝑗∈𝑁2

𝛽
𝑗

𝐵
𝑗

)𝑤 = 0, (50)

which, together with (47), yields 𝑤 = 0. Thus, (49) implies
z = 0, and hence the matrix 𝑄 is nonsingular.

Theorem 8. Let {y𝑘} be the iteration sequence generated by
Algorithm 5. Then {y𝑘} superlinearly converges to y∗, that is,
‖y𝑘+1 − y∗‖ = 𝑜(‖y𝑘 − y∗‖).

Proof. By Theorem 6, {y𝑘} is bounded and then let y∗ =
(𝜇∗, 𝑠∗, x∗) be its any accumulation point. Hence, 𝐺(y∗) = 0
and all matrices 𝑄 ∈ 𝜕𝐺(y∗) are nonsingular from Lemma 7.
By Proposition 3.1 in [12],

󵄩󵄩󵄩󵄩󵄩󵄩𝐺
󸀠(y𝑘)
−1󵄩󵄩󵄩󵄩󵄩󵄩 = 𝑂 (1) (51)

for all y𝑘 sufficiently close to y∗. From Lemma 4, we know
that 𝐺 is semismooth at y∗. Hence, for all y𝑘 sufficiently close
to y∗,

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘) − 𝐺󸀠 (y𝑘) (y𝑘 − y∗)󵄩󵄩󵄩󵄩󵄩 = 𝑜 (󵄩󵄩󵄩󵄩󵄩y
𝑘 − y∗󵄩󵄩󵄩󵄩󵄩) . (52)

Since𝐺 is locally Lipschitz continuous near y∗. Therefore, for
all y𝑘 sufficiently close to y∗,

󵄩󵄩󵄩󵄩󵄩𝐺(y
𝑘)󵄩󵄩󵄩󵄩󵄩
2

= 𝑂(󵄩󵄩󵄩󵄩󵄩y
𝑘 − y∗󵄩󵄩󵄩󵄩󵄩

2

) , (53)

which implies that

𝜌
𝑘
𝜇
0
≤ 𝛾𝜇0󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩

2

= 𝑂(󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩
2

) = 𝑂(󵄩󵄩󵄩󵄩󵄩y
𝑘 − y∗󵄩󵄩󵄩󵄩󵄩

2

) .
(54)

This inequality, together with (51) and (52), yields
󵄩󵄩󵄩󵄩󵄩y
𝑘 + Δy𝑘 − y∗󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩y
𝑘 + 𝐺󸀠(y𝑘)

−1

(−𝐺 (y𝑘) + 𝜌
𝑘
u) − y∗

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩𝐺
󸀠(y𝑘)
−1󵄩󵄩󵄩󵄩󵄩󵄩 (

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘) − 𝐺󸀠 (y𝑘) (y𝑘 − y∗)󵄩󵄩󵄩󵄩󵄩 + 𝜌𝑘𝜇
0)

= 𝑜 (󵄩󵄩󵄩󵄩󵄩y
𝑘 − y∗󵄩󵄩󵄩󵄩󵄩) .

(55)

Following the proof of Theorem 3.1 in [15], we obtain ‖y𝑘 −
y∗‖ = 𝑂(‖𝐺(y𝑘)‖) for all y𝑘 sufficiently close to y∗. This
implies, from (55), that for all y𝑘 sufficiently close to y∗,

󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘 + Δy𝑘)󵄩󵄩󵄩󵄩󵄩 = 𝑂 (󵄩󵄩󵄩󵄩󵄩y
𝑘 + Δy𝑘 − y∗󵄩󵄩󵄩󵄩󵄩)

= 𝑜 (󵄩󵄩󵄩󵄩󵄩y
𝑘 − y∗󵄩󵄩󵄩󵄩󵄩) = 𝑜 (󵄩󵄩󵄩󵄩󵄩𝐺 (y𝑘)󵄩󵄩󵄩󵄩󵄩) .

(56)

Since lim
𝑘→∞

‖𝐺(y𝑘)‖ = 0, it follows from (56) that 𝜆
𝑘
= 1

can satisfy (22) when y𝑘 is sufficiently close to y∗. Therefore,
for all y𝑘 sufficiently close to y∗, we have

y𝑘+1 = y𝑘 + Δy𝑘, (57)

which, together with (55), proves ‖y𝑘+1 − y∗‖ = 𝑜(‖y𝑘 − y∗‖).
Namely, {y𝑘} superlinearly converges to y∗.
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Table 1: Problem (1) with a, b, 𝑐 randomly generated in different intervals.

DIM Inter Gval CPU (sec.) AT [5]
100 7 4.0397𝑒 − 011 0.0016 0.0008
500 13.6 5.7544𝑒 − 010 0.0078 0.0021
1000 16.1 9.3739𝑒 − 010 0.0167 0.0290
5000 22.6 9.2203𝑒 − 010 0.0844 0.0980
10000 26 9.6499𝑒 − 010 0.2182 0.3946

Table 2: Problem (1) with with a, b, 𝑐 randomly generated in [0, 1].

DIM Inter Gval CPU (sec.) AT [5]
100 12.3 2.0675𝑒 − 009 0.006 0.0017
500 15.7 1.3929𝑒 − 009 0.015 0.0021
1000 16.8 1.2247𝑒 − 009 0.037 0.0524
5000 19.2 1.0316𝑒 − 009 0.119 0.1082
10000 21.6 1.9056𝑒 − 009 0.246 0.4693

Table 3

Activity A B C D
a 4 × 106 3 × 106 2 × 106 106

b 2 × 10−6 3 × 10−6 10−6 10−6

Table 4

Region I II III IV V
a 0.1013 0.3205 0.1323 0.2730 0.1730
b 0.01 0.02 0.01 0.02 0.01

4. Computational Experiments

In this section, we report some numerical results to show
the viability of Algorithm 5. First, we compare the numerical
performance of Algorithm 5 and the algorithm in [5] on two
randomly generated problems. Second, we apply Algorithm
5 to solve two real world examples. Throughout the com-
putational experiments, the parameters used in Algorithm
5 were 𝛿 = 0.75, 𝜎 = 0.25, 𝜇0 = 0.001, and 𝛾 =
min{1/‖𝐺(y0)‖, 0.99}. In Step 1, we used ‖𝐺(y𝑘)‖ ≤ 10−8 as
the stopping rule. The vector of ones is all the starting points.

Firstly, problems in the form of (1) with 100, 500,
1000, 5000, and 10000 variables were computed. In the first
randomly generated example, a

𝑖
was randomly generated

in the interval [10, 20], b
𝑖
was randomly generated in the

interval [1, 2] for each 𝑖 ∈ 𝑁, and 𝑐 was randomly generated
in the interval [50, 51]. In the second randomly generated
example, a

𝑖
with ∑𝑛

𝑖=1
a
𝑖
= 1 and b

𝑖
was randomly generated

in the interval [0, 1] for each 𝑖 ∈ 𝑁, and 𝑐 was also randomly
generated in the interval [0, 1]. Each problem was run 30
times. The numerical results are summarized in Tables 1 and
2, respectively. Here, Dim denotes the number of variable;
AT [5] denotes the average run time in seconds used by
the algorithm in [5]. In particular, we list more items for
Algorithm 5, Inter denotes the average number of iterations,
CPU (sec.) is the average run time, and Gval denotes the
average values of ‖𝐺(y𝑘)‖ at the final iteration.

The numerical results reported in Tables 1 and 2 show that
the proposed algorithm solves the test problems much faster
than the algorithm in [5] when the size of problem is large.

Secondly, we apply Algorithm 5 to solve two real world
problems.The first example is described in [16].This problem
is how to allocate amaximumamount of total effort, 𝑐, among
𝑛 independent activities, where a

𝑖
(1−exp(−b

𝑖
x
𝑖
)) is the return

from the 𝑖th activity, that is, effort 𝑥
𝑖
, to yield the maximum

total return. Note that here a
𝑖
is the potential attainable and 𝑏

𝑖

is the rate of attaining the potential from effort x
𝑖
. When no

effort is devoted to the 𝑖th activity, the value of x
𝑖
is zero.This

example usually arises in the marketing field; the activities
may correspond to different products, or the same product in
different marketing areas, in different advertising media, and
so forth. In this example we wish to allocate one million dol-
lars among four activities with values of a

𝑖
and b
𝑖
as in Table 3.

For this problem Algorithm 5 obtained the maximum
total return 4.8952 × 106 after 25 iterations and elapsing
0.0625 second CPU time. The total effort one million dollars
was allocated, 0.5764million and 0.4236million to activities
A and B, respectively.

The second example is to search an object in 5 regions,
where a

𝑖
is the prior probability with ∑5

𝑖=1
a
𝑖
= 1 of an object

of search being in the 𝑖th region and 1 − exp(−b
𝑖
x
𝑖
) is the

probability of finding an object known to be in the 𝑖th region
with x

𝑖
time units. The data of this example, listed in Table 4,

come from Professor R. Jiang of Jiaozhou Bureau of Water
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Conservancy: the available time is 𝑐 = 30 time unite, and after
16 iterations and elapsing 0.0781 secondCPU timeAlgorithm
5 computed the result x = (0, 16.6037, 0, 13.3963, 0). This
shows that we will spend 17 time units in Region II and 13
time units in Region IV to find water.

5. Conclusions

In this paper we have proposed a Newton-type algorithm to
solve the problem of search theory. We have shown that the
proposed algorithm has global and superlinear convergence.
Some randomly generated problems and two real world
problems have been solved by the algorithm. The numerical
results indicate that the proposed algorithm is promising.
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