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We develop monotone iterative technique for a system of semilinear elliptic boundary
value problems when the forcing function is the sum of Caratheodory functions which
are nondecreasing and nonincreasing, respectively. The splitting of the forcing function
leads to four different types of coupled weak upper and lower solutions. In this paper, rel-
ative to two of these coupled upper and lower solutions, we develop monotone iterative
technique. We prove that the monotone sequences converge to coupled weak minimal
and maximal solutions of the nonlinear elliptic systems. One can develop results for the
other two types on the same lines. We further prove that the linear iterates of the mono-
tone iterative technique converge monotonically to the unique solution of the nonlinear
BVP under suitable conditions.

1. Introduction

Semilinear systems of elliptic equations arise in a variety of physical contexts, specially in
the study of steady-state solutions of time-dependent problems. See [1, 4, 5], for exam-
ple. Existence and uniqueness of classical solutions of such systems by monotone method
has been established in [2, 4]. Using generalized monotone method, the existence and
uniqueness of coupled weak minimal and maximal solutions for the scalar semilinear
elliptic equation has been established in [3]. They have utilized the existence and unique-
ness result of weak solution of the linear equation from [1]. In [3], the authors have con-
sidered coupled upper and lower solutions and have obtained natural sequences as well
as alternate sequences which converge to coupled weak minimal and maximal solutions
of the scalar semilinear elliptic equation.

In this paper, we develop generalized monotone method combined with the method
of upper and lower solutions for the system of semilinear elliptic equations. For this pur-
pose, we have developed a comparison result for the system of semilinear elliptic equa-
tions which yield the result of the scalar comparison theorem of [3] as a special case.
One can derive analog results for the other two types of coupled weak upper and lower
solutions on the same lines. We develop two main results related to two different types
of coupled weak upper and lower solutions of the nonlinear semilinear elliptic systems.
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We obtain natural as well as intertwined monotone sequences which converge uniformly
to coupled weak minimal and maximal solutions of the semilinear elliptic system. Fur-
ther using the comparison theorem for the system, we establish the uniqueness of the
weak solutions for the nonlinear semilinear elliptic systems. The existence of the solution
of the linear system has been obtained as a byproduct of our main results.

2. Preliminaries

In this section, we present some known comparison results, existence and uniqueness
results related to scalar semilinear elliptic BVP without proofs. See [1, 3] for details.

Consider the semilinear elliptic BVP

�u= F(x,u) in U ,

u= 0 on ∂U (in the sense of trace),
(2.1)

where U is an open, bounded subset of Rm and u : U → R is unknown, u = u(x). Here
F : U → R is known. F ∈ L2(U), F(x,u) is a Caratheodory function, that is, F(·,u) is
measurable for all u∈R and F(x,·) is continuous a.e. x ∈U . � denotes a second-order
partial differential operator with the divergence form

�u=−
m∑

i, j=1

(
ai j(x)uxi

)
xj

+ c(x)u (2.2)

for given coefficient functions ai j(x),c(x)∈ L∞(U) (i= 1,2, . . . ,m). We assume the sym-
metry condition ai j = aji (i, j = 1, . . . ,m), c(x)≥ 0, and the partial differential operator �
is uniformly elliptic such that there exists a constant θ > 0 such that

m∑
i, j=1

ai j(x)ξiξ j ≥ θ|ξ|2 (2.3)

for a.e. x ∈U and all ξ ∈Rm.
We recall the following definitions for future use.

Definition 2.1. (i) The bilinear form B[·,·] associated with the divergence form of the
elliptic operator � defined by (2.2) is

B[u,v]=
∫
U

[ m∑
i, j=1

ai j(x)uxivxj + c(x)uv

]
dx (2.4)

for u,v ∈H1
0 (U), where H1

0 (U) is a Sobolev space W1,2
0 (U).
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(ii) We say that u∈H1
0 (U) is a weak solution of the boundary value problem (2.1) if

B[u,v]= (F,v) (2.5)

for all v ∈H1
0 (U), where (·,·) denotes the inner product in L2(U).

Definition 2.2. The function α0 ∈H1(U) is said to be a weak lower solution of (2.1) if,
α0 ≤ 0 on ∂U and

∫
U

[ m∑
i, j=1

ai j(x)α0,xivxj + c(x)α0v

]
dx ≤

∫
U
F
(
x,α0

)
vdx (2.6)

for each v ∈ H1
0 (U), v ≥ 0. If the inequalities are reversed, then α0 is said to be a weak

upper solution of (2.1).

In order to discuss the results on monotone iterative technique, we need to consider
the existence and uniqueness of weak solutions of linear boundary value problems. The
result on the existence of weak solutions for the linear BVP can be obtained from the
Lax-Milgram theorem which is stated below. In the following theorem, we assume that
H is a real Hilbert space, with norm ‖ · ‖ and inner product (·,·), we let 〈·,·〉 denote the
pairing of H with its dual space.

Theorem 2.3 (the Lax-Milgram theorem). Assume that B : H ×H →R is a bilinear map-
ping, for which there exist constants α,β > 0 such that

(i) |B[u,v]| ≤ α‖u‖‖v‖, u,v ∈H ;
(ii) β‖u‖2 ≤ B[u,u], u∈H .

Also assume that F : H →R is a bounded linear functional on H .
Then there exists a unique element u∈H such that

B[u,v]= 〈 f ,v〉 (2.7)

for all v ∈H .

The following theorem proves the unique solution of the linear BVP, which is [3, The-
orem 5.2.4].

Theorem 2.4. Consider the linear BVP

�u= h(x) in U ,

u= 0 on ∂U (in the sense of trace).
(2.8)

Then there exists a unique solution u ∈H1
0 (U) for the linear BVP (2.8) provided 0 < c∗ ≤

c(x) a.e. in U and h∈ L2(U).

The next theorem is a comparison theorem, a modified version of which is needed in
our main results. This is [3, Theorem 5.2.5].
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Theorem 2.5. Let α0,β0 be weak lower and upper solutions of (2.1). Suppose further that F
satisfies

F
(
x,u1

)−F
(
x,u2

)≤ K
(
u1−u2

)
(2.9)

whenever u1 ≥ u2 a.e. for x ∈U and K(x) > 0 for x ∈U . Then, if 0 < c−K ∈ L1(U),

α0(x)≤ β0(x) in U a.e. (2.10)

The following corollary is the special case of Theorem 2.5.

Corollary 2.6. For p ∈H1(U) satisfying

∫
U

[ m∑
i, j=1

ai j(x)pxivxj + c(x)pv

]
dx ≤ 0 (2.11)

for each v ∈H1
0 (U), v ≥ 0 a.e. and p ≤ 0 on ∂U , p(x)≤ 0 in U a.e. provided c(x) > 0.

The next two theorems [1] are needed to prove that a bounded sequence in a Hilbert
space contains a weakly, uniformly convergent subsequence.

Theorem 2.7 (weak compactness). Let X be a reflexive Banach space and suppose that the
sequence {uk}∞k=1 ∈ X is bounded. Then there exist a subsequence {ukj}∞j=1 ⊆ {uk}∞k=1 and
u∈ X such that {ukj}∞j=1 converges weakly to u∈ X .

Theorem 2.8 (the Ascoli-Arzela theorem). Suppose that { fk}∞k=1 is a sequence of real-
valued functions defined on Rn such that

∣∣ fk(x)
∣∣≤M

(
k = 1,2, . . . ,x ∈Rn

)
(2.12)

for some constant M, and the { fk}∞k=1 are uniformly equicontinuous, then there exist a sub-
sequence { fkj}∞j=1 ⊆ { fk}∞k=1 and a continuous function f such that fkj → f uniformly on
compact subset of Rn.

3. Main results

In this section, we develop monotone iterative technique for system of semilinear elliptic
BVP. The results of [3] will be a special case of our results for the scalar semilinear elliptic
BVP.

We first consider the following system of semilinear elliptic BVP in the divergence
form

�u= f (x,u) + g(x,u) in U ,

u= 0 on ∂U (in the sense of trace),
(3.1)

where u : U → RN , �u = (�1u1,�2u2, . . . ,�NuN ), and �kuk = −(
∑m

i, j=1 a
k
i j(x)ukxi)xj +

ck(x)uk with the bilinear form B[uk,vk] = ∫U(
∑m

i, j=1 a
k
i j(x)ukxiv

k
xj + ck(x)ukvk)dx for k =

1,2, . . . ,N . Here f ,g : U ×RN → RN are Caratheodory functions. Other assumptions on
aki j ,c

k are the same as for ai j ,c in Section 2.
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In this paper, here and throughout, we assume all the inequalities to be componentwise
unless otherwise stated.

In order to develop monotone iterative technique for the BVP (3.1), we need to prove
the following comparison Lemma 3.1 relative to the elliptic system

�u= F(x,u) in U ,

u= 0 on ∂U (in the sense of trace),
(3.2)

where assumption for �u, �kuk,B[uk,vk] are the same as they are in (3.1).

Lemma 3.1. Let α0,β0 be weak lower and upper solutions of (3.2) when F : U ×RN →
RN , u∈H1

0 (U). Suppose further that F(x,u) is quasimonotone nondecreasing in u for each
component k and satisfies

Fk
(
x,u1,u2, . . . ,uN

)−Fk
(
x,v1,v2, . . . ,vN

)≤ Kk
N∑
i=1

(
ui− vi

)
(3.3)

whenever u≥ v a.e. for x ∈U and Kk > 0 for k = 1,2, . . . ,N . Then, if 0 < ck −NK ∈ L1(U),
where K =maxKk for k = 1,2, . . . ,N ,

αk0(x)≤ βk0(x) in U a.e. for k = 1,2, . . . ,N. (3.4)

Proof. From the definition of weak lower and upper solutions, we get

∫
U

[ m∑
i, j=1

aki j(x)
(
αk0,xi −βk0,xi

)
vkxj + ck(x)

(
αk0−βk0

)
vk
]
dx ≤

∫
U

[
Fk
(
x,α0

)−Fk
(
x,β0

)]
vkdx

(3.5)

for each vk ∈ H1
0 (U), vk ≥ 0 a.e. and k = 1,2, . . . ,N . Choose vk = (αk0 − βk0)+ ∈ H1

0 (U),
vk ≥ 0 a.e.

Since

(
αk0−βk0

)+
xj
=

α

k
0,xj −βk0,xj a.e. on αk0 > βk0,

0 a.e. on αk0 ≤ βk0,
(3.6)

using the ellipticity condition (2.3), and (3.3), we integrate (3.5) on the region where
αk0 > βk0, for k = 1,2, . . . ,N , and we have

∫
α0>β0

(
θk
∣∣αk0,xi −βk0,xi

∣∣2
+ ck(x)

∣∣αk0−βk0
∣∣2)

dx ≤
∫
α0>β0

Kk
N∑
i=1

(
αi0−βi0

)(
αk0−βk0

)
dx.

(3.7)
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We have N such inequalities for k = 1,2, . . . ,N . When we add all N inequalities together,
we obtain

∫
α0>β0

( N∑
k=1

θk
∣∣αk0,xi −βk0,xi

∣∣2
+

N∑
k=1

ck(x)
∣∣αk0−βk0

∣∣2
)
dx

≤
∫
α0>β0

N∑
k=1

∣∣αk0−βk0
∣∣[ N∑

k=1

Kk
(
αk0−βk0

)]
dx,

∫
α0>β0

( N∑
k=1

θk
∣∣αk0,xi −βk0,xi

∣∣2
+

N∑
k=1

ck(x)
∣∣αk0−βk0

∣∣2
)
dx ≤

∫
α0>β0

NK
N∑
k=1

∣∣αk0−βk0
∣∣2
dx,

∫
α0>β0

N∑
k=1

(
θk
∣∣αk0,xi −βk0,xi

∣∣2
+
(
ck(x)−NK

)∣∣αk0−βk0
∣∣2)

dx ≤ 0.

(3.8)

From our assumption, the integrand is nonnegative. Hence, the only possibility to keep
our inequalities hold true is that the domain of integration is an empty set. Hence, we
have α0 ≤ β0 a.e. in U . �

If, in (3.2), F(x,u) = A(x)u, where A(x) is an N ×N matrix, we have the following
corollary for the linear system.

Corollary 3.2. Let F(x,u) = A(x)u in (3.2) and all the assumptions of Lemma 3.1 hold,
further let

A(x)u−A(x)v ≤ (K1,K2, . . . ,KN
)′( N∑

i=1

(
ui− vi

))
(3.9)

whenever u ≥ v a.e. for x ∈ U and Kk > 0 for k = 1,2, . . . ,N . Then, if 0 < ck −NKk ∈
L1(U), where Kk =max(|ak1|,|ak2|, . . . ,|akN |) for k = 1,2, . . . ,N ,

αk0(x)≤ βk0(x) in U , a.e. for k = 1,2, . . . ,N. (3.10)

The next corollary is a special application of Lemma 3.1.

Corollary 3.3. For pk ∈H1(U), k = 1,2, . . . ,N , satisfying

∫
U

N∑
k=1

[ m∑
i, j=1

aki j(x)pkxiv
k
xj + ck0(x)pkvk

]
dx ≤ 0 (3.11)

for each vk ∈H1
0 (U), vk ≥ 0 a.e. and pk ≤ 0 on ∂U , then pk(x)≤ 0 in U a.e. provided that

ck0 > 0 for x ∈U , k = 1,2, . . . ,N .

Next, we define two types of coupled weak lower and upper solutions of (3.1). In order
to avoid monotony, our main results are developed relative to these two types of coupled
weak lower and upper solutions only.
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Definition 3.4. Relative to the BVP (3.1), the functions α0,β0 ∈H1(U) are said to be
(i) coupled weak lower and upper solutions of type I if

B
[
αk0,vk

]≤ ( f k(x,α0
)

+ gk
(
x,β0

)
,vk
)
,

B
[
βk0,vk

]≥ ( f k(x,β0
)

+ gk
(
x,α0

)
,vk
)
,

(3.12)

for each vk ∈H1
0 (U), vk ≥ 0 a.e. in U and k = 1,2, . . . ,N ;

(ii) coupled weak lower and upper solutions of type II if

B
[
αk0,vk

]≤ ( f k(x,β0
)

+ gk
(
x,α0

)
,vk
)
,

B
[
βk0,vk

]≥ ( f k(x,α0
)

+ gk
(
x,β0

)
,vk
)
,

(3.13)

for each vk ∈H1
0 (U), vk ≥ 0 a.e. in U and k = 1,2, . . . ,N .

We are now in a position to prove the first main result on monotone method for the
system of elliptic BVP (3.1).

Theorem 3.5. Assume that
(A1) α0,β0 ∈H1(U) are the coupled weak lower and upper solutions of type I with α0(x)≤

β0(x) a.e. in U ×RN ;
(A2) f ,g : U ×RN → RN are Caratheodory functions such that f k(x,u) is nondecreasing

in each component ui, gk(x,u) is nonincreasing in each component ui for x ∈U a.e.
where i,k = 1,2, . . . ,N ;

(A3) ck(x) ≥ c∗k > 0 in U a.e. and for any η,µ ∈ H1(U ×RN ) with α0 ≤ η, µ ≤ β0, the
function hk(x)= f k(x,η) + gk(x,µ)∈ L2(U) for k = 1,2, . . . ,N .

Then for any solution u(x) of BVP (3.1) with α0(x)≤ u(x)≤ β0(x), there exist monotone
sequences {αn(x)},{βn(x)} ∈H1

0 (U ×RN ) such that αkn⇀ ρk, βkn⇀ γk weakly in H1
0 (U) as

n→∞ and (ρ,γ) are coupled weak minimal and maximal solutions of (3.1), respectively,
that is,

�kρk = f k(x,ρ) + gk(x,γ) in U , ρk = 0 on ∂U ,

�kγk = f k(x,γ) + gk(x,ρ) in U , γk = 0 on ∂U ,
(3.14)

for k = 1,2, . . . ,N.

Note. Here and in Theorem 3.8, when we say that ρ,γ are coupled weak solutions means
that they satisfy the following variational form:

B
[
ρk,vk

]=
∫
U

[
f k(x,ρ) + gk(x,γ)

]
vkdx,

B
[
γk,vk

]=
∫
U

[
f k(x,γ) + gk(x,ρ)

]
vkdx.

(3.15)

Proof. Consider the linear BVP

�kαkn+1 = f k
(
x,αn

)
+ gk

(
x,βn

)
in U , αkn+1 = 0 on ∂U ,

�kβkn+1 = f k
(
x,βn

)
+ gk

(
x,αn

)
in U , βkn+1 = 0 on ∂U ,

(3.16)
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where n= 0,1, . . . . The variational forms associated with (3.16) are

B
[
αkn+1,vk

]=
∫
U

[
f k
(
x,αn

)
+ gk

(
x,βn

)]
vkdx,

B
[
βkn+1,vk

]=
∫
U

[
f k
(
x,βn

)
+ gk

(
x,αn

)]
vkdx,

(3.17)

for all vk ∈H1
0 (U),vk ≥ 0 a.e. in U for k = 1,2, . . . ,N .

We want to show that the weak solutions αn,βn of (3.16) are uniquely defined and
satisfy

α0 ≤ α1 ≤ ··· ≤ αn ≤ βn ≤ ··· ≤ β1 ≤ β0 a.e. in U. (3.18)

For each n≥ 1, if we have α0 ≤ αn ≤ βn ≤ β0, then by hypothesis (A3), hk1(x)= f k(x,αn) +
gk(x,βn) ∈ L2(U), hk2(x) = f k(x,βn) + gk(x,αn) ∈ L2(U), and ck(x) ≥ c∗k > 0. Hence,
Theorem 2.4 implies that BVP (3.16) has unique weak solution αkn and βkn for k = 1,
2, . . . ,N .

In order to show that (3.18) is true, we first prove that αk1 ≥ αk0 a.e. in U for each kth
component. Now let pk = αk0 − αk1 so that pk ≤ 0 on ∂U and for vk ∈H1

0 (U), vk ≥ 0 a.e.
in U , by the definition of type I of coupled weak lower and upper solutions, we have

B
[
pk,vk

]= B
[
αk0,vk

]−B
[
αk1,vk

]
≤
∫
U

[
f k
(
x,α0

)
+ gk

(
x,β0

)]
vkdx−

∫
U

[
f k
(
x,α0

)
+ gk

(
x,β0

)]
vkdx = 0.

(3.19)

Hence, by Corollary 2.6, pk ≤ 0 in U a.e., that is, αk0 ≤ αk1 in U a.e. Similarly, we can show
that βk1 ≤ βk0 a.e. in U , where k = 1,2, . . . ,N .

Assume, for some fixed n > 1, αn ≤ αn+1 and βn ≥ βn+1 a.e. in U . Now consider pk =
αkn+1−αkn+2, with pk = 0 on ∂U , and using the monotone properties of f ,g, we get

B
[
pk,vk

]=
∫
U

[
f k
(
x,αn

)
+ gk

(
x,βn

)− f k
(
x,αn+1

)− gk
(
x,βn+1

)]
vkdx ≤ 0. (3.20)

By Corollary 2.6, we get αkn+1 ≤ αkn+2 a.e. in U . Similarly, we can show that βkn+1 ≥ βkn+2 a.e.
in U componentwise. Hence, using the induction argument, we get αkn−1 ≤ αkn, βkn−1 ≥ βkn
a.e. in U for all n≥ 1.

Now we want to show that α1 ≤ β1 a.e. in U . Consider pk = αk1−βk1 and pk = 0 on ∂U .
Since α0 ≤ β0, by the monotone properties of f ,g, we have

B
[
pk,vk

]=
∫
U

[
f k
(
x,α0

)
+ gk

(
x,β0

)− f k
(
x,β0

)− gk
(
x,α0

)]
vkdx ≤ 0. (3.21)

Hence, αk1 ≤ βk1 a.e. in U for k = 1,2, . . . ,N by Corollary 2.6.
Assume αkn ≤ βkn a.e. in U for some fixed n > 1. We can also prove αkn+1 ≤ βkn+1 a.e. in U

using similar argument. By induction, (3.18) holds for n≥ 1.
Since monotone sequences {αn},{βn} ∈H1

0 (U ×RN ), there exist pointwise limits for
each component k, where k = 1,2, . . . ,N . That is,

lim
n→∞α

k
n(x)= ρk(x) a.e. in U , lim

n→∞β
k
n(x)= γk(x) a.e. in U , (3.22)
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where ρk,γk ∈H1
0 (U), since a Hilbert space is a Banach space which is a complete, normed

linear space.
For each n≥ 1, we note that for each vk ∈H1

0 (U), αkn satisfies

∫
U

[ m∑
i, j=1

aki j(x)
(
αkn
)
xi
vxj + ck(x)αknv

k

]
dx =

∫
U

[
f k
(
x,αn−1

)
+ gk

(
x,βn−1

)]
vkdx. (3.23)

We now use the ellipticity condition and the fact that ck(x)≥ c∗k (x) > 0 with vk = αkn to get

∫
U

[
θk
(
αkn,x

)2
+ c∗k (x)

(
αkn
)2]

dx ≤
∫
U

[
f k
(
x,αn−1

)
+ gk

(
x,βn−1

)]
vkdx. (3.24)

Since the integrand on the right-hand side belongs to L2(U), we obtain the estimate

sup
n

∥∥αkn∥∥H1
0 (U) <∞. (3.25)

Hence, there exists a subsequence {αkni} which converges weakly to ρk(x) in H1
0 (U) by

Theorem 2.7. Similarly, we can show that supn‖βkn‖H1
0 (U) <∞. Hence, there exists a sub-

sequence {βkni} which converges weakly to γk(x) in H1
0 (U) using Theorem 2.7.

Sequence {αkn(x)}maps U into R for each k = 1,2, . . . ,N . It is easy through contradic-
tion method to show that for each ε > 0, there exists δ > 0 such that |x− y| < δ implies
that ‖αkn(x)− αkn(x0)‖W1,2(U) < ε for x, y ∈ U . Hence, {αkn(x)} is equicontinuous on U .
Similarly, we can show that {βkn(x)} is also equicontinuous on U . Then by the Ascoli–
Arzela theorem, the subsequences {αkni},{βkni} converge uniformly on U . Since both of
the sequences {αkn(x)}, {βkn(x)} are monotone, the entire sequences converge uniformly
and weakly to ρk(x),γk(x), respectively, on U for k = 1,2, . . . ,N . Therefore, taking the
limit as n→∞ for (3.17), we obtain

B
[
ρk,vk

]=
∫
U

[
f k(x,ρ) + gk(x,γ)

]
vkdx,

B
[
γk,vk

]=
∫
U

[
f k(x,γ) + gk(x,ρ)]vkdx.

(3.26)

Hence, ρ,γ are the coupled weak solutions of (3.1). Finally, we want to prove that ρ and
γ are the coupled weak minimal and maximal solutions of (3.1). That is, if u is any weak
solution of (3.1) such that α0(x)≤ u(x)≤ β0(x) a.e. in U ×RN , then the following claim
will be true. For k = 1,2, . . . ,N ,

αk0(x)≤ ρk(x)≤ uk(x)≤ γk(x)≤ βk0(x) a.e. in U. (3.27)

To prove that for any fixed n ≥ 1, αkn(x) ≤ uk(x) ≤ βkn(x) a.e. in U , we assume that for
some fixed n ≥ 1, αkn(x) ≤ uk(x) ≤ βkn(x) a.e. in U is true, since α0(x) ≤ u(x) ≤ β0(x) is
claimed from the hypothesis. Let pk = αkn+1−uk, with pk = 0 on ∂U . Using the monotone
properties of f ,g, we obtain

B
[
pk,vk

]=
∫
U

[
f k
(
x,αn

)
+ gk

(
x,βn

)− f k(x,u)− gk(x,u)
]
vkdx ≤ 0. (3.28)



102 Semilinear elliptic systems

Hence, by Corollary 2.6, αkn+1 ≤ uk a.e. in U . In a similar way, we obtain uk ≤ βkn+1. By
induction, αkn(x)≤ uk(x)≤ βkn(x) a.e. in U for all n≥ 1. Now taking the limit of αkn,βkn as
n→∞, we get (3.27). This completes the proof. �

Remark 3.6. (i) When N = 1, the results of Theorem 3.5 yield the scalar result of [3],
which is [3, Theorem 5.2.1].

(ii) In (3.1), if g(x,u)≡ 0, f (x,u) is not nondecreasing in some uk components, where

k = 1,2, . . . ,N , then we can construct f
k
(x,u) = f k(x,u) + dkuk which is nondecreasing

in each uk with dk ≥ 0. Let gk(x,u) = −dkuk which is nonincreasing in uk. Then we can
solve the BVP

�kuk =−
( m∑

i, j=1

aki j(x)ukxi

)
xj

+ ck(x)uk = f
k
(x,u) + gk(x,u), (3.29)

where ( f )k(x,u) is nondecreasing in each ul, gk(x,u) is nonincreasing in each ul for l,k =
1,2, . . . ,N . Assume that the type-I coupled weak upper lower solutions of (3.1) are also
the type-I coupled weak upper lower solutions of the new constructed elliptic BVP (3.29),
then Theorem 3.5 still can be applied to (3.29) and the solutions of (3.29) will be the
solutions for (3.1).

(iii) In (3.1), if f (x,u)≡ 0, g(x,u) is not nonincreasing in some uk components, where
k = 1,2, . . . ,N , then we can construct gk(x,u)= gk(x,u)−dkuk which is nondecreasing in

each uk with dk ≥ 0. Let f
k
(x,u)= dkuk which is nondecreasing in uk. Then we can solve

the BVP

�kuk =−
( m∑

i, j=1

aki j(x)ukxi

)
xj

+ ck(x)uk = f
k
(x,u) + gk(x,u), (3.30)

where f
k
(x,u) is nondecreasing in each ul, gk(x,u) is nonincreasing in each ul for l,k =

1,2, . . . ,N . Assume that the type I coupled with upper lower solutions of (3.1) are also the
type-I coupled weak upper lower solutions of the new constructed elliptic BVP (3.30),
then apply Theorem 3.5 to (3.30) and get the solutions we need for (3.1).

(iv) Other varieties on the properties of f (x,u), g(x,u) such as f (x,u) is not nonde-
ceasing in every uk component and g(x,u) is not nonincreasing in every uk component,
we can always use the idea in (ii), (iii) to solve the new constructed elliptic BVP un-
der suitable assumption of coupled upper and lower solutions for the newly constructed
problem.

The following corollary is to show the uniqueness of the solution for (3.1).

Corollary 3.7. Assume, in addition to the conditions of Theorem 3.5, f and g satisfy

f k
(
x,u1,u2, . . . ,uN

)− f k
(
x,v1,v2, . . . ,vN

)≤N1

N∑
i=1

(
ui− vi

)
,

gk
(
x,u1,u2, . . . ,uN

)− gk
(
x,v1,v2, . . . ,vN

)≥−N2

N∑
i=1

(
ui− vi

)
,

(3.31)
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where u ≥ v,N1,N2 > 0, C −N(N1 + N2) > 0 a.e. in U where C = minck(x), x ∈ U and
k = 1,2, . . . ,N .

Then ρk = uk = γk is the unique weak solution of (3.1).

Proof. Since we have ρ ≤ γ, let pk = γk − ρk and pk = 0 on ∂U , we get

B[pk,v]=
∫
U

( m∑
i, j=1

aki j p
k
xivxj + ck pkv

)
dx

=
∫
U

[
f k(x,γ) + gk(x,ρ)− f k(x,ρ)− gk(x,γ)

]
vdx

≤
∫
U

(
N1 +N2

)( N∑
i=1

(
γi− ρi

))
vdx.

(3.32)

We have N such inequalities for k = 1,2, . . . ,N . Adding N of them together, we obtain

∫
U

( N∑
k=1

m∑
i, j=1

(
aki j p

k
xivxj

)
+

N∑
k=1

(
ck pkv)

)
dx ≤

∫
U
N
(
N1 +N2

)( N∑
k=1

pk
)
vdx,

∫
U

N∑
k=1

m∑
i, j=1

(
aki j p

k
xivxj

)
+

N∑
k=1

[
ck −N

(
N1 +N2

)]
pkvdx ≤ 0,

∫
U

N∑
k=1

[ m∑
i, j=1

(
aki j p

k
xivxj

)
+
[
ck −N

(
N1 +N2

)]
pkv

]
dx ≤ 0.

(3.33)

However,

∫
U

N∑
k=1

[ m∑
i, j=1

(
aki j p

k
xivxj

)
+
[
C−N

(
N1 +N2

)
]pkv

]
dx

≤
∫
U

N∑
k=1

[ m∑
i, j=1

(
aki j p

k
xivxj

)
+
[
ck −N

(
N1 +N2

)]
pkv

]
dx ≤ 0.

(3.34)

By assumption, C−N(N1 +N2) > 0, we have ck −N(N1 +N2) > 0 for k = 1,2, . . . ,N . Us-
ing Corollary 3.3, we have γk ≤ ρk for k = 1,2, . . . ,N . Hence, (3.1) has unique weak solu-
tion. �

We also have similar results for coupled weak lower upper solutions of type II. We state
the result below with a brief sketch of the proof.

Theorem 3.8. Assume that
(A1) α0,β0 ∈H1(U) are coupled weak lower and upper solutions of type II with α0 ≤ β0

a.e. in U ×RN ;
(A2) f ,g : U ×RN → RN are Caratheodory functions such that f k(x,u) is nondecreas-

ing in each component ui, gk(x,u) is nonincreasing in ui for x ∈ U a.e. where i,k =
1,2, . . . ,N ;

(A3) ck(x)≥ c∗k > 0 in U a.e. and for any η,µ∈H1(U) with α0 ≤ η, µ≤ β0, the function
hk(x)= f k(x,η) + gk(x,µ)∈ L2(U).
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Then for any solution u(x) of BVP (3.1) provided α0(x)≤ u(x)≤ β0(x), α0 ≤ β1,α1 ≤ β0,
there exist intertwining alternating sequences {α2n(x),β2n+1(x)} and {β2n(x),α2n+1(x)} ∈
H1

0 (U ×RN ) satisfying

α0 ≤ β1 ≤ ··· ≤ α2n ≤ β2n+1 ≤ u≤ α2n+1 ≤ β2n ≤ ··· ≤ α1 ≤ β0 (3.35)

such that {αk2n(x),βk2n+1(x)} → ρk and {βk2n(x),αk2n+1(x)} → γk weakly in H1
0 (U) as n→∞

and (ρ,γ) are coupled weak minimal and maximal solutions of (3.1), respectively,

�ρk = f k(x,γ) + gk(x,ρ) in U , ρk = 0 on ∂U ,

�γk = f k(x,ρ) + gk(x,γ) in U , γk = 0 on ∂U ,
(3.36)

for k = 1,2, . . . ,N .

Proof. The sequences {αn}, {βn} are defined as the coupled weak solutions in the follow-
ing system of linear elliptic BVP:

�kαkn+1 = f k
(
x,βn

)
+ gk

(
x,αn

)
in U , αkn+1 = 0 on ∂U , (3.37)

�kβkn+1 = f k
(
x,αn

)
+ gk

(
x,βn

)
in U , βkn+1 = 0 on ∂U. (3.38)

Since we have α0(x)≤ u(x)≤ β0(x) and α0 ≤ β1, α1 ≤ β0, let pk = βk1 −αk1 and pk = 0 on
∂U . We get B[pk,vk]= ∫U[ f k(x,α0) + gk(x,β0)− f k(x,β0)− gk(x,α0)]vkdx ≤ 0, using the
monotone nature of f and g. By Corollary 2.6, we have β1 ≤ α1. Similarly, we can prove
β1 ≤ u≤ α1. Hence, we obtain

α0 ≤ β1 ≤ u≤ α1 ≤ β0. (3.39)

Our aim is to prove

α0 ≤ β1 ≤ α2 ≤ β3 ≤ ··· ≤ α2n ≤ β2n+1 ≤ u≤ α2n+1 ≤ β2n ≤ ··· ≤ α3 ≤ β2 ≤ α1 ≤ β0.
(3.40)

For that purpose, we assume that for some fixed n ≥ 1, (3.40) is true. We want to show
that (3.40) also holds for n+ 1. Let pk = βk2n+1−αk2n+2, then

B
[
pk,vk

]=
∫
U

[
f k
(
x,α2n

)
+ gk

(
x,β2n

)− f k
(
x,β2n+1

)− gk
(
x,α2n+1

)]
vkdx ≤ 0 (3.41)

because α2n ≤ β2n+1, β2n ≥ α2n+1 and the monotone properties of f ,g. Hence, βk2n+1 ≤
αk2n+2 for all k = 1,2, . . . ,N .
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Similarly, we can prove that α2n+2 ≤ β2n+3, β2n+3 ≤ u, β2n+1 ≤ u, β2n+2 ≤ α2n+1, α2n+2 ≤
β2n+2, and u≤ α2n+2 by a similar reasoning. Hence, (3.40) is true for n+ 1 also.

Notice that αk2n,αk2n+1,βk2n,βk2n+1 ∈H1
0 (U) and hence, arguing as in the proof of

Theorem 3.5 with appropriate modification, we obtain that

αk2n⇀ ρk uniformly and weakly in H1
0 (U),

βk2n+1 ⇀ ρk uniformly and weakly in H1
0 (U),

αk2n+1 ⇀ γk uniformly and weakly in H1
0 (U),

βk2n⇀ γk uniformly and weakly in H1
0 (U).

(3.42)

For the variational form of (3.37), when n= 2k, as n→∞, we get

B
[
γk,vk

]=
∫
U

[
f k(x,γ) + gk(x,ρ)

]
vkdx. (3.43)

When n= 2k+ 1, as n→∞, we get

B
[
ρk,vk

]=
∫
U

[
f k(x,ρ) + gk(x,γ)

]
vkdx. (3.44)

For the variational form of (3.38), when n= 2k, as n→∞, we get

B
[
ρk,vk

]=
∫
U

[
f k(x,ρ) + gk(x,γ)

]
vkdx. (3.45)

When n= 2k+ 1, as n→∞, we get

B
[
γk,vk

]=
∫
U

[
f k(x,γ) + gk(x,ρ)

]
vkdx. (3.46)

Hence, when n→∞ in (3.37) and (3.38), we obtain

B
[
γk,vk

]=
∫
U

[
f k(x,γ) + gk(x,ρ)

]
vkdx,

B
[
ρk,vk

]=
∫
U

[
f k(x,ρ) + gk(x,γ)

]
vkdx.

(3.47)

This proves that ρk ≤ uk ≤ γk a.e. in U , where ρ and γ are coupled weak minimal and
maximal solutions of (3.1). �

Note. We can write a similar remark for Theorem 3.8 on the same lines as Remark 3.6.
We avoid this remark due to monotony.

For the uniqueness of solution for (3.1) with type II coupled weak lower upper solu-
tions, we have following corollary.
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Corollary 3.9. Assume, in addition to the conditions of Theorem 3.8, f k and gk satisfy
one-sided Lipschitz condition of the form

f k
(
x,u1,u2, . . . ,uN

)− f k
(
x,v1,v2, . . . ,vN

)≥−N1

N∑
i=1

(
ui− vi

)
,

gk
(
x,u1,u2, . . . ,uN

)− gk
(
x,v1,v2, . . . ,vN

)≤N2

N∑
i=1

(
ui− vi

)
,

(3.48)

where u ≥ v,N1,N2 > 0, C −N(N1 +N2) > 0 a.e. in U , where C =minck(x), x ∈ U and
k = 1,2, . . . ,N .

Then ρk = uk = γk is the unique weak solution of (3.1).
The proof of Corollary 3.9 follows on the same lines as the proof of Corollary 3.7.
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