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1. Introduction

Denote points in Euclidean n-space, R”, by x = (x1,...,x,) and let E and 9E denote the
closure and boundary of E = R”, respectively. Let (x, y) denote the standard inner prod-
uctin R”, |x| = (x,x)"2, and set B(x,r) = {y € R": |y — x| < r} whenever x € R", r > 0.
Define k-dimensional Hausdorff measure, 1 < k < n, in R” as follows: for fixed § > 0 and
E < R" let L(8) = {B(x;,r;)} be such that E = |JB(x;,r;) and 0<r; < 8,i=1,2,.... Set

$(E) = inf (X alhrf), (1.1)

where a(k) denotes the volume of the unit ball in R¥. Then

HYE) = ?113‘/”5(5)’ l<k<n (1.2)
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IfOC R"isopenand 1 < g < o0, let W14(0O) be the space of equivalence classes of func-
tions f with distributional gradient V f = (f,,..., fy,), both of which are gth power in-
tegrable on O. Let

I fllg=1lflg+1IVfllg (1.3)

be the norm in W1(0O), where || - |l denotes the usual Lebesgue g norm in O. Let Cg’ (O)

be the infinitely differentiable functions with compact support in O and let Wg “1(0) be
the closure of Ci°(O) in the norm of W4(0). Next for fixed p, 1 < p < o0, and con-
stants ¢, ¢, 0 < ¢; < 1 < ¢; < 0, suppose that A(s, 1) is a positive continuous function on
(0,00) X (0, 00) with continuous first partials in # and

(@) c1tP? < tA(s,t) < cot?"?,

(b) e < t%log[tA(s,tz)] <c, (1.4)

(C) |A(51)t) _A(Sz,t) | < (%) |51 ) | (1 +t)p/2—1’

whenever si,s;,t € (0, 00). We note for later use that from (1.4)(a), (b) it follows for fixed
sand any #,& € R"\ 0 that

(A, 1) = A(s, [E2)E n—&) = (Inl +1ED)" 2 In - &1~ (1.5)

In (1.5), ¢ = 1 denotes a positive constant depending on p, ¢i, ¢z, n. We consider positive
weak solutions u to

V- [A(u, | Vul*) Vu] + C(u, | Vul?) =0 (1.6)

in D N N, where D is a bounded domain and N D 9D is an open neighborhood of dD.
Here C: (0,00) X (0,00) — [0, 00) with

|C(s,t)| <ca< o0, (s,t) € (0,00) X (0,00). (1.7)

Moreover u € WH?(D N N) with

JD . [{(A(u,|Vul?)Vu,VO) — C(u,| Vul?)0]dx =0, (1.8)

where 8 € W&’p(D N N) and dx denotes H"” measure. If A(u,|Vul?) = |Vu|?~2,C=01in
(1.8), we say that u is a weak solution to the p-Laplacian partial differential equation in
N n D. To simplify matters, we will always assume that

u(x) — 0, asx— aD. (1.9)
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Put u =0in N \ D and note that u € WY (N). In Section 2 we point out that there exists
a unique finite positive Borel measure y such that

J [—(A(u,IVuIZ)Vu,ng)+C(u,|Vu|2)¢]dx=ngdy (1.10)
DNN
whenever ¢ € Cy’(N). Finally we assume for some 3, 0 < § < o, that

u(B(y,r) naD) < pr*! (1.11)

for 0 <r <1y and all y € dD. Here 1, is so small that UyEaDE(y,ro) C N. Under these
assumptions we prove in Section 2 the following important square function estimate.

THEOREM 1.1. Fix p, 8y, with 0 < 8y < 1 < p < oo, and suppose that u, D, y satisfy (1.4)—
(1.11). There exists 1, 0 < 7o < 1o, and ko a positive integer (depending on ¢y, c3), such that
ifz€ 0D and 0 < r <y, then for k > ky,

n
J umax (| Vul —80,0)k Z ul dx < cr'l, (1.12)
DnB(z,r) ij=1 "

where ¢, o depend on n, p, k, c1, ¢z, 8o, 3 but not on z € dD.
Armed with Theorem 1.1 we will prove the following theorem in Section 3.

TaEOREM 1.2. Letu, D, p, u be as in Theorem 1.1 and suppose also that for somey, 0 <y <

0,

yr"fl <u(B(z,r)) wheneverz € oD, 0<r <ry. (1.13)

If ko is as in Theorem 1.1, then for k > ko and some 7o >0,

n
J ulVulk Z u,zcixjdxscr”*l, 0<r=<7, (1.14)
DnNB(z,r) ij=1

where ¢, 7o depend on n, p, k, c1, c2, B, y. Moreover 0D is locally uniformly rectifiable in the
sense of David-Semmes.

By local uniform rectifiability of 0D we mean that P U dD is uniformly rectifiable
where P is any n — 1-dimensional plane whose distance from 0D is ~ equal to the di-
ameter of D. For numerous equivalent definitions of uniform rectifiability we refer the
reader to [1, 2]. In Section 4 we begin the study of some overdetermined boundary value
problems. As motivation for these problems we note that in [3, Theorem 2] Serrin proved
the following theorem.

THEOREM 1.3. Suppose that the bounded region D has a C* boundary. If there is a positive
solution u € C*(D) to the uniformly elliptic equation

n
Au+k(u,|Vul?) > U U U, = L1, | Vu]?), (1.15)
=1
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where k, I are continuously differentiable everywhere with respect to their arguments and if
u satisfies the boundary conditions

u=0, % =a = constant on oD, (1.16)

then D is a ball and u is radially symmetric about the center of D.

In (1.16), d/dn denotes the inner normal derivative of u at a point in dD. In this paper
we continue a project (see [4—7]) whose goal is to obtain the conclusion of Serrin’s theo-
rem under minimal regularity assumptions on 0D and the boundary values of |Vul. To
begin we note that uniform ellipticity in (1.15) means for all g € R" \ {0}, & € R" with
€] = 1,and s > 0 that

0 >A>1+k(s|ql*)(g,&)*=1>0. (1.17)
Next observe that (1.15) can be written in divergence form as
V- [A*(u, |Vul?) Vu] + C* (u, | Vul?) =0, (1.18)

where

t
log A* (s,£) = %J k(s,7)dT,
0 5 (1.19)
C* (5,8) = —A* (s, t)[l(s, ) +15-logA* G, t)].
Uniform ellipticity of A* and smoothness properties of A*, C* can be garnered from
(1.17) and smoothness of k, I. We note that if dD is smooth enough, then

du* = A*(0,|Vul®)|VuldH" !, (1.20)

where y* is defined as in (1.10) relative to A*, C*. Thus a weak formulation of (1.16) is
(1.9) and

u* =aA(0,a*)H" | ,p. (1.21)

A natural first question is whether Theorem 1.3 remains true when (1.16) is replaced by
(1.9), (1.21) and no assumption is made on dD. We note that the answer to this question
is no for related problems when p = 2 (see [8]) or n =2, 1 < p < oo (see [9]). Moreover, at
least for some A*, C* we believe the techniquesin [8] for p=2and [9] forn=2,1<p<
oo, could be used to construct examples of functions u satisfying (1.18) in D # ball and
also the overdetermined boundary conditions (1.9), (1.21). The examples in [9, 8] have
the property that |Vu|(x) — oo as x — dD through a certain sequence. Also, in proving
Theorem 1.1 we show that (1.11) is equivalent to the assumption that u has a bounded
Lipschitz extension to a neighborhood of 0D. Thus, a second question (which rules out
known counterexamples) is whether Theorem 1.3 remains true when (1.16) is replaced
by (1.9), (1.11), (1.21), under appropriate structure—smoothness assumptions on A*,
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C*. As evidence for a yes answer we discuss recent work in [6]. To do so, consider the
following free boundary problem. Given F C R" a compact convex set, a >0, 1 < p < oo,
find % and a bounded domain Q = Q(a,p) with FC Q, 1 € W(}’P(Q), and

(%) V- (IVulP2Vid) =0 weaklyin Q\F,
(k) zi(x) = 1 continuously on F, U(x) — 0 asx— ye€dQ, (1.22)

(% % %) | Vii(x)| — a whenever x — y € 0Q.

This problem was solved in [10] (see also [11, 12] for related problems). They proved
the following theorem.

TueoreM 1.4. If F has positive p capacity, then there exists a unique 1, Q) satisfying (1.22).
Moreover Q is convex with a smooth (C®) boundary.

We remark that the above authors assume F has nonempty interior. However their
theorem can easily be extended to more general F (see [6]). In [6] we proved the follow-
ing.

Tueorem 1.5. Let D, u, p, a be as in (1.22)(x), () with 6, Q replaced by u, D, and
let u be the measure corresponding to u as in (1.10) relative to A(u,|Vul?) = |[Vu|P~2. If u
satisfies (1.11), (1.21) (for this A and with y = u*), then D = Q(a, p).

Note from Theorems 1.4, 1.5 that if F is a ball, then necessarily D is a ball since in this
case radial solutions satisfying the overdetermined boundary conditions always exist. To
outline the proof of Theorem 1.5, the key step is to show that

limsup | Vu(x)| <a. (1.23)
x—0D
Theorem 1.5 then follows from Theorem 1.4, the minimizing property of a p capacitary
function for the “Dirichlet” integral, and the fact that the nearest point projection onto a
convex set is Lipschitz with norm < 1. Our proofin [6] uses the square function estimate
in Theorem 1.1 but also makes important use of the fact that u, u,, are solutions to the
same divergence form equation.

We would like to prove an inequality similar to (1.23) when u, a weak solution to (1.8),
satisfies (1.9) while (1.11), (1.21) hold for p. Unfortunately, however, the p Laplace partial
differential equation seems to be essentially the only divergence form partial differential
equation of the form (1.4) with the property that a solution, u, and its partial deriva-
tives, uy,, 1 < i < n, both satisfy the same divergence form partial differential equation. To
see why, suppose A(u, |Vul?) = A(]Vu|?) and C = 0 in (1.6). Suppose that u is a strong
smooth solution to the new version of (1.6) at x € D, Vu(x) # 0, and A € C®[(0,)].
Differentiating V - [A(| Vu|?)Vu] = 0, we deduce for { = (Vu,7) that at x,

L=V - 24 (IVul>)(Vu, V) Vu+A(|Vul?) V] = 0. (1.24)
Clearly,

Lu=v-[24"(IVul®)|Vul*Vu] (1.25)
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at x and this equation is only obviously zero if A(t) = at* for some real a, A. Without such
an equation for u, | Vul?, we are not able to use u to make estimates as in [6]. Instead,
in order to carry through the argument in [6], it appears that one is forced to consider
some rather delicate estimates concerning the absolute continuity of elliptic measure with
respect to H"~! measure on dD. To outline our attempts to prove an analogue of (1.23) for
ageneral A, C asin (1.4)—(1.7), we note for sufficiently large k, that | Vu|¥ is a subsolution
to (see Section 4)

)
Z o (bijwx,) =0, (1.26)
where thanks to Theorem 1.2,
n 919;']' 2 . .
J u < ) dx < cr" whenever z € dD, 0 < r < 7. (1.27)
B(z,r)ND ij=1 axj

Moreover, the extra assumption (1.13) allows us to conclude in Theorem 1.2 that 9D is
locally uniformly rectifiable.

At one time we believed that local uniform rectifiability of 0D would imply elliptic
measure absolutely continuous with respect to H"~! measure on dD. Here the desired
elliptic measure is defined relative to a point in D and a certain elliptic operator which
agrees with I on {x € D:|Vu(x)| = &}. However we found an illuminating example
in [13, Section 8] which shows that harmonic measure in R? for the complement of a
compact locally uniformly recifiable set need not be absolutely continuous with respect
to H' measure on this set. Thus we first assumed that D satisfied a Carleson measure type
analogue of the following chain condition.

There exists 1 < ¢3 < oo such thatif z€ 9D, 0<r <1y, [z—x|+|z—y| <r,and x, y,
lie in the same component P of B(z,ry) N D, with min{d(x,dP),d(y,0P)} = r/100, then
there is a chain, {B(wi,d(wi,aP)/Z)}]f, connecting x to y with the properties:

d(w1,0P) ),

d(wk,aP)> k
2 b)

5 B (wi,d(w;,0P))CP

(a) xeB(wl,
i=1

(b)B(wi,@) mB(le,M) +0 forl<i<k-1,

2
(c) k <cs.

yEB(Wk,

(1.28)

Here, as in the sequel, d(E, F) denotes the Euclidean distance between the sets E and F.
Later we observed that in order to obtain the desired analogue of (1.23) it suffices to
prove absolute continuity with respect to H"*~! of an elliptic measure concentrated on
the boundary of a certain subdomain D; C D. Here dD; is locally uniformly rectifiable
and D is constructed by removing from D certain balls on which |Vu| is “small.” With
this intuition we finally were able to make the required estimates and thus obtain the
following theorem.
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THEOREM 1.6. Let A, p, D, u, y, f, y be as in Theorem 1.2. Suppose also that A has con-
tinuous second partials and C has continuous first partials on (0,00) X (0, c0) each of which
extends continuously to [0,00) X (0,00). If

u(B(z,r) ndD) < f1H" ' (B(z,r) ndD) forO0<r <rgandall z € D, (1.29)
then

limsup | Vul|(x)A(u(x), |Vul*(x)) <1 for each z € aD. (1.30)

X—z

Our proof of Theorem 1.6 does not require any specific knowledge of uniform rec-
tifiability although the arguments are certainly inspired by [1, 2] and the reader who is
not well versed in these arguments may have trouble following our rather complicated
but complete argument. In Section 4 we first prove Theorem 1.6 under the additional
assumption that D satisfies a Carleson measure type version of (1.28). This assumption
allows us to argue as in [14] and use a theorem of [15] to conclude that elliptic mea-
sure associated with a certain partial differential equation of the form (1.26), (1.27) is
absolutely continuous with respect to H""!|5p and in fact that the corresponding Radon
Nikodym derivative satisfies a weak reverse Holder inequality on B(x,r) N 0D whenever
x € 0D and 0 < r < ry. We can then use essentially the argument in [6] to get Theorem 1.6.
In Section 5 we construct D; C D (as mentioned above) and using our work in Section 4
reduce the proof of Theorem 1.6 to proving an inequality for a certain elliptic measure on
0D;. In Section 6 we prove this inequality by a rather involved stopping time argument
and thus finally obtain Theorem 1.6 without the chain assumption (1.28). We note that
Theorem 1.2 implies that dD is contained in a surface for which H"~! almost every point
has a tangent plane (see [1]). Using this fact, Lemma 2.5, and blowup-type arguments
one can show that the conclusion of Theorem 1.6 is valid “nontangentially” for H"~! al-
most every z € dD. Thus the arguments in Sections 4-6 are to show that the “limsup” in
Theorem 1.6 must occur nontangentially on a set of positive H"~! measure C dD.

The main difficulty in proving more general symmetry theorems under assumptions
similar to those in Theorem 1.6 is that one is forced to use more sophisticated bound-
ary maximum principles (such as the Alexandroff moving plane argument) in a domain
whose boundary is not a priori smooth. We can overcome this difficulty by making fur-
ther assumptions on dD. To this end we say that oD is § Reifenberg flat if whenever z € 0D
and 0 < 7 < 1y, there exists a plane P = P(z,r) containing z with unit normal » such that

{y+pneB(zr):y€P, p>dr} CD,
(1.31)
{y—pneB(zr):yeP, p>dr} CR"\D.

As our final theorem we prove the following theorem in Section 7.

TaeoreM 1.7. Letu, p, A, C, D be as in Theorem 1.6, except that now u is a weak solution to
(1.6) in all of D. Also assume that equality holds in (1.29) whenever z € 0D and 0 < r < ry.
If oD is § > 0 Reifenberg flat and § is sufficiently small, then D is a ball.
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To prove Theorem 1.7 we first show that Theorem 1.6 and work of [16] imply that 9D
is C>* for some a > 0. Second we use the “moving plane argument” as in [7] to conclude
that D is a ball. Finally at the end of Section 7 we make some remarks concerning possible
generalizations of our theorems.

2. Proof of Theorem 1.1

We state here some lemmas that will be used throughout this paper. In these lemmas, ¢ >
1, denotes a positive constant depending only on n, p, ¢, ¢, not necessarily the same at
each occurrence. We say that ¢ depends on the “data.” In general, c(ay,...,a,) = 1 depends
only on ay,...,a, and the data. Also a ~ b means c"'a < b < ca for some ¢ > 1 depending
only on the data.

LemMA 2.1. Let u, A, p, D, N be as in (1.4)—(1.9). If B(z,2r) C N and #i(x) = max[u,
rP/ (=], then

rp_”J IVuIde3cmaxﬁPSC2r_”J ubdx (2.1)
B(z,r/2) B(zr) B(z,2r)

while if B(z,2r) C DN N, then

max# < cmin . (2.2)
B(z,r) B(z,r)

Proof. Equation (2.1) is a standard subsolution-type estimate while (2.2) is a standard
weak Harnack inequality (see [17]). O

LemMaA 2.2. Letu, A, p, D, N be as in (1.4)—(1.9). Then Vu is locally Hélder continuous in
D NN for some o € (0,1) with

| Vu(x) — Vu(y)| < c( x| ) [maxIVuI +r"] < c<7|x_y| ) [r‘l max u+r‘7]
r B(z,r) r B(z,2r)
(2.3)

whenever B(z,2r) C N N D and x, y € B(z,1/2). Also u has distributional second partials on
{x:|Vu(x)| >0} n DN N and there is a positive integer ko (depending on the data) such
that if k > ko,

n
J S IVulbid, dx < (k)2 max (1 +|Vul*?) (2.4)
B(z,r/2) ij=1 / B(z,r)

whenever B(z,2r) C DN N.

Proof. For a proof of (2.3) when A has no dependence on u and C = 0, see [18]. The proof
in the general case follows from this special case and Campanato-type estimates (see, e.g.,
[19, 20]). Given (2.3), (2.4) follows in a standard way. One can for example use differ-
ence quotients and make Sobolev-type estimates or first show that | Vu|¥ is essentially a
weak subsolution to a uniformly elliptic divergence form partial differential equation on
{x:|Vul(x) >0} and then use | Vu|? times a smooth cutoff as a test function. O
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LemMa 2.3. Ifu, A, p, D, N are as in (1.4)—(1.9), then there exists a positive Borel measure
u satisfying (1.10) with support C 0D and u(0D) < .

Proof. Lemma 2.3 is given in [21] under slightly different structure assumptions. Here we
outline for the reader’s convenience another proof. We claim that it suffices to show

J [ = (A, |Vul) Vit Vi) + Cluy | Vue]) ] = 0 (2.5)
DNN

whenever y € Cy’(N) is nonnegative. Indeed once this claim is established, it follows
from Lemma 2.1 and the same argument as in the proof of the Riesz representation theo-
rem for positive linear functionals on the space of continuous functions that Lemma 2.3
is true. To prove our claim we note that ¢ = [(# + max[u — €,0])€ — #°]y is an admissible
test function in (1.8) for small 7 > 0, as is easily seen. We then use (1.4) to get that

L } [(17+max[u —-€6,0)) - 176] [(A(u,\Vu\z)Vu,Vl//) - C(u,quIz)I//]dx <0.
N (2.6)

Using dominated convergence, letting first # and then € — 0 we get our claim. Lemma
2.3 then follows from our earlier remarks. O

Next, given z € oD let

’ (M[B(z, ol ) V=D g

W(Z,T) = J np 7, 0<r<ry. (27)

0
LeMMA 2.4. Ifz € 0D, (1.4)—(1.11) hold for u, u, and i is as in Lemma 2.1, then for some
1 < ¢4 < ¢5 < 00, depending only on the data, one has

sa;maxﬁscS[W(z,%)+rP/(P*1)] for0<rsZ—0. (2.8)
5

B(z,r)

([,1(3(2,1’/2)))1/(1)1)

rin-P

Proof. The left-hand inequality in (2.8) is easily proved by choosing ¢ € C¢’(B(z,7)) with
¢ =1 on B(z,1/2) in (1.10) and using (1.4), (1.7), Lemma 2.1. The right-hand inequality
in (2.8) was proved for C = 0 in [22] under slightly different structure assumptions. To
adapt the proof in [22] to our situation we note that these authors consider two cases.
One case uses results from [23] while the other uses an argument in [24]. The proof in
[23] requires only (1.4)(a) and thus in this case the arguments in [23, 22] can be copied
verbatim if one first replaces the measure in these papers with du + | C|dx, thanks to (1.7).
The proof in [24] uses only (1.4), (1.5). In [24] use is made of a certain solution to (1.8)
with C = 0. In our situation one can replace this solution by an appropriate weak superso-
lution to (1.8) and then the argument in [24, 22] can be copied essentially verbatim. [J

LemMa 2.5. If (1.4)—(1.11) are true for u, y, then for all z € 0D and 0 < r < ro/cs,

maxu < cﬁl/(p_l)r. (2.9)
B(z,r)
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Moreover if either u = Ar or |Vu| = A at some x in B(z,r) N D with d(x,0D) = Ar, then
"t < c(Mu[B(z,csr)]  foro<r <r(d). (2.10)

Proof. Using (1.11) in the integral defining W and integrating we see that W (z,csr) <
cBY¢=Vr, This inequality and Lemma 2.4 imply (2.9). To get (2.10) first note from
Lemma 2.2 that there exists A;, depending only on A and the data, such that u > Ar
at some points in B(z,2r) whenever 0 < r < r(A). Using (1.11) we see that if A,, having
the same dependence as A}, is small enough, then 4¢s W(z,A,7) < A, r. Using this fact and
Lemma 2.4 we conclude that

r<c[W(zesr) — W(zhar)] < cW) (u(B(z,c5r))rp—m) VP~V (2.11)

provided 0 < r < r(A). This inequality clearly implies (2.10). O

Proof of Theorem 1.1. The proof of Theorem 1.1 is similar to the proof of Lemma 2.5 in
[6], however our more general structure assumptions force us to work harder. We note
from (2.3) and (2.9) that

|Vul < cfYPV < 00 (2.12)

in N; N D for some neighborhood N; with 0D C N;. To simplify matters we first assume
that

A and C are infinitely differentiable on (0, 00) X (0, ). (2.13)

Then from Schauder-type estimates we see that u is infinitely differentiable at each x € D
where |Vu(x)| # 0. Let {Q; = Q;(y;,:)} be a Whitney cube decomposition of D with
center y; and radius r;. We choose this sequence so that

(a)QiﬂQ]’ZQ, l?’é]a
(b) 10°"d(Q;,dD) < r; < 107"d(Q;,dD), (2.14)

(c) UQ =D.

Next let #; be a partition of unity adapted to {Q;}. That is

(1) Z”]i =1,

(ii) the support of 7; is € [ J{Q; :Q;NQ; + 2}, (2.15)
(iii) #; is infinitely differentiable with 7; > ¢™' on Q;, | V| < cri L.
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Next for fixed & <1072, r small, and z € 9D, let A = {j : Q] N B(z,Zr) #Qandr; = &r}.
IfA# @, set Q= U;ca Qi» and put o(|Vul) = max(|Vu|? — 85,0)%2. Integrating by parts
we see that

n n
I =c! I uo(|Vul) Z ux,xj dx< Z Jua [Vul) Z ux,xj nmdx
Q in1 =1

meA

- Z I (I1Vul) Z ”x,”x)”xxﬂ’lmdx

meA ij=1
J 1 Uk < - ’
— > | kua(IVul) Z (Zux uxx) Nmdx
2 S\ &t (2.16)
- > Jua (Vul) > (Auy,) g fmdx
meA i=1
- Z Jua |V1/l| Z uxxjux, ’7m dx
meA i,j=1
=—-L-L—-1,—I.

To estimate I5, let A; be the set of all i for which there exists Q;, Qx with k EA, jeEA,
and Q; N Q; # @, Qx N Q; # @. Then from (2.15)(i), (ii), we see that

|| < > J uo (1Vul) z |t | [ tas, | | (1) |dx—16 (2.17)

men; i,j=1

To handle Is we divide the integers in A; into two subsets, say A1, A1z, where Aj; consists
of all i in A for which Q; touches a closed cube containing points not in B(z,2r) while
A1z = A\ Ay contains integers i for which Q; touches a closed cube Q; with r; < &r.
If j € Ay we see from (2.4), (2.9), (2.12), (2.15)(iii) and Hoélder’s inequality that for
m € Ay,

JQ uo (1Vul) > |t | | x| |(’1m)x,- | dx

i ij=1
12 (2.18)
< M(f S Tuy ixjdx) < (B k)
”‘1] 1
Using this inequality and (2.14)(a), (b) we deduce that
> J uo (1Vul) Z |ty | 1t | | (1), | dx < c(B, )"~ (2.19)

meA i,j=1

Observe that the integral in (2.17) is equal to zero unless | Vu| = §) at some points in Qy,.
Otherwise if m € A}, we can apply (2.10) with r = r,, and (2.14)(b) to conclude as in
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(2.18) that

JQ uo (|Vul) Z |”xixj | |”xi | | (Wm)xj |dx = C(ﬁak)rrrrlfl Sc(ﬁ’k>50)[1[3(ym>1010”657‘#1)]‘
m i,j=1
! (2.20)

From (2.14)(a), (b) and the definition of A;, we see for fixed m € A;; that the cardinality
of the set of integers I € A, for which B(y,,, 104 ¢sr,,,) N B(y1,10%"¢s7;) #+ @ has cardi-
nality P < oo, where P depends only on ¢s and #. Using this fact and summing in (2.20),
we get in view of (1.11) that

> J uo (IVul) D |, | Tt || (1), | dxc < c(B,k,80)r™ (2.21)
meh;, ¥ Qn ij=1
Adding (2.19), (2.21), we deduce from (2.17) that
|15 | <l =< c(ﬁ,k,@o)r”_l. (222)

Next we use (1.8) and estimate I, in the following way. First if

B t O(TI/Z)
h(s,t) = JO teetad (2.23)

then

L= Z J0(|vu|) Z U, U Uy, i dX

meA ij=1

= 3 A IVaP) T bl |Vl ]

meA
2.24
- JA(u,IVulz)IVulzhs(u,IVulz)ﬂmdx (224)
meA
- IA(u,IVuF)(Vu,qu)h(u,IVulz)dx
meA
=D+ 1+ bs.
I3 can be estimated in the same way as Is. We obtain
|123 | < cr”’l. (225)
From (1.8) with ¢ = h(u,|Vul|?), (1.4), (1.7), and (2.12) we see that
|L| = ‘ Z JC(u,IVuIZ)h(u,IVuIZ)nmdx <c Z o< cr. (2.26)
meA meA
Likewise,
|Lp| <c >t <crm. (2.27)

meA
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Combining (2.25)—(2.27) we find
|L| <cr" . (2.28)

Next observe from (1.8), (2.13) that if Vu(x) # 0, then u is a strong solution at x to the
partial differential equation

_2At(u,|Vu|2) i b IVul?As(u, |Vul?)  C(u,|Vul?)
x1 Uxg Uxyx

Au, | Vul2) - =90

Au =
" Au, | Vul?) Alu, | Vul?)

Ig=1
(2.29)

Taking partials of this equation with respect to x; we get an equation for Au,, which we
can then put into the expression for Iy and integrate by parts. Indeed,

“Ii=-> Jua(qul)i(Auxi)uxinmdx

meA i=1

=2 fuo(wm)emu)qmdx

meA
+ > Juo(qul)Gz(ux[,(qm)x,)dx
meh i=1 ’ (2.30)
+ Z kjua(qul)lfz/kG z Uy, Uy U, HmAX
meA ij=1
+ > JIVuIza(IVuI)Gnmdx
meA
=I4 + 1 + Iy + Iys.
From (2.4), (2.12), (2.29) and a use of Holder’s inequality as in (2.18) we find that
| I | = z Ju0(|Vu|)92qmdx
meA
., ) (2.31)
<c> Juo(Vu)( > uxiuxjux[xj) N Vil dx + (B, k)r",
meA ij=1

where ¢ depends only on the data. Also as in the estimate of Is and I3 we obtain

|Lip| < (B k,80)r" " (2.32)
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To estimate I3 we use (1.7), (2.4), and (2.12) as previously and make important use of
(1.4)(b) to obtain

2

> Uy Uy, ux,xj> Hmdx+c(B, k)r" !

ij=1

Iz < — 2 ZkIua(IVul)

meA

1-2/k A (1, | Vu|?)
A(u, |Vul?)

n 2
< —(Cl - l)k Z J’MO'(|VM|)12/k( Z ux,-ux}-ux,-xj) |vu|_27]md-x+c(/3’k)rn_l-

meA ij=1
(2.33)
Finally to handle I4 let
R f10(172) A1)
I//(S,ﬂ = — J() WdT (234)

Arguing as in the estimate for I, we obtain

+c(Bk,80)r" ™t < c(B,k,80)r™ 1,
(2.35)

> JA(u,IVuIZ)(Vu,V[W(u,IVulz)nm])dx

meA

Iy <

thanks again to (1.8). Putting (2.31)—(2.35) into (2.30) we conclude that

2
n
—I;<c Z Jua(Vu)( Z ux,.uxjuxixj> [Vu|*dx

meA ij=1

2

+(1 —C3)k Z JMU(|VU|)12/k< Z ux,vuxjux,-xj) |vu|_27’]mdx+c(ﬂ7k>80)rn_l-

meA ij=1

(2.36)

Combining (2.22), (2.28), (2.36) and using the definition of I5 in (2.16) we conclude for
k large enough that

L=-L—-I—1L—1Is < c(Bk,8)r"!

" 2 (2.37)
+(—cik+c) Z Jua(Vu)( Z uxiuxjuxixj) |Vul"*dx < c(B,k,8)r" .

meA ij=1

We now remove assumption (2.13). Let 7, z, &, A, Aj, be as defined earlier. Let O be
an open set with smooth boundary, OcCDNNN{|Vul| >8,/2}, and the property that
if ¥ € Umeaua, Suppym with [Vu(y)| = 380/4, then y € O. This open set can be ob-
tained for example by regularizing d(-,0D U {|Vu| = §y/2}) and using Sard’s theorem.
Let {A(-,€)},{A:(-,€)},{C(-,€)} denote sequences of infinitely differentiable functions
on R? which converge uniformly on compact subsets of (0,00) X (0,0) to A, A, C. Let
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{uc} be a sequence of infinitely differentiable functions converging uniformly on com-
pact subsets of O to u. Let & = (-, €) be the solution to the Dirichlet problem for O with
boundary values u corresponding to the partial differential equation

2 n

Ai(te, | Vue| ™€ MM
t( €’| 5|2’ ) Z Uy U Us;x;
Alue, | Vue|™€) 1571

A+

(2.38)
_ —Clue, | Vue|’€) = | Vue| *As(ue, | Vue |y €)
Alue, | Vue |2,€)

Using Calderén-Zygmund-type estimates, Lemma 2.2, and Schauder’s theorem we see
for € small enough that # exists and is infinitely differentiable on O. Moreover from
Lemma 2.2 and arguments similar to those in [25, Section 9.6] we deduce that z, Vi
converge uniformly on compact subsets of O to u, Vu while

J |y, — th; | "dx — 0 as€ — 0 (2.39)
K

whenever K is a compact subset of O. Let

~

II:C_IJQMU |Vul) Z U, ) 2 dx, (2.40)

where the 1ntegrand is defined to be 0 outside of O. We repeat the integration by parts in
(2.16), getting 12, 13, I4, 15 We can then let € — 0 in the integrals defining Iz, I3, I5 to get
L, I, Is. The estimate for I5s is unchanged. I, can also be estimated as previously using
the fact that the equality for Au in (2.29) holds H" almost everywhere on O and is square
integrable on Q2 N O. As for I, we repeat the integration by parts in (2.30) involving third
derivatives and then let € — 0 again to get I41, Lus, I3, Is4 whereupon we can once again
repeat the previous argument. Thus (2.37) holds without assumption (2.13). Since none
of the constants depend on & we can let £ — 0 to conclude that Theorem 1.1 is true.  [J

3. Proof of Theorem 1.2
In this section we first show that
n
| T S i dx < ey (3.1)
DnB(z,r) ij=1 !

for 0 < r < ry where u, u, D, A, p, ko are as in the statement of Theorems 1.1 and 1.2.
In fact, the only constants which depend on & in the proof of Theorem 1.1 were those
obtained when a derivative fell on #,, in the various integration by parts. That is in the
estimates for Is, >3, I1> and I44. Moreover from (2.20) we see that the dependence of these
constants on &, was needed to insure that

b < c(Bk,00) [ B(ym> 10""r,,) ]. (3.2)
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This inequality is now trivial by (1.13). Thus if (1.13) holds, then the constants in
Theorem 1.1 can be chosen independent of &y. Letting y — 0 in (1.12) we get (3.1). Next
we note that for some 1 < M < o, dD is n — 1 Ahlfors regular. That is

Myl < H"Y(B(z,r) ndD) < Mr"! (3.3)

whenever z € 0D and 0 < r < ry. In fact using measure theoretic-type arguments one sees
that y can be replaced by H* ! in (1.11), (1.13) (see [26]). Also from (1.13) and (2.8), we
deduce that

"
r <cmaxu foreachzedD, 0<r < -2, (3.4)
B(z,r) C3

Choose y* € B(z,r) with u(y*) = r/c. Using the mean value theorem from elementary

calculus we find for some §; > 0 (depending on f3, y, as well as the data) and y on the line
segment from y* to z that

| Vu(y)| = 6. (3.5)

Also, from (2.9), Lemma 2.2, and (2.12) we deduce that y can be chosen so that for some

c=c(By)

r < cd(y,oD), E <u(y) <cr, (3.6)

where we are now writing d(y) for d(y,0D). Fix k > k¢ as in (3.1). If B(x,d(x)) C DN N,
then we will say that B(x,d(x)) is a good € tangent ball (0 < € < 1007!%) provided

() | Vu(x)| =6y,

(B) if x can be joined to X by a chain of at most é balls

{B(yi,d(zyi))} with B(y;,d(yi)) CDNN, (3.7)
e’d(x) <d(y;) < e *d(x), then
max ))||Vu|kVu(zl)—IVquVu(zz)| <€l

z1,2,€B(x,(1-€9)d(x

Otherwise B(x,d(x)) is said to be a bad tangent ball. By a chain of balls we mean as in
(1.28) that successive balls have nonempty intersection. Let K C R""! denote the set of
all (z,r), z € dD, 0 < r < €°ry, for which there is a bad tangent ball B(y,d(y)) C D with
y € B(z,4r), [Vu(y)| = 81, and re® < d(y) < 4r. If (z,r) € K, then from the definition
of K we see there exists y as above and y with |y — z| < ce*r, €?d(y) <d(y) <€ 3d(y).
Moreover, ¥ can be joined to y by a chain of balls as in (3.7)(8) and

max [IVul*Vu(z)) — IVul*Vu(z,) | >€'. (3.8)
21,22€B(y,(1-€10)d(p))
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In this case we claim for € small enough, say 0 < € < €y = €¢(f3,y,k), thatif ' = I'(z,r) =
{we DnNB(z,e>r) : d(w) = €r}, then

n-1 2 2
"t <c(B,y,k,€) LuIVuI ijzzzluxxxjdx. (3.9)
In fact (3.8) and the triangle inequality imply for some w € B(¥,(1 — €'°/2)d(9)) and ¢
depending only on # that
20

max | VulVu(n) - Vel Vu(w) | = - (3.10)
Cx

wi,w2 €B(w,e10d()/cy

This last inequality and (2.3) yield

620

[ IVulkVu(w) — [Vul*Vu(w*) | = = (3.11)
whenever
[W—wi |+ [w* —wy| <c(Bk) e 2094(5) =q (3.12)

and c(f3,k) is large enough. Finally from (2.2), the chain assumption, and (3.6) we see
that if r1(€) = exp(—1/€), 0 < € < €9, and €y is small enough (depending only on the
data), then

r<c(B,y,€)u onB(y,(1—¢€)d(p)). (3.13)

Using (3.10)—(3.13) and essentially Poincéare’s inequality, we deduce that

a" < c(/;’,y,e)a”J IV ulkVu(w, +x) — |Vul*Vu(w, +x) | *dx
B(0,a)

n
ulVaul?* uixjdx
ij=1

<c(B,y,k,€e J
(poyke) By,d(3)/cx) (3.14)

< c(/;’,y,k,e)LuIVqu > ufcx.xjdx.

ij=1

Since r < ¢(f3, y,k, €)a, we conclude the validity of (3.9) from (3.14).
Let diam D denote the diameter of D. We use (3.9) to show for zZ € 0D, 0 < p < 2diam D
and K = K N [B(Z,p) x (0,p)] that

JA dH"-I% - IHH[I%m (R x {t})]% <cByke)p™ . (3.15)
K

To do this if 0 < p < r1(€)?, we first use a well-known covering lemma to get { B(x1, 1) X
(0,271)}, (Xmis 1) € K, 27 1p < 1, < 27™p, a covering of

Kn=Kn[R"x (27" 1p,27"p)] (3.16)
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with the balls, {B(xi,7,,1/100)}, pairwise disjoint. Second from (3.9) with (z,r) replaced
by (%m1, rmi) and (3.3), we obtain

JA dH”*l% <c> il < C(ﬂ,y,G)ZL(
I

m 1

n
ulVaul?* uixjdx. (3.17)

Xmlstml) ij=1

From pairwise disjointness of { B(X, 7,,1/100)} for fixed m, the usual “volume argument,”
and the definition of I' (%1, 7,m1) we see for fixed (m’,1") that the set of all (m,[) such that
L s tarr) N T (Xut, tmi) # @ has cardinality at most N (€). Using this fact and summing
over m we see from (3.1), (3.17) that

n
u|Vul|* Z ufﬁxjdx

Xml>Tml) ij=1

IA dH”’lﬂ < ch;’Jl < c([)’,y,k,e)ZI
K ¢ m,l m,l I(

(3.18)
ul Vul* > g, dx < c(B,y k,€)p"!

ij=1

< c(ﬁ,y,k,e)J

DNB(2,2p)

for 0 < p < ri(€)?. From (3.3) we see that this inequality remains valid for 0 < p <2
diam D, provided c(f, y, k, €) is large enough. Thus (3.15) is true. We conclude from (3.15)
(in the language of [2]) that if y denotes the characteristic function of K, then yxdxdt/t
is a Carleson measure on 0D X (0,2diamD).

Next suppose that (z,7), z € 9D, 0 < r < r1(€)?, is not in K. Then if w € 0D N B(z,r/2)
and r’ > ce3r, we see that

’

B(w,r") contains a good tangent ball of radius %, (3.19)

thanks to (3.4)—(3.6) with r, z replaced by ', w. We will show for (z,r) & K that the
following weak exterior convexity condition holds:

if X, Z can be joined by a curve 0 C B(z,7) \ aD, with d(0,0D) > €r,
. o (3.20)
then the line segment, /, from X to Z lies in B(z,7) \ oD.

We remark that (3.3), (3.15),(3.20) are shown in [2, Part II, 3.3] to be equivalent to uni-
form rectifiability. To prove (3.20) let y € B(z,r/2) be as in (3.5), (3.6), and suppose
0 € B(y,d(y)) N aD. From (3.19) and the definition of a good tangent ball we see that

[IVul¥ (w) — [VulF (9)] < c(B,y,k)e'® whenw € B(y, (1-€)d(y)). (3.21)
Thus
|1Vl (w) = [Vul(y)| < c(Boysk)e™. (3.22)
Using once again the definition of a good tangent ball and (3.22) we get

| Vu(w) — Vu(y)| <c(B,y,k)e'® forwe B(y,(1-¢€')d(y)) (3.23)
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and 0 < € < €. Using (2.12), (3.23), and the mean value theorem from differential calcu-
lus, we see that

|u(w) —u(y) — (Vu(y),w—y) | <c(B,y,k)ed(y) (3.24)

whenever w € B(y,d(y)). To simplify matters suppose that y = d(y)e, where e, = (0,...,
0,1). Then (3.24) implies that in B(y,d(y)), u is within ¢(B,y,k)e'%d(y) of a linear func-
tion. Since u >0 in B(y,d(y)) and u(0) = 0, it follows that

[{(Vu(y),en) — | Vu(y)| | < c(B,yk)e' (3.25)
which implies
|| Vu(y)|e,— Vu(y)| <c(B,y,k)e. (3.26)

Next suppose X is as in (3.7). Then from (3.7), (3.26), and the triangle inequality we see
asin (3.21)—(3.23) that

| Vu(w) — | Vu(y)|e.| <c(B,y, k)€’ (3.27)

whenever w € B(x, (1 — €'%)d(x)). Now (3.27) holds whenever X can be connected to y
by a chain of at most €! balls as in (3.7). Therefore (3.27) holds with X replaced by a
center of a ball in the chain. Using this fact and choosing a curve y contained in the chain
connecting w to 0 we deduce from (2.12), (3.27) that

lu(w) — | Vu(y) |wa| <c(B,y,k)H' (p)e> forw € B(%,d(X)). (3.28)
Note from (3.28) that if u(w) = 0, then
| wa| < c(By, k) H' (y)€’. (3.29)

We claim for ¢(B, y, k) large enough that every point in O = B(z,2r/€?) N {w : w, = ¢(f,,
k)e?r} can be joined by a chain of at most 1/€ balls asin (3.7). In fact if t € (ed(y), (2¢) 3
d(y)), then from (3.29) and an iterative-type argument we see that (0,...,t) can be joined
to (0,...,d(y)) by a chain of at most clog(1/€) balls as in (3.7). Moreover (3.29) holds
with H1 (y) replaced by ce d(y). We can then join (0,...,(2€)2d(y)) to (w’, (2€)3d(y))
whenever |w’| < €73d(y) by a chain of at most 100 balls and then join this point to
(w',€3d(y)) by a chain with the desired properties. Thus our claim is true. From our
claim we deduce first that

oDNO=Q (3.30)
and second for c* = ¢*(B,y,k) large enough, that if w,, = 0, |w — z| < r/€?, then

B(w,c*e*r) noD #+ . (3.31)
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In fact if (3.31) is false, then for c* large enough, we have O N B(w,c*€?r/8) + @. Using
our claim, (3.27), and arguing as in (3.28) we see that

[u(Q) = | Vu() | L] < c(B,y k)e*r (3.32)

for all { in B(w,c*€*r/4). This inequality is impossible for c* large enough since u > 0.
Thus (3.31) is valid. From (3.31) we see for 0 < € < €y(f,y,k) that if 0D N B(z,r) C S =
{w:|wy| < €r/2}, then every curve ¢ as in (3.20) must satisfy 0 N S = &. From connec-
tivity of g, it then follows that I n oD = &.

If 0D N B(z,7) is not contained in S we deduce from (3.30) that there exists v € 0D N
B(z,r) with v, < —er/2. Then from (3.19) we see that B(v,er/4) N D contains a good
tangent ball B(v,d(V)) with d(V) > re/c. Let v* € 0B(¥,d(V)) N dD. We can repeat the
above argument leading to (3.30). We get for some #n with |g]| = 1 that if O; = {w:
((w—=v*),n7) = cre®} n B(z,r/(c€)), then dD N Oy = @ provided ¢ = c(B,y,k) is large
enough. Also, asin (3.31) we find that each point of 901 N B(z,7/(c€)) lies within cre? of a
point of dD. Moreover O; N O N B(z,10r) = &, since otherwise we could easily get a con-
tradiction to (3.28) and/or (3.29). Finally we claim that every point of D N B(z, 10r) lies
within ¢(B,y,k)~'er of a point in 00 U 0. Indeed otherwise we could repeat the above
argument getting an open set O, with the same properties as O, O,. These three open sets
could then not intersect in B(z,r/€'/?) for sufficiently small € which is clearly impossible.
Finally we conclude from this discussion that ¢ as in (3.20) must lie at least €r/2 away
from 00, U 00, and so by convexity of B(z,7) \ (O; U O;), we have I C B(z,r) \ dD.

Let H be the set of all (z,r) for which (3.20) is false and put H; = H U [dD x (r1(€)?,
2diam D)]. Then we have just shown that H C K, where K is defined above (3.15). Using
this fact and (3.15), it is easily seen that dv = yy,t 'dH" " 'dt is a Carleson measure on
0D x (0,2diam D) in the sense that

v(B(z,p) N dD x (0,p)) < c(B,y,k,r0,€,D)p""! (3.33)

whenever 0 < p < 2diamD and z € dD. Finally if P denotes any n — 1-dimensional plane
whose distance from 0D is = diam D, then it is easily checked that 0D U P satisfies a global
weak exterior convexity condition and thus in view of the remark after (3.20) is uniformly
rectifiable. The proof of Theorem 1.2 is now complete.

4. Proof of Theorem 1.6 in a special case

We continue with the same notation as in Sections 2 and 3. In this section we prove
Theorem 1.6 under the assumption that D satisfies a Carleson measure chain condition.
More specifically let T C R"*! be the setofall (z,7),z € 9D, 0 < r < ry, for which the chain
condition stated above (1.28) is false. We assume for some 1 < ¢3 < o as in (1.28) that
xrdH"1dt/t is a Carleson measure on 9D x (0,7,) defined as in (3.15) with K replaced
by T. That is, for each z € 9D, 0 < p < 1y, and T=Tn [B(z,p) x (0,p)], we have

J dH" 1dt JH” T N (R % {t})]— < cep"” (4.1)
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In this section we again let ¢ be a positive constant depending on the data but with the
understanding that the data is now interpreted as n, p, ci—cs, 3, > D, 1o, as well as the C?
sup norm of A, C' sup norm of C on [0,2¢8Y?~D] x [8,/2,2¢B"(?~V] where 8 is as in
(3.5) and ¢ is chosen so large that u+ |Vu| < ¢fY?~D in Ny N D (see (2.9), (2.12)). We
first prove the following.

LEMMA 4.1. Let D be as in Theorem 1.2 and (4.1). Fix z' € 0D and suppose that z €
B(z',1/8) N 0D. If 0 < r < 10/8, then there exists ¢ > 1000 and points y, y in B(z,r) with
min{d(y),d(y)} = r/c and the property that y, y are in different components of B(z',70/2) \
aD.

Proof. Let K be as defined above (3.8). For 2/, r, z as above and small € > 0 (to be fixed at
the end of the proof), we claim there exists y" € B(z,7/2) N dD, c(€) = 1, and p,r/c(€) <
p < r/4, such that

(¥',p)isnotin TUK. (4.2)

Indeed, otherwise it would follow for some ¢ = ¢(n) > 1 and M as in (3.3) that
r/2 r r
c(n)MJ I [(TUK) A (B (z,f) X {t})]dt > " n [7] (4.3)
P 2 2p

and this inequality contradicts either (3.15) or (4.1) for p = r/c(€) small enough. Using
(4.2), we can now argue as in the discussion leading to (3.30)—(3.33) to get Lemma 4.1.
In fact in this discussion we showed that only two possible alignments of dD are possible
when (y',p) € K. The first possible alignment is that every point in B(y’,p) N dD lies
within €p of a point of some plane P while every point in P n B(y’, p/€) lies within €p of
a point of dD. Also all the points in one component of B(y’,p) \ P are contained in D.
The second possible alignment of 9D is that every point in B(y’,p) N 9D lies within €p of
two planes P, P; and every pointin (P U P;) N B(y’,p/€"?) lies within €p of a point of dD.
Moreover Py NP N B(y',p/€Y?) = &. Again the points in one component of B(y’,p) \ P
are contained in D and y’ lies within €p of P. In either alignment it is easily seen for € >0
small enough, that we can choose y, ¥ such that y € D n B(y',p/2), y € B(y',p/2), and
¥, y are symmetric with respect to P. Moreover, min{d(y),d(y)} > p/100. Using (1.28)
we see for € small enough that , y cannot lie in the same component of B(y’,ry) N D
since any chain connecting y" to ¥ has ~ In(1/€) members. Thus y, y’ lie in different
components of B(y',ry) \ 0D and so in different components of B(z',ry/2) \ dD. Fix €
subject to the above requirements. Then € depends only on the data and the proof of
Lemma 4.1 is complete. O

Next we will say 0D contains big pieces of Lipschitz graphs provided there exists ¢7,cg >
1 such that whenever z € 0D and x € D N B(z,1y/16), with d(x) < ro/c7, we can find a
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domain Q with
(a) Q C B(x,20d(x)) N D,

(B) after a rotation of coordinates if necessary,

Q= {w = (Wwy) c (W) <w, <x, + @, X' —w'| < @}, (4.4)
7
, d
D) [l = sup |(2)] < xp— TX)
z eRr1 C7
for some y : R""! — R with
v -y | <ely =21 Vy,Z eR (4.5)
Moreover,
n—1
H*! ({(W',I//(W')) dx—w'| < @} N aD) > d(’ii) (4.6)
7 8

With this notation we prove the following.
LeEMMA 4.2. 0D contains big pieces of Lipschitz graphs. ¢;, cs depend only on the data.

Proof. 1f z € D and x € B(z,19/16) N D we choose z* € B(x,d(x)) N dD. Let ¥ = [B(z*,
100d(x)) N 0D] U @B(z*,100d(x)). Then using (3.3), Lemma 4.1, it is easily checked that
¥ is Ahlfors regular (for radii < 100d(x)), and in the language of [14, 27], satisfies a
two-balls condition. That is, given w € &, 0 < r < 100d(x), there exists two balls of radii
approximately equal to r which lie in different components of R” \ ¥ and whose cen-
ters are in B(w,r). Therefore B(x,d(x)) and some ball of approximately the same size are
contained in B(z*,10d(x)) and lie in different components of R” \ &¥. Lemma 4.2 now
follows for ¢7, cs suitably large, depending only on the data, from a clever geometric ar-
gument of David and Jerison (see the remark following [14, equation (10)]). We omit the
details. O

Next we note from (1.4)(c) that A extends continuously to [0, %) X (0, 0) and second
from (1.4)(b) that t — tA(0,#?) is increasing on (0,0). Thus to prove Theorem 1.6 it
suffices to show that if

limsup | Vu(x)| = b, (4.7)
x—0D
then
bA(0,b%) < Bi. (4.8)

Note from (3.5) that b > ;. To prove (4.8) let 7, 0 < T < 10~*min{d}, 1}, be a small posi-
tive number and put

v(x) = max[|Vul*(x) — (b—1)%0], forxeDNN. (4.9)
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We will need to find a suitable partial differential equation for which v is a subsolution.
To this end, observe from the assumptions on A, C in Theorem 1.6, a linear theory for
weak solutions to divergence form partial differential equations, (2.3), and (2.12) that if
x € Ny nD and |Vu(x)| = 61/4, then there exists 1 < cg < o such that |[Vu| > §;/8 on
B(x,4d(x)/co). Moreover,

n

dG)™  max 2 ()SCg[J uS 2 (y)dy+ 1] (4.10)
yeB(x,d(x)/@)i’jZ::l Vodj Y B(x,2d(x)/c9) 1; i yj y

when x € D N Ny, as follows (at least in spirit) from differentiating the partial differential
equation that u satisfies twice and making estimates similar to those in Lemma 2.1 for
p =2 (with u replaced by u,,,, 1 <i, j < n). As usual, cy depends only on the data. Also
from straightforward differentiation and (1.8) we see that w = u,,, 1 <[ < n, is a weak
solution for y € B(x,d(x)/co) to the partial differential equation

> a%(@ijwyj)ﬂivmww:o, (4.11)
ij=1 91

where

E,-j(x) =24, (u(x), IVul*(x)) uy, (x)uy, (x) + 6jA (u(x), | Vul*(x)), 1<i, j<n,
d(x) = As(u(x), | Vul?(x)) Vu(x) +2C (u(x), | Vul* (x)) Vu(x), (4.12)
e(x) =V - (Ag(u(x), | Vul*(x)) Vu(x)) + Cs (u(x), | Vu|*(x)).
In (4.12), §;; is the Kronecker 8. Let ¢ € C°(R), 0 < ¢ < 1, with ¢ = 1 on [8,/2,2¢fY (P~ 1]
and ¢ = 0 on (—o0,81/4] where ¢ was chosen above Lemma 4.1 so that u + | Vu| < Eﬁl/(f"l)
in N; N D. For each x € N; N D put
bij(x) = 8+ ¢ (| Vu(x) ) (bij(x) = 8j), 1<i, j=<n (4.13)

Using (1.4), (4.10)—(4.12) and arguing as in the proof of Lemma 2.3 we deduce for { €
Cy (N1 n D), { =0, that

JN D[ i (bijvy,Cy,) + +((d, Vv)+28(v+ [b —T]z))(]dyzo. (4.14)

Put b;; = §;; for 1 <i, j <nwhen y € D\ N;. Then v is a weak subsolution on N; N D to
Lw = f, where

= 0
Z. a_ b’JW}’J

f=—(d,Vv) —2e[v—(b-1)*].

(4.15)
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Using (1.4) it is easily shown that L is uniformly elliptic on D. From Theorem 1.1 with
0o = 01/4, (4.10), and the fact that A has continuous second partials which extend con-
tinuously to [0, %) X (0, %) we get for B(z,7) C Ny N D,

d Vb; <cr 1 4.16
L(m <x>y63(xd(x)/2)[2| " (y} x<cr (4.16)

Here we have also used the fact that B(x,d(x)/2) can be covered by at most ¢ balls of
radius d(x)/cy.

Let g(-, y) denote Green’s function for D with pole at y corresponding to L in (4.15)
and let w(-,y) be the corresponding elliptic measure. That is, g(-,y) is continuous on
R™\ D with g = 0 on this set. Moreover g(-, y) has locally square integrable distributional
first partials in D\ {y} and if 6 € Cy° (R"), we have

0(y) = J S by0gs, () dx+J 0dw(-, ). (4.17)
ij=1

We will need some basic facts and estimates for g, w (see [28]). First, g is symmetric (i.e.,
g(-,y) =g(y,+)) since L is self adjoint. Moreover from (4.17), classical theory, and our
smoothness assumptions on A, C, we see that g(+, y), g(y, -) are weak solutions to Lw = 0
in D\ {y} and strong solutions to this equation in N} N D. Thus as in Lemma 2.1 we have

rz’"j IVgl*(x,y)dy < cmaxg(x,-)* < czr*”J' g(x,y)*dy (4.18)
B(z,r/2) B(z,r) B(

z,2r)

provided x ¢ B(z,4r). Also, if E is a Borel subset of 0D, then x — w(E, x) is a weak solution
to L in D and in fact is the bounded solution to the Dirichlet problem for L with boundary
value 1 on E and 0 on 0D \ E in the sense of Perron-Wiener-Brelot. Consequently from
the weak maximum principle, 0 < w(E, -) < 1. If rg is so small that |J,c5p B(z,19) C Ni,
thenforsomec>1,0<o0<1,allzedD,and0<r <1

(i) cw(B(z,r) N 0D,x) > 1 whenever x € B<Z> %) nD,
) (4.19)
(ii) 1 — w(B(z,7) N OD,x) < c(@) whenever x € B(z,%).

(i) follows from the fact that B(z,7) N dD and B(z,r) have comparable Newtonian capac-
ities (logarithmic capacities when #n = 2) and estimates for subsolutions to linear second-
order divergence form partial differential equations (see, e.g., [29]). (ii) follows from
the same argument as in (i) and iteration. From (i), the fact that g(-,y) < cd(y)*™" in
R™\ B(y,d(y)/8), and the maximum principle for weak solutions to L we get

g(x,y) <cd(y)* "w(B(y,4d(y)) NdD,x) forx ¢ B(y, (y)). (4.20)
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Also, ifx, y € D, x # y, then

clx—yl* ™ forn>2,
glx,y) < : (4.21)
cl (dlamD) when n = 2.
[x =yl

We use (4.19), (4.20) to show that if w € dD, x € B(w,p) N D, and B(w,10*p) C Ny, then

d o
J d(y) 'g(x,y)dy < cp(ﬁ) , (4.22)
B(w,100p)ND\B(w,4p) P

where ¢ depends only on the data. To prove (4.22) we let

Ix = {y € Dn B(w,100p) \ B(w,4p) : 103_kp <d(y) < 104_kp} fork=1,2,....
(4.23)

For fixed k, let {B(y;,100d(y;)), y; € Ix} be a covering of O = Uyelk B(y,4d(y)) with the
ballsin {B(y;,d(yi)/4)} pairwise disjoint. We note that each y € O lies in at most ¢ = ¢(n)
balls in {B(y;,1000d(y;)), yi € It}, as follows from the usual volume argument using
disjointness of the smaller balls and the fact that all balls in the covering have proportional
radii. Using this note and (4.19), (4.20) we deduce for k > 10 that

) gty < | d0) LB 4d (), xldy

< clO_kp{ Zw[B(y,», 1000d(y;)) N aD,x]){

< c10 *pw[B(w,200p) N 0D \ B(w,2p),x] < clO"ﬁ)(%) ,
(4.24)
where the last inequality follows from (4.19)(ii) and the fact that
w[B(w,200p) N 9D\ B(w,2p),x] <1 — w[B(w,2p) N dD,x]. (4.25)

Equation (4.24) is also true if 1 < k < 10 as follows easily from (4.19)(ii), (4.20). Summing
(4.24) we get (4.22).

Next we state the theorem of [15] mentioned after (1.29) and tailored for our situation.
A somewhat different proof of this theorem is given in [30, Chapter 10]. Finally we remark
that a nontrivial generalization of the following theorem for the heat equation in a time
varying domain appears in [31].

THEOREM 4.3. Let Q) be as in (4.4)-(4.5) and let wy = w4 (+,x) denote elliptic measure
defined with respect to (b;;) satisfying (4.16) and uniform ellipticity conditions. Then w is
a doubling measure and w, € A®(H"!|5q). Equivalently, wy is a doubling measure and
given, I}, 0 < I} < 1, there exists L, depending on I, the constant c in (4.16), and the uniform
ellipticity constants, such that if w € 0Q), 0 < p < diamQ, and F C 0Q n B(w,p) is Borel
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with H* 1(F) = (1 - ,)H" 1(0Q N B(w,p)), then
ws (F,x) = hws (0Q N B(w,p),x). (4.26)

The following lemma is the cornerstone for our proof of Theorem 1.6.

LemMa 4.4. Ifz € 9D, B(z,10r) C Ny and € > 0 is given, then there exists £ = £(€),0< & <
1072, such that if E C 0D N B(z,2r) is Borel and H"Y(E) > (1 — §)H""'(dD n B(z,2r)),
then for w € D \ B(z,4r),

w(0D N B(z,1),w) < €w (0D N B(z,2r),w) + c(€)w(E,w). (4.27)

Proof. The proof of Lemma 4.4 for harmonic measure can be found in [32, Lemma 2.2].
For completeness we give the rather short proof. Clearly it suffices to prove Lemma 4.4
for € >0 small, say 0 < € < €. Let ¢*(1 < ¢* < € bea large positive constant to be

chosen later and let j be the greatest integer < ¢*/€. Put

U —{ '<§+£)r<| —z|<(§+ﬂ>r}
U LAV Y FREVERYAS &
5 k+1/2)r}

Skz{yED:Iy—z|:(1+ 4j

(4.28)

for 1 <k <j—1.Let € = €/c* and first suppose that there exists x € S with d(x) =
(€’/100)r. In this case we see from Lemma 4.2 for € small enough that there exists a
Lipschitz domain Q satistying (4.4)—(4.6) with

B<x, @) C Q C B(x,20d(x)) nD C B(z,2r) N D. (4.29)

Let w4 (+,x) be elliptic measure for Q) with respect to x and L. From (4.16) and the ob-
servation, d(w,0Q) < d(w) when w € Q, we deduce that L restricted to () satisfies the
hypotheses of Theorem 4.3. Applying this theorem we see that if ¢ is large enough (de-
pending only on the data) and E C B(z,2r) N dD is Borel with

n-1 on—1
H1 [I;(z,z(f))m ap] =1 - g (4.30)
then
H"YEnoQ) = d(;izz_l (4.31)
and for some ¢y > 1,
c;' < wy(ENoQ,x) < w(E,x), (4.32)

where the last inequality is a consequence of the weak maximum principle for L. Using
HarnacKk’s inequality for positive weak solutions to L we conclude that

’

c(&) ' <w(E,-) onSn {w 1d(w) > 160:)} (4.33)
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Now if x € Sg N {w:d(w) < €'r/100}, then from (4.19)(i) we get
w(UxnoD,x) = c .. (4.34)

Combining (4.33) and (4.34) we conclude that

1 <cw(UpgnaD,-)+c(€)w(E,-) on S. (4.35)
If Sk n{w:d(w) = €'r/100} = &, then by continuity of d, either Sy C {w:d(w) < €'r/
100} or S C {w:d(w) > €'r/100}. In the first case (4.34) holds on S so (4.35) remains
valid. Actually this case cannot occur as we see from (2.9), (3.4), and the weak maximum

principle for L but for future applications we include it in our considerations. Otherwise
using continuity of d it follows that there exists p > 0 with

5 k+1/2 €'r
{)’-Pﬁ|y—Z|S<Z+4—j>r}C{W-d(W)Z100} (4.36)

and d(x) = €'r/100 for some x € dB(z,p). Applying the same analysis as previously we
find first that if (4.30) is valid, then w(E,-) > ¢(€)~! on dB(z,p) and thereupon from
Harnack’s inequality that (4.35) is still valid for suitably large ¢(€). Thus (4.35) is true in
all cases.

From (4.35) and the maximum principle for weak solutions to L we find for 1 < k <
j—1land w € D\ B(z,4r) that

w(B(z,r) N 0D, w) < cw(Ux N oD, w) + c(€)w(E,w). (4.37)

Summing (4.37) over 1 <k < j — 1 we get
(j — Dw(B(z,r) N dD,w) < cw(B(z,2r) noD,w) + (j — 1)c(€)w(E, w). (4.38)
Dividing (4.38) by j — 1 and choosing c* large enough we conclude that Lemma 4.4 is
true. |

Next we state the following.

LEMMA 4.5. Let D* be an Ahlfors regular domain with constants M*, r* (i.e., (3.3) holds
with M replaced by M* for all z € 0D* and 0 <r <r*). Let z* € 0D*, 0 < p < r*/4, and
suppose that v is a positive Borel measure on 0D* with v(dD*) = 1. Assume for 0 < € < 1/2,
that there exists k = x(€), 0 < k < 1, ¢(€) < oo, for which the following statement is true. If E
is a Borel set, Z € OD*, 7 > 0, and E C B(Z,27) N dD* C B(z*,2p) N dD* with

Hn—l (E)
H"1(B(2,27) n 9D*)

> 1-«(6), (4.39)

one has

v(B(2,7) N dD*) < €v(B(2,27) N dD*) +¢(€)v(E). (4.40)
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Then v restricted to dD* N B(z*,2p) is absolutely continuous with respect to H"~! measure
on 0D* N B(z*,2p). Moreover if dv(-)/dH"~! = h on 0D* N B(z*,2p), then for some A >0,
depending on M*, «, ¢, and n,

v(B(z*,4p) N oD*) J
v(B(z*,p) N 0D*) JapnB(z*2p)

1+A
W GH < c( hdH"*l) p (4.41)

J:')DnB(z* P)

Proof. Lemma 4.5 follows from arguments originally used in [33], although the modifi-
cations needed for an Ahlfors regular domain are somewhat tricky. A complete proof of
Lemma 4.5 for harmonic measure can be deduced from [32, Theorem 1]. However, our
proof of Theorem 1.6 only uses absolute continuity of v in Lemma 4.5 and this statement
follows easily from the assumptions in Lemma 4.5. To outline the proof of absolute con-
tinuity, we first note for K > 0, sufficiently large, that for » almost every y € dD*, we have
v[B(y,s)] >0 when s >0 and

.. V[B(»,2t)noD*]
liminf =g y,6) N oD*]

<K, (4.42)

since otherwise we could iterate this inequality to deduce that t' "v[B(y,t) N dD*] — 0
as t — 0 for y € G Borel C dD* with »(G) > 0. Using a covering lemma it would then
follow from Ahlfors regularity of 0D* that »(G) = 0, which is a contradiction. Fix K so
that (4.42) is true. Next from a standard argument using the Besicovitch covering lemma
(see [26, Corollary 2.14]) we deduce for v almost every y € F Borel C B(z*,2p) N 0D*
that

v(B(y,t) N 9D* \ F)

S (BG.nnaDY) (443)

Now if v were not absolutely continuous with respect to H"~! measure on B(z*,2p) N
oD*, then for some F Borel C B(z*,2p) N dD* we would have H""1(F) = 0 and »(F) > 0.
Choose y € F so that (4.42) and the above limit hold. To get a contradiction we use the
middle display in Lemma 4.5 with Z, 7, replaced by y, t and E = B(y,2t) n 0D* \ F. We
obtain for some arbitrarily small ¢ > 0 that

v[B(y,t) ndD*] < €v[B(y,2t) N 0D* | +¢(€)v[B(y,2t) N 0D* \ F|

< €Kv[B(y,t) N OD* | +Z(€)v[B(y,2t) N 9D* \ F]. (4.44)

Dividing this inequality by v[B(y,2t) N dD*] we get a contradiction for some small t >0
provided €K < 1/2. Thus » is absolutely continuous with respect to H"~! on dD*. O

To complete the proof of Theorem 1.6 under assumption (4.1) we modify an argument
in [6, Section 3]. Choose r >0, 0 < r < (1/4)min(diamD, 1), z € dD, ¢ = ¢(n) = 1 (to be
chosen later), x € B(z,7/100) N D with B(z,cr) C Ny and

|Vu(x)| = b % (4.45)
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We can also assume |Vu| < b+ 1 on B(z,cr) N D which for v (defined after (4.8)) implies
0<v=<(b+1)—(b—1)*=4br (4.46)

on B(z,cr) N D. Eventually we will let x — 0D keeping z, r fixed which is permissible as
follows from the definition of b in (4.7). Let {Qj}, (1), & be defined as in Section 2 fol-
lowing (2.15) with § < d(x)/r. Givenr’ € (r,2r),let A= {j: Qj N B(2,2r') # D and r; =
&r}. Define A relative to A exactly as in Section 2 following (2.16). Next let Aj; C A; be
as defined below (2.17) with r replaced by " and set Aj; = A; \ Aj;. We also choose #,
so that |0*#,,/0y;dy;| < cr,? for 1 <1, j < n. Finally we write g for g(x, -). We note that
(4.17) remains valid with 8 = v >, #m. Integrating (4.17) by parts for this 6 and using
(4.15), (4.45), we find that

(i) (4b-371) <v(x)

=> J [Z bij (Hmv) gy,]dy =22, J [ bij(1im),, %g]dy (4.47)

men i,j=1 men

- zj [ bij(1m) 3 Vg}dy 2. J frimgdy = Py+Py+Ps.
i,j=1

meA meA

From (2.3), (2.4), (4.16) we get as in (2.17) that

|P1|+|P2|<c2j [l Vv +7-2v]g dy. (4.48)

mei;

Recall that A; = A1 U A1, where Aj; consists of cubes which intersect 0B(z,2r") while
the cubes in A, have sidelength ~ &r. We claim for some r’ € (r,2r) that

> J Vvl +r,2 ]gdy<c< ()> (4.49)

meA

Indeed, writing Aj; = Ay ('), integrating with respect to " and interchanging the order
of integration we get using (2.3), (2.4), (4.10), and (4.22) with w = z, p = #/10,

J ( > J 1|VV|+rm2V]gdy)dr’

meA (r

(4.50)

SCJ d(y)_lg(x,y)dyscr<M> .
B(z,6r)ND\B(z,r) r

This inequality and weak-type estimates imply that (4.49) holds for some " € (r,2r).
With " now fixed let A’ be the subfamily of cubes Q,;, = Qu(ym,7m) € A1z for which
v# 0 on Q, and let F = U,,cpar B(¥m»crm) N 0D. Next using { = vy, as a test function
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n (4.14), we find in view of (2.4), (2.9), (2.12), (4.10), (4.12), (4.15), (4.46) for ¢ = c(n)
large enough and &r < b that

J IVvlzdyS(:r,;,zJ (v+rm)2dyscr,’1f2(rb)2 (4.51)
Qm B(ym>ctm)ND

whenever Q,, € A’. Here we have also used the fact that |Au(x)| < c(|Vv(x)| +1) for
X € suppV to estimate the term in (4.14) involving e. This fact follows for example from
(2.29). Using the above inequality, Holder’s inequality, (4.20), (4.46), and arguing as in
(2.20), we deduce for ¢ = ¢(n) large enough and ér < 7b that

> J [r, Vv + 7, v]gdy

meh;, Qm

) 1/2 172
- 72“ V2 ) (I 24 ) (4.52)
¢ Z Tm B(ym>crm)ND (V rm) ) B(y,,,,crm)ﬁDg )

melN

<cth Z B(Ym>crm) N 0D, x) < ctbw(F,x).

men’

With ¢ = ¢(n) now fixed so that (4.52) holds, we can use (4.52), (4.53) in (4.48) to con-
clude that

1P|+ |Ps| < c(@)aﬂww(m) (4.53)

provided &r < 7b. To estimate P5; we again use (2.3), (2.4), (4.10), and (4.12) to write

|Ps| = J frimgdy| < CJ d(y)~'g(x,y)dy
mEA DN B(z,4r)
= cedy+ end +I e d
J [B(x,10d(x))\B(x,d(x)/2)]nD J B(x,d(x)/2) 4 [B(z,4r)nD]\B(x,10d(x)) y
=h+L+]s.
(4.54)
We will show that
i < cd(x). (4.55)
In fact if

— [y € B(x,10d(x)) \B<x, @) 101k d(x) < d(y) < 100 *d(x)} fork=1,2,...,
(4.56)

then as in (4.24) we deduce using (4.20),

L* d(y) 'g(x,y)dy < CL* d(y)'"w[B(y,4d(y)) noD,x]dy < c107%d(x).  (4.57)
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Summing this inequality over k = 1,2,..., we obtain (4.55). Next if 100r > 109d(x) = 10r,
we can use (4.22) with p = 10%d(x) for k =0,1,2,... ,q to estimate J3. That is,

q
< d(y) 'g(x,y)d
]3 CleJ'{lOVd(xkxy|<10"+1d(x)}mD (y) g(X y) Y
] (4.58)
<> 10179d(x) < cr'0d(x)°.
v=1
Finally from (4.21) we deduce
diam D
I, < clog( o )d(x). (4.59)
Combining this estimate with (4.55), (4.58) we find in view of (4.54) that
diam D Lo 1/ o
Py | < cd(x) 10g< o ) Terlod(x)”, (4.60)
Using (4.53), (4.60) in (4.47) we see for &r < 7b that
G) (4b - 37) < cd(x)log (‘E—n;f) Fertd(x) +erbo(Fyx). (461

With r fixed we now suppose that £r < b and d(x) is so small that the first two terms on
the right-hand side of the above display are < 1/2, the left-hand side of this display. Then

1 <cw(F,x). (4.62)

To avoid confusion, we write F = F({r) to indicate the dependence of F on ¢ and put
& =27%for k = 1,.... Next we observe for any w € D that

w(+x) < c(D,x,w)w(-,w) (4.63)

thanks to Harnack’s inequality and connectivity of D. From this observation, Lemmas
4.4 and 4.5 with r replaced by ¢r/4, v = w(-,w), and w a point in D \ B(z,cr), as well as
(4.62), we see there exists a > 0 small and ko large so that

2a <H"'[F(27%)] (4.64)

for k > ko where a is independent of k and ky depends on various quantities including 7,
d(x), w, x, r, D and the data. Also (4.64) only requires absolute continuity of w(-,w) with
respect to H"~! measure on oD.

To continue our proof we need the fact that for H"~! almost every y € oD N B(z,cr),
we have

limsupa(n—1)"'p~""VH"[B(y,p) naD] < 1 (4.65)
p—0
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which follows from basic measure theory-type arguments (see [26, Theorm 6.6]). Using
this fact, (4.64), and once again basic measure theory we see that if k; > kg is large enough
and

Gy = F(27%r) n {y € 9D n B(z,cr) : H"' (B(y,p) N 9D) )
4.66
<(a(n—1)+1)p" T for0<p=<27Fr}, (

then for k > k; we have
H" Y(Gy) = a. (4.67)

Recall the definition of a good tangent ball in (3.7). Given §, 0 < § < &), we replace &,
by § in (3.7)(«). That is B(x,d(x)) C D is a good (§) tangent ball provided |Vu(x)| = ¢
and the chain condition (3.7)(f5) holds for € sufficiently small, say 0 < € < €y = €y(9)
where €y < §1%°. With this change one easily checks that the argument after (3.8) can be
repeated verbatim except that now constants can also depend on §. We claim there exists
ky = ka(ki,€,08) = k; such that if k = k,, then for some z € G it is not true that

there is a bad tangent ball B(y,d(y)) C B (2,27%cr) nD

4.68

with d(y) = 27%e?r, |Vu(y)| = 4. (4.68)
Indeed, let K be defined as in Section 3 to be the set of all (w,s) € B(z,2cr) x (0,r) for
which (4.68) holds with z, 27%r, ¢ replaced by w, 5/10, 10c. If (4.68) is true for all Z € G,
observe that

21Ky
L ) H" (KN [R"x {t}])t 'dt > a. (4.69)
tr

On the other hand, summing this inequality over all positive integers k we see as in (3.18)
that the resulting sum is finite. Thus there are only a finite number of positive integers k
for which (4.68) holds for all Z € G.

Fix k > k; and let Z € Gy be the guaranteed point where (4.68) is false. If r* = 27 ker,
then from the definition of v, G, A’, and a good (§) tangent ball, we see as in Section 3
that there exists B(y,d(y)) C B(Z,r*) with

IVul(y)=zb-1 (4.70)

and d(y) > r*/c. We assume as in Section 3 that 0 € B(y,d(y)) N 9D and y = d(y)e,.
Using the argument following (3.18), as well as, (4.46) and (4.70) we get that

[ Vu(w) —be, | < |Vulw)— | Vu(y)|e.| +7<c(d)e+7 (4.71)

whenever w € O = B(Z,2r*/€?) n {w : w, > c(8)e*r*}. More specifically, (4.71) is just
(3.27) together with the claim after (3.29).

We now proceed as in [6] (see the argument after (3.34) of this paper). As in the dis-
cussion following (3.31) we can suppose € is small enough, say 0 < € < €(8), so that one
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of the following two possibilities occurs. First suppose that

aDmB(E,r*)CS:{ | wn | <%}> (4.72)

Given,0<n <1/2,lety € Cy[(—1,1)] be an even functionwithy = lon (y -1, 1 — )
and |y'| < ¢/5. Put

2)|x" —

Z v whenever x’ € R" !, x, € R,
r* er*

b ) =y B
r*
H= {(x',xn) X -7 < Ex | x| <€r*},

=0H N {x:x, =er*}, (4.73)
T, =0HN {x:x,=—€r*},

r*
T =8Hm{x: x' —Z'| = 7}
Note that supp¢ € H and 0 < ¢ < 1. Also T} C O for €y = €,(6) sufficiently small. Using
these notes, (1.10), zZ € Gk, and (1.29) we obtain

M, = H (1, | Va2 (Vu,qu)—C(u,qulz)(p]dy‘

o ] n—l (4.74)
- J¢dy3y[3<2,(l+4e)7)] sﬁl(oc(n—l)+f)[(5+2€>r*] .
From boundedness of C we deduce that
M, = ‘J A(u,quIﬂ(Vu,qu)dy‘ < M +ce(r*)". (4.75)
H

Moreover,

‘ JHA(u,IVulz)uyngbyndy‘ - ' JHA(u,IVulz)(V'u,V’qﬁ)dy' =M; — M, < M,,
(4.76)

where V' denotes the gradient in x" = (x1,...,x,-1) only. From (4.72) we see that either
(a) 0= {w:w, < —er*/2} nB(z,r*) C R*\ D or (b) O C D. In either case letting 7 — 0
we find

M; — ‘J A(u,quIz)uyndH”_ly—J A(u,IVulz)uyndH”_ly = Ms, (4.77)
T, T,

where the integral involving T is zero in case (a). In case (b) we see from our choice of Z
that either (+) |Vu(y)| <d forall y € O with d(y) = €*r* or (—) O contains a good (6)
tangent ball of radius > r*€2. If (+) occurs, then from (1.4)(a) we deduce that
1

‘ J A(u,IVulz)uyndH"_ly‘ <8P ()" (4.78)
T,
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If (—) occurs, then from basic geometry and the argument after (3.22), it follows that
uy, < 0on T,. Since u,, > 0 on T; we conclude that in either scenario,

M = ‘J A(u,IVulz)u),ndH”’1 SM5+C(§‘D71(Y*)"71. (4.79)
T,

Using our smoothness assumptions on A and (4.71) we deduce from (4.79) that

%\ n—1
bA(0,6%)a(n — 1)(%) < Mg+c(r+e+8r1) ()", (4.80)
Finally,
limsup M, < ce(r)"! (4.81)
n—0

as we see from boundedness of |Vu| and simple estimates. Combining (4.74)—(4.81) we
get after dividing by a(n — 1)(r*/2)" !

bA(0,b%) < Br+c(1+B1)(r+87 " +¢€). (4.82)

for given § >0, 0 < € < €y(d), and ¢ depending only on the data. Since €, 7, § can be
arbitrarily small we conclude that (4.8) is true when (4.72) is valid. If (4.72) does not hold,
we can use the argument in the last paragraph of Section 3 to get that if r’ = r/€/?, then
oDNB(z,r') CS = {w:|wy,| < €*r'/4} for 0 < € < €9. We can now repeat the argument
after (4.72) with r* replaced by 7’ and € by €'/*. In this case we do not need to introduce
0. Also case (a) and (+) of case (b) can be omitted as they cannot occur. Once again we
obtain (4.82). Thus Theorem 1.6 is true when (4.1) holds.

5. Preliminary reductions for Theorem 1.6

In this section we let ¢, depending on the data, have the same meaning as in Section 4.
We also use the same notation as in Section 4. Our goal is to show that Theorem 1.6 is
valid without the Carleson measure chain assumption, (4.1). The strategy for obtaining
this goal is contained in the following two propositions.

ProrosITION 5.1. There exists D1 C D such that 0Dy is locally uniformly rectifiable and

d(w
(o) DN oD, = UaB (wj, (ZVJ) ) for some ¢ = 10° depending only

104)) 1y, 1040))

1

on the data and for i # j, B(wj, =0, (5.1)

(B) if 1o > 0 is small enough (depending only on the data),
thenv=0o0n DN oD, for0< 1 < 7.

ProposITION 5.2. Let w; be elliptic measure corresponding to L in (4.15) and D,. Then
Lemma 4.5 is true for D* = Dy, r* = 72, and v = w (-, w) provided w € Dy \ B(z*,4p).
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Remark 5.3. Armed with Propositions 5.1 and 5.2 we get Theorem 1.6 in the following
way. First, D; has the same properties as D thanks to Proposition 5.1, so (4.17)—(4.24)
are valid for w; and g;, Green’s function corresponding to L and D;. Second, we choose
cr < 73 and x so that (4.45), (4.46) hold. Third, we replace g wby g1, w; in (4.17) and
again use 6 = v >, cA7m as a test function. Integrating by parts as in (4.47) we get P,
P,, Ps, with g replaced by g;. The additional term involving w; arising in the integration
by parts is equal to 0 (so can be omitted), since v =0 on dD; N D for 0 < 7 < 15. We
can now repeat verbatim the argument after (4.48) with g, w replaced by g1, w;. We get
(4.67) (thanks to Proposition 5.2) and finally Theorem 1.6. Thus to complete the proof
of Theorem 1.6 we need only prove Propositions 5.1 and 5.2.

Proof of Proposition 5.1. Let &1, v, b, T be as in (3.5), (4.7), and the display below (4.8).
Also assume that (4.46) holds in D N N;. We first allow €, 0 < € < 1071%", to vary, put
7(€) = exp(—1/€?) and construct D (€). Eventually we will fix € = €;, 79 = 7(€1)?, satis-
fying several conditions, to get D; = D;(€;) as in Propositions 5.1 and 5.2. We assume,
as we may, that max{d;,€e} < b/100 (otherwise redefine §,). To begin the proof observe
from (4.46) that if 4 = (1,...,4,) with || =1, then w =b+7—-(Vu,n) 2 0in DN N,.
Moreover if | Vu| = §; on B(x,r) C D, then from (4.11), (4.12), we see that

Lw+{(d,Vw)+éw=eb+1) onBlxr). (5.2)
Using this fact we deduce

max w < ¢ min w+cbr. (5.3)
B(x,r/2) B(x,r/2)

To sketch the proof of (5.3), write w = A + g where LA = 0 in B(x,37/4), A = w on
0B(x,3r/4). We note that g can be written as Green’s potential in B(x,3r/4). Using Har-
nack’s inequality for A, our note, and making estimates on g using (4.19)—(4.21), as in the
estimates for ], J; following (4.54), we get (5.3). We write D for D;(€). To construct D;
we examine again the argument leading to (3.8)—(3.14). Suppose y € D, d(y) < 7V%(¢),
and for k a fixed positive integer that

max [IVulkVu(z) — 1Vul*Vu(z,) | = €', (5.4)
21,22€B(3,(1-€'9)d())

In this case we claim for € > 0 small enough that there exists ¢, > 1 (depending only on
the data) and w such that

B(w, dil?) C B(f, (1 — #)d(?)), v=0 on B(w, di:‘/)). (5.5)

To prove this claim we consider two cases. First if | Vu(w)| < 48, (8, as in (3.5)) at some
point in B(¥,(1 — €'%/2)d(y)), then from (2.3), we see that (5.5) is valid. Otherwise,
|Vu| > 48, on this ball and we will show that v = 0 on B(3,d()/4). Thus in this case
(5.5) is true with w = y. The proof is by contradiction. Assume v(y) > 0 or equivalently
[Vu(y)| >b— 1 for some y € B(y,d(y)/4). Rotating coordinate systems if necessary we
may also suppose that u,, = [Vu(y)| >b— 1. Thusif w =b+ 71— u,,, then 0 < w(y) <27
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and we can apply the weak Harnack inequality in (5.3) to w. If 7 < 7(€), d(y) < 7%(¢),
we get after applying this inequality about log(1/€) times that

uynzb—exp(—é) on B(3, (1 - €Yd(5)). (5.6)

Since |Vu| < b+ 7 in this ball, it follows that
Vul -, 8bexp<—é) in B3, (1 - €)d(3)). (5.7)

From (5.4)—(5.7) and a ball park estimate we see for some z1,z; € B(y,(1 — €'9)d(%))
that
€' < | |Vul*Vu(z) — [Vul*Vu(z) |

+ + 1
éc,nl z1) — 1;1 Z \+cexp[—@] (5.8)

<cluy,(22) —uy,(z1) | +cexp [ —

<clu

L]
(2e) I’
where ¢ depends on the data (including k). We conclude from this inequality that

€100
min (uy, (z1),uy,(22)) <b+7-— o (5.9)

which contradicts (5.6) for € sufficiently small. Thus in this case v = 0 on B(y,d())/4).
In either case claim (5.5) is true. Next let ® = {§J € DN N; : (5.4) holdsand d(y) <
TV2(€)}. Set

0= {WENlﬁD y=0on B( IOOOd )andforsomeyé@l,
(5.10)

19— §] < €10d(5) while 20d() < d( )<(—:’2°°d(v?)}.

Here ¢ > 2000c, (cx as in (5.5)) is chosen so large that if |Vu(w)| < 48;, then v =0
on B(w,1000d(w)/c). Thus w € ® when either (5.5) holds or |Vu(w)| < 48; and there
exists y € @1 with |w — y| < €719d(y) while €2°°d(w) < d(y) < € 2%d(w). From a well-
known covering lemma we see there exists {B(y;,d(y;)/¢)}, with yi € O, such that

(a)@cUB(yi,%),

(b) B(y,-, IOdg(y")) mB(yj, 106?”) =, (5.11)
(c)v=0on UB(y;,%).

Put D, = D\ [UB(y;,d(y;)/¢)]. Clearly D; has properties («), (8) in Proposition 5.1. To
prove Ahlfors regularity of oD first suppose z € dD. Then

H" Y (DN oD, NnB(z,r)) <c(e)r"}, (5.12)
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as we see from the argument after (3.8) leading to (3.15). Indeed, if B(y;,d(y:)/¢) N
B(z,r) # @, then there exists ? € O, corresponding to y; as in the definition of ®. From
a Poincdre-type argument (see (3.14)) and the fact that

%6100/("“) <max{|Vu(z1)|,|Vu(z) |} < cmax{d(z) u(z1),d(z) 'u(z)}
(5.13)
for d(y) < 7(€)"?, we obtain
d(y)" " = c(e)J S () dw. (5.14)
()’) B(?,(l*GlOO)d(?)) i)jz=1( })

Summing and using Theorem 1.2 we get (5.12). If z € D N 9Dy, then z € dB(y;,d(y;)/C)
for some i and for 0 < r < 4d(y;), it follows from (5.11) as well as the above-mentioned
argument that (5.12) is true. If r > 4d(y;), then there exists Z € oD with B(z,r) C B(z,2r),
so we can use (5.12) again with z, r replaced by Z, 2r. We conclude in all cases from (3.3)
and (5.12) that for some M’ = M'(€) < oo,

H" Y (B(z,r)noD;) < M'r" ' < o (5.15)

whenever z € 0D and 0 < r < diam D. The lower bound in the definition of Ahlfors reg-
ularity for 0D, N 0B(z,7), z € 0Dy, is essentially trivial as we see from dividing the proof
into two cases and using the corresponding lower bound for 0D N B(z,r) when z € dD.
Given Ahlfors regularity, local uniform rectifiability of 0D, follows from the so-called big
pieces functor in [2]. That is, given 0 < r < diam D, z € dD, we show the existence of a
uniformly rectifiable set U with “bounded constants” and

cH" '[UNaD, NnB(z,r)] = r" 1, (5.16)

where ¢ is independent of r, z € dD. By “bounded constants” we mean the Ahlfors reg-
ularity constant (see (3.3)) and the norm of the Carleson measure associated with the
exceptional set in one of the definitions of uniform rectifiability are bounded indepen-
dently of r, z. Equation (5.16) implies local uniform rectifiability of 0D, (see [2, Part
IV]). To prove (5.16) for z € dD, we can simply take U = D U P (P is the plane whose
distance from D =~ diam D). If z € 9B(y;,d(y;)/¢) for some i and 0 < r < 4d(y;), we take
U = 0B(y;,d(y:)/C) U P; where P; is a plane whose distance from B(y;,d(y;)/¢) is equal to
100 d(y;). If r > 4d(y;), we can again take U = dD U P. Since € eventually will be fixed,
the proof of Proposition 5.1 is now complete. O

Proof of Proposition 5.2. Again we allow € to vary but at the end of the proof of this
proposition we will fix € = €;. To prove Proposition 5.2 we claim it suffices to show for
given x € Dy = D;(€) with d;(x) = d(x,0D;) < 7(€)*? that there exists positive numbers
& =&1(e), & = &(¢€), such that whenever E C 9D, N B(x,d, (x)/€°) is Borel with

Hn—l (E)
H1[B(x,dy(x)/€%) N oDy |

>1-§(e), (5.17)
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then
w1 (E,x) = &(e). (5.18)

Indeed once (5.18) is proved we can repeat the argument in Lemma 4.4 for given € > 0
and r < 7(€)? with j replaced by the largest integer < (€€!%)7!, €’ = €€!% and Uy, Sk un-
changed. We get Lemma 4.4 for w; and 0 < € < 1/2, provided ¢(€,¢) is sufficiently large.
We then take € = €, and conclude Proposition 5.2. Thus we prove only (5.18). A key in-
gredient in the proof will be to develop an algorithm which produces a Lipschitz domain.
We then start a process in which we either stop or apply the algorithm once again. In
all cases we show, using Theorem 1.1, and a corona decomposition-type argument as in
[1, 2, 27], that after at most

N =cfe ¥4 (5.19)

times (where ¢* depends only on the data for D) our process must stop with an end result
that produces at the N'th step a family of Lipschitz domains, {Q;}, for which the members
of a subsequence, say {();}, contain big pieces of D; in the sense of (4.4)—(4.6). Using the
theorem of Kenig and Pipher mentioned earlier it will then follow that w; (E,w;) = & >0
for some &3 and w;, € ;. Next we consider the Lipschitz domains produced in the N — 1st
step and estimate in a quantitative way the number of domains whose boundaries contain
big pieces on which w; (E, -) > &5/c. For these domains we can apply the above-mentioned
theorem and get that w;(E,-) > & >0 at a certain distinguished point in each domain.
Because the process is finite and we are essentially at liberty to choose &; our argument
will ultimately arrive at the first step and x, yielding (5.18).

To begin the development of the algorithm recall the definition of a good €? tan-
gent ball in Section 3 (i.e., replace € by €2 in (3.7)). As usual d(x) = d(x,9D), d;(x) =
d(x,0Dy), and tangent balls will always mean with respect to D. We consider the follow-
ing possibilities when X € D; and 0 < d; (%) < 7(€)*?,

(a) | Vu(x)| = &1, B(X,d(%)) is a good € tangent ball,

(b) | Vu(x)| = 6, B(x,d(X)) is a bad €? tangent ball,

(c) | Vu(x)| < 61, every tangent ball B(y,d(y)) C B(x,10d(x)) n D (5.20)
with d(y) > €d(X), | Vu(y)| = &) is a good € tangent ball,

(d) |Vu(x)| < &1, some tangent ball B(y,d(y)) C B(x,10d(x)) n D
with d(y) = €d(X), | Vu(y)| = 8 is a bad €* tangent ball.

We claim that (5.17) implies (5.18) whenever (b), (d) are valid. To prove this claim first
suppose (b) holds. If d; (x) < d(x)/c, where ¢'is as in (5.11), then for some y € D we have
X € B(y,5d(y)/¢) and 0B(y,d(y)/¢) C oD;. If dy(x) = d(X)/¢, then from (3.7)(f), (5.5),
and the definition of D; in (5.11) we see for € small enough that there exists
B(y, @) CBREREed(R)ND withd(y) > ed(2), 9B (y, @) c aD,.
(5.21)



J. L. Lewis and A. L. Vogel 39

If £, (€) is small enough, then clearly we can guarantee that
B ENA) > () H ), (5.22)

where A = B(x,2d;(x)) N 0B(y,d(y)/¢) when d;(X) < d(X)/¢ while A = 0B(y,d(y)/c),
otherwise. Using (5.11)(b), (5.22), Theorem 4.3, and Harnack’s inequality we deduce that
if d\(X) = d(X)/c, then

w1 (Eﬂ&B(y, d(g/)))_) > c(e)™! onB<y, 5d§y)>. (5.23)

Using the chain condition in (3.7)(f) and Harnack’s inequality we now obtain (5.18)
for & small enough. A similar argument applies if d;(X) < d(X)/c. Thus (5.18) is valid
when (b) of (5.20) occurs. If (d) of (5.20) holds, then from (3.7)(B), our choice of ¢, and
(5.11)(a) we deduce that X € B(y,1000d(y)/c) C B(y,d(y)/2) for some y € D satisfying
(5.21). We can then choose &; so that (5.22) holds and after that argue as below (5.22) to
get (5.18) for & > 0 suitably small.

We note as in the argument after (3.29) that if (a) or (c) in (5.20) are valid, then there
exists 0 € R” with |o| = 1 such that X — d(X)o € 0B(x,d(x)) N oD and

0- o(&,g,a> - {w: (w—%+d®)o,0) > @} mB(f,%@)) cD.  (524)

From (5.24) we see that if
oD, N O(x,€,0) + D, (5.25)

then either d;(x) < d(x)/¢ or (5.21) holds for € sufficiently small, so once again we can
argue as below this inequality to get that (5.17) implies (5.18). In view of the above dis-
cussion we will say that B(x,d(x)) is a fine tangent ball if either (a) or (c) of (5.20) is
valid and (5.25) is false. Otherwise B(x,d(X)) is a not so fine tangent ball. Observe from
our discussion that (5.17) implies (5.18) for a not so fine tangent ball and 0 < &, (€),&,(€)
suitably small. Also if B(X,d(X)) is a fine tangent ball, then from (3.31) with € replaced by
€2 we deduce for some ¢ € R” (as in (5.24)) with |¢] = 1, X — d(X)o € dB(x,d(X)) n oD
that

(+) 0(5"\:6)0) C Dl)

(+4) if P(R,0) = [w: (w— 2+ d(®)0,0) = 22d(R)}, w € P(R,0) " B (2 %’A‘))

then B(w,4€%d(x)) N oD # @.
(5.26)

We continue under the assumption that B(X,d(X)) is a fine tangent ball and assume, as
we may, that 0 = e, in (5.26) while X = d(X)e, (so 0 € dB(X,d(X)) N dD). Let Q be an
n — 1-dimensional Lipschitz domain with connected boundary and

{w:w,,fdz(x)} B( dz:)>cQ { 73d2(£)}03(@,10d(?c)) (5.27)
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for some w,c; = ¢y (n) = 1, with |Ww — x| < c;d(X) and w,, = 3d(x)/2. We also assume that
Q\ Q can be covered by at most I < ¢2 balls {B(z;,s;)}} with z; € Q\ Q, s; = d(&)/c2,
and the property that B(z;,2s;) N (Q \ Q) coincides with the graph of a Lipschitz func-
tion ¢; from R"~2 into {w: w, = (3/2)d(X)}. Moreover in the proper coordinate sys-
tem Q N B(z;,2s;) lies above the graph of ¢; and |V¢;| < ¢2 for 1 <i < I In fact it will
turn out in later iterations that Q (see (6.22)) is at worst essentially the affine (nearly
conformal) image of a union of Whitney cubes and Q \ Q is contained in the image of
cubes whose sidelengths are proportional (depending only on n). Let C = {x = (x",x,) €
R": (x',3d(x)/2) € Q} be the infinite cylinder containing Q. Let {B(yj,d(y;))} be a pair-
wise disjoint collection of tangent balls with y; € P(%,e,) N C and P(x,e,) N C C UB(y;,
10d(y;)). Note from (5.26) that for each j,

d(®) <d(y)) <d(y;) < 8€2d(R). (5.28)

If B(yj,d(y;)) is a not so fine tangent ball we do nothing further to this ball. Otherwise
this ball is a fine tangent ball so as above we deduce the existence of o; € R"with |gj| = 1,
yj—d(yj)oj € 0B(y;, d(y;)) N oD and

(*) O(yj,E,O'j) C D; while O(yj,E,O'j) N O(Q,E,en) 7’/: D,

d(y;) (5.29)

(—-) ifwe P(yj,0)) mme(yj, ), then B(w,8€¢2d(y;)) N oD + @.

If
arccos ({(gj,eq)) = €19, (5.30)

where 0 < arccos(-) < 7, we do nothing further to B(y;,d(y;)). Otherwise we put y, = X,
write j; for j in the above definitions, and use (5.26)—(5.29) to continue by induction. As-
sume after [ > 1 repetitions we have obtained y;,...;, 0j,...;, [with yj ...;, = d(y;,...;)0j,...j,
S aB(yjl...jl,d(yjl...jl)) N aD], O(yjl...jl,(:',o'jl...jl), P(J’j1~~-jz>‘7j1~~-jz) satisfying (5.28),
(5.29) and not (5.30) with j replaced by j - - - jy while X in (5.28) is replaced by y;,...j_,.
Under this inductive assumption, we choose a disjoint collection {B(y;,...j,,,»d(yj .- ju. )}
of tangent balls with centers in P(yj,...j,0j,...;) 0 C N B(yj,...j»20d(yj,...j))) and such
that {B(yj,...j,,»10d(yj,...j.,))} is a covering of P(yj...j,0j...;) N C N B(y;,...;,20
d(yj...i))- X B(yj...j>d(¥j---ji,)) 1s a not so fine tangent ball, we quit. Otherwise we
argue as below (5.26) to get (5.28), (5.29) with j replaced by j; - - - ji+1. Thus by induc-
tion we obtain 0j,...,, with y; ..., —d(yj,...j. )0ji- iy € OB(Yj-. > d(Yji-jiy)) N OD.
Also we get O(yj,--- 11560, ji )s P(Yji---jur> 0ji - jiny )» Satisfying

€ d(yj,...j) <d (¥j-jun) <d (i) < 8€%d(pji..j), (5.31)
(*) O(yjl'"j1+1’€’0j1"'jl+1) c D while (5 32)
OWjr-ji> €T i) N O(Yjy o €,0j,. ) # D,y '
. = d()’jl---jm)
(>|<>|<)1fweP(yjl...jm,ojl___ﬁH)mCmB(yjl...jM,f), (5.33)

then B(w,8¢d(y;,...;,,)) N 9D # @.
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If
arccos ({0j,...j,,»en) ) = €/1° (5.34)

we stop. Otherwise the inductive process continues.

To simplify our notation, if B(x,d(X)) is a fine tangent ball, and as above, y, = X, 0y =
o, welet L ={j;---ji} U{0} be the subscripts used in the above induction. Also if & =
ji---jror0let|al =1or0be the length of a. If o,&’ € L\ {0}, we write « < &’ provided
I=lal<|a|=mandifa=j---j,a =ji--j, then j; = j/ for 1 <i < I. We say that
« is an ancestor of &’ or that o’ is a descendant of « if |a| < |a&'|. If m = [+ 1, we call «
the father of «’ or refer to a’ as the child of a. Likewise by definition 0 < &« and « is the
descendant of 0 or 0 is the ancestor of @ whenever a € L\ {0}. Next suppose that a,a™ € L
and y = yax € B(ya,d(ya)/€) N D with

e*d(y,) <d(y) <e*2d(y,), fork=1,2,.... (5.35)

We write o(y) for o4+ and suppose also that B(y,d(y)), B(ya,d(y«)) are fine tangent balls.
Under these assumptions we claim there exists ¢ = ¢(n) > 1 such that

|o(y) — ou| < cke. (5.36)

To prove this claim, we note that if k = 1 in the above display, then (5.36) follows easily
from (5.31)—(5.32). In fact for k = 1 the worst case scenario occurs when d(y) =~ €2d(y,)
and y lies within ~ €2d(y4) of P(ya,d(y4)). In this case P(y,0(y)) N B(y,d(y)/€) is of ~
diameter €d(y,) and so each point of this set must stay within ~ €2d(y,) distance from
P(ya,04) N B(y«2d(y4)/€)(C D) in order to avoid oD, thanks to (5.32). Using this fact
and some high school trigonometry, we get (5.36) for k = 1. Equation (5.36) for k = 2
follows from applying the same argument as in the k = 1 case to y, and the father of y,
then after that to y and the father of y.

Continuing in this fashion we obtain claim (5.36).

Next if x = (x',x,), let m(x) = x" = (x1,...,%,—1) be the projection of R” onto R"~! and
put Q' C R* = {x": (x',3d(X)/2) € Q}. Set

B ={w:w € B(y2,20d(y,)) for some a,
B(ya>d(ya)) is a not so fine tangent ball},
G = {w:w € B(y420d(y,)) for an infinite number of «
with B(ya,d(ya)) a fine tangent ball},
AMw) = sup {lal : w € B(y4,20d(ya)),
B(y4,d(ya)) is a fine tangent ball,
o, satisfies (5.34)},
G ={w:AMw)=1} forl=0,1,....

(5.37)



42 Boundary Value Problems

From our construction we note for € > 0 small enough that

G’Cn[%u@u<0&@lﬂ. (5.38)

=0
With this notation we prove the following.

Lemma 5.4. If
H" Y (Q n[n(BUY)]) =2¢"H" 1(Q"), (5.39)
then there exists y : 6, — Rand ¢ = c(n) with ||yl < ce?d(x) while
ly(x")—y(y)| <clx’—y'| wheneverx',y € Q. (5.40)

Moreoverif Q) = {(x,t) : y(x') <t <3d(X)/2 for x' € Q'}, then Q, C D, and either (a) or
(b) holds for € > 0 small enough:

(a) H"'(0Q, nCnaD) = e"H" 1 (Q),
there exists Ly C L such that if a € Ly, then B(ya,d(ya)) is a not so fine

tangent ball, dy (ya) > d(é]“), {B(y4,5d(ya))} are pairwise disjoint.
(b) Also if B, = U P(ya>0a) mB(ym d(f:)) where & is the father of a, (5.41)

IS
then {x e W1 :7n(x) € 6’} c{(x,y(x)):x" € 6,} N Dy
while for some ¢* = c*(n) > 1,

H" Y (n(B) nQ) = e"H"! (Q’).

c*

Proof. We consider two cases. First, suppose
H" ' n(B)nQ'] = e"H" Q). (5.42)

In this case we use a well-known covering lemma to get L, C L such that for each a € L,
B(y4d(y4)) is a not so fine tangent ball while (%) N Q c Uaet, 7[B(ya> 100d(ys))] and
{(m[B(ye,5d(ya))] : a € T.} are pairwise disjoint. Using (5.42) we see there exists L; a
finite subset of L; with

HM{@M[%Q U B(ya,IOOd(ya))}} > <1>6”H”’1(Q’). (5.43)

aELy 2

For o € L with B(y,,d(y4)) a fine tangent ball we write P, for P(y4,04) and define f, :
R — Py by fo(x') = (x',x,) € Py. Let {Q; = Q(w},r;)} be a Whitney cube decomposi-
tion of R" !\ {n(ys) : @ € L} and {11;-} a partition of unity adapted to this decomposi-
tion defined as in (2.14) with y;, Q;, #;, 0D, n, replaced by w;, Q;, 1i, {m(ya) : @ € L1},
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n — 1. To define y let W be the set of all i such that

supp7j; N [ U ﬂ(B(ya,d(ya)))] =0 (5.44)

acl;

and supp#; NQ + @.1fie W, choose n(yﬁ) e {n(yq):a € L} with

d(n(yp), Q) =d({n(ya) ;e € LiLQ). (5.45)

We note that d(@;,n(y/g)) > d()’ﬁ) since Q’ C suppy;. From this note, (5.31), (5.32) we

see that if d(@; 7( y[;)) < d(x), then there exists at least one ancestor 8’ of ,g (and at most
two ancestors) with

ed(yp) <d(Q,m(y) =d(yp). (5.46)
Then from our construction, B(yg,d(yp )) is a fine tangent ball and
Q; c n[B(yp,40d(yp))]. (5.47)

In this case we let f = fz while if d(@,rz(yﬁ)) >d(x), we put f = fo(fo(x') = (x',2€*d
(X))). Finally if & is the father of a € L; we set

f/ = fz whenever supp#y; N 7t[B(ya,d(ya))] # D, a € Ly. (5.48)
To define y first let y (7 ( = fa(n(yq)) for a € Ly and put
(x,w(x") Zf, ) otherwise in Q (5.49)

It is easily checked that y is infinitely differentiable on Q . Next we note again from (5.31),
(5.32) and (5.46), (5.47) that for some ¢ = ¢(n) and x’ € suppy;, i € W, that

c'e2d(Q,7(yz) < d(f (x'),0D) < cd(Q;,m(y5)) (5.50)

which implies in view of (5.32), (5.36) that if i, j € W, and supp#; N suppy; # &, then
for x" € supp#; U suppn;

| () = f{ ()| <er (5.51)

This inequality also remains valid if either i or j is not in W as is readily checked us-
ing once again (5.31), (5.32) as well as disjointness of {7(B(y,5d(y4))) : @ € L }. Using
(5.51) it is easily shown that (5.40) of Lemma 5.4 is valid. In factifx" € 6, N supp;, then

Vyl) < > [IVAIE+]fim 16DVl ()] <c (5.52)

{j:x' €suppr;}



44  Boundary Value Problems

Hence (5.40) is true. Next we note that O; C Dy. Indeed if B(yq,d(ya)), @ € L, is a fine
tangent ball, x € B(y4,80d(y4)), and x" = n(x) € 6', then it follows from (5.32)(*) that
the closed vertical line segment joining (x',(3/2)d(%)) to fy(x") is contained in D;. Since
(x',w(x")) is a convex sum of such segments, we conclude that the closed vertical line
segment joining (x’, (3/2)d(X)) to (x',y(x")) is contained in Dy. Thus Oy C D;. Finally,
from our choice of L;, the fact that y, € C, and basic geometry we see that

, -1
H”‘l{ﬂ[ U B(ya, d(lyg‘) )} nQ } > e"# (5.53)

acly

for some ¢ = ¢(n). (b) follows easily from this inequality and the definition of y, 8. Thus
Lemma 5.4 is valid when (5.42) holds.

Now suppose that (5.42) is false. In this case we note from (5.31), (5.32) and a continui-
ty-type argument that if y € %, then y € 0D and the open line segment from (7z(y),3d (%)
/2) to y is contained in D;. Clearly this statement remains valid when y € . Thus if
x € n[%] n 6,, then (x',y(x")) € %4 is well defined. We claim that (5.40) is valid for
X,y e (%) n 6/. If |x" — y'| = d(X)/100, then (5.40) follows directly from (5.31) and
the fact that diam@l < 20d(x). Otherwise, let L, denote the set of all &« € L such that
B(ya,d(y4)) is a fine tangent ball. Choose a, 3 € L; so that

dlya) +dlyp) + ¥ —nlya) |+ |y —nl) | < 52 sy

We can then choose ancestors o', f” of a, f, such that if } € {yu>yp}, then
Ezd@) <|x' =yl =d(y). (5.55)

Using (5.54), (5.55) we deduce first as in (5.50) that

| fue () = () [+ | for ) = (0w () | < clx’ =yl (5.56)
and second as in (5.51) that
| fo () = for D)+ [ e () = for ()] <clx’ =yl (5.57)

From (5.56), (5.57) and the triangle inequality we get (5.40) when x',y" € m(%9). Clearly
(a) of Lemma 5.4 will be valid once we extend the definition of y to all of 6,. To complete
the proof of Lemma 5.4(a) we argue as in the proof of Lemma 5.4(b). That is, let {Q] =
Q(w},r;)} be a Whitney cube decomposition of R" !\ 7(%) and {17}} a partition of unity
adapted to this decomposition. To define ¥ on Q\n(%) suppose supp#; N Q + @ and
choose a € L, with

’ —

2d(ys) <d(7(y),Q;) < 2d((%),Q)). (5.58)
Ifd(@;,n(@)) < d(X), let @ be an ancestor of « with

€d(y;) <d[Q,,m(9)] <d(ys) (5.59)
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and put f; = f;. If d(é;,ﬂ(@)) >d(X), set f{ = fo. Finally let
y=>fn; onQ\n(9). (5.60)

From (5.59), (5.60) we obtain as in (5.50)—(5.52) that
IVy|<c onQ \7(%9). (5.61)

Using (5.40), and (5.61) for points in 7(9), it is easily checked that (5.40) is valid. Also
from our construction and (5.32)(*) we conclude first that Q; C D; and second that
Lemma 5.4(a) is valid. The proof of Lemma 5.4 is now complete. O

To continue our proof of (5.18) we prove the following.

LemMa 5.5. Under the hypotheses of Lemma 5.4, (5.17) implies (5.18) for & (€),&(€) >0
sufficiently small with x replaced by X.

Proof. 1f (a) of Lemma 5.4 is valid, then Lemma 5.5 can be deduced from a more general
version of Theorem 4.3, Harnack’s inequality and the fact that B(X,d(%)) is a fine tangent
ball. Another way is to observe that there exists z’ € Q" such thatif B= {w': |[w' —z'| <
€2"d(x)}, then

BcQ, H"'[Bna(®]=e"dx)"" (5.62)
Indeed from our assumptions on Q we deduce that
H ' [{w' €Q :dw',Q \ Q) < 100e>d(%)}] < ce>"H"1(Q). (5.63)

Using this fact and covering [0} by a union of balls {B(z;,€*"d(x))} with {B(z;,€*"d(x)/
10)} pairwise disjoint we find from the usual volume argument that if (5.62) were false,
then for € > 0 small enough we would have a contradiction to

H" ' [7(%)nQ ] =e"H"'[Q]. (5.64)

Thus (5.62) is true. Let I' = {(x",w(x")) : x" € B} and choose a so that d(B X {a},T) =
2¢2"d(x) and B X {a} C Q. Let Q' be the domain obtained by drawing line segments
parallel to the e, axis from points in B X {a} to points in I'. Extend y to be Lipschitz on
R"~! with Lipschitz constant as in (5.40). We can now apply Theorem 4.3 in Q" and use
the maximum principle to conclude first that

wi[TNaD,(Z,t)] = c(e)™! (5.65)

for some (z',t) in Dy lying €2"d(X) from I. Using Harnack’s inequality we then get Lemma
5.5 when (a) of Lemma 5.4 is valid.

If (b) of Lemma 5.4 holds, let E be as in (5.17) and let L3 be the set of all « € L; such
that

~

H"'[B(ya,€d1(ya)) N E] = (1-§(€))H" ' [B(yw € di(ya)) NOD1].  (5.66)
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As in (5.22) we deduce from (5.66) (using Lemma 5.4(b)) that for some small g(e) >0

@1 [B(yar € 2d(ya)) N E, y4] = &(€) (5.67)

whenever a € Ls. It follows from Harnack’s inequality and our construction that if

By = | P(ysr0m) mB(ymd(ya)), (5.68)
aELs
then
wi(E,+) = @ on B,. (5.69)

We claim that if & (€) is small enough then there exists &' (€) > 0 such that

H" '[7(B,) nQ ] = & (€H"(Q). (5.70)

Once (5.70) is proved we can use this inequality, (5.41)(b), (5.69), the boundary maxi-
mum principle for weak solutions to the pde in (4.15) and Theorem 4.3 as in case (a) to
conclude that Lemma 5.5 is valid. Thus we only prove (5.70). To prove (5.70) first note
from (5.28), (5.31) that B(ya,€ *d(y,)) C B(x,€ %°d; (X)) whenever « € L;. Second ob-
serve from disjointness of {B(ya,5d(y4)) : @ € L, }, Ahlfors regularity of 0D, and a Vitali
type covering argument that there exists Ly C L; such that {B(y,,€*°d(y,)) : a € L4} are
disjoint and for some large ¢(€) > 1,

de) Y dly)" " = > d(y)" 2 &) H(Q), (5.71)

aELy aEL
where the last inequality follows from Lemma 5.4(b). Let
F= [ U B(yaw€ 0d1 (y4)) N aDl] \E (5.72)
ac€ls\Ls

Using the above note, the definition of L3, L4, (5.17) and Ahlfors regularity of oD we see
for some c_ > 1, depending only on the data, that

&(e)H™! [B( ,dl(x)) maDl] > H"(F) = ¢~ () Sodi(yl)" (5.73)
a€Lls\Ls
From (5.71), (5.73), the fact that
dx)"' <cH"(Q),

5.74
d(ye) <8di(ye), ael, (5.74)

we conclude for & (€) > 0, small enough

> dya)"! S( ) > d(ya)"s (5.75)

a€Ly\Ls aELy
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which implies that

2 dy)" = Y A" (5.76)
a€lsNly AELy
Finally observe that
n—1
7 [ Pya) (o W02 ) | g ] 2 4000 (5.77)

for some ¢ = ¢(n) as follows from Lipschitzness of Q’, falseness of (5.34) for g, and
(ya) € 6’. From (5.71), (5.76), and (5.77), we conclude that (5.70) is true. The proof of
Lemma 5.5 is now complete. O

6. Proof of Theorem 1.6

In this section we complete the description of our algorithm and use it to show that (5.17)
implies (5.18). We then get Proposition 5.2. Using this proposition we obtain Theorem
1.6 as in the remark after Proposition 5.2. To complete the construction of our algorithm
it remains to consider the situation when

A =n<g<§1>\n(% UG) (6.1)

(see the display above (5.38)) has large measure. More specifically, if Lemma 5.4 is false,
we can choose a finite subset L of L such that for each a € I, B( Ya>d(ya)) is a fine tan-
gent ball and {7[B(ya,5d(ya))] 1 @ € 1} are disjoint. Also, if A = A" n7[U,7 B(y«, 100d
(¥a))], then

H" Y Q' nA)=H"Y(Q nA")—e"H" Q') = (1 -3¢")H" 1(Q). (6.2)
Moreover from (5.34), (5.36), we have

€10 < arccos ({04, e4)) < €10+ c(n)e (6.3)

whenever « € L. Again we essentially repeat the argument after (5.42). To this end let
{Q; = Q(w},r;)} be a Whitney cube decomposition of R" '\ {n(y,) :a € 1} and {11}} a
partition of unity adapted to this decomposition. Let W be the set of all i such that

supp7j; N [U ﬂ(B(ymd(ya)))] =0 (6.4)

acl

and supp; NQ + @.1fie W, choose ﬂ(yﬁ) e{n(yy):ac 1} with

d(n(yp),Q;) = d(Q; {m(ya) e L}). (6.5)
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Then, d(7( )’3)’6:‘) < d(x) for € sufficiently small so there exists §” an ancestor of /§ with

d(yp) <d(Q,m(yp)) <d(yp).
Also, B(yg,d(yp)) is a fine tangent ball and
Q; < n[B(yg,40d(yg))].
Let f/ = fp in this case and set
f/ = fu whenever suppr; N 7[B(yed(ys))] # @, a € L.
Next let y(7(ya)) = fa(n(yq)) fora € I and put

(x,w(x) =D f/(x)ni(x') otherwise in Q.

Asin (5.50), (5.51) we deduce for some ¢ = ¢(n) and x’ € supp#;, i € W, that
¢ 'ed(Qim(yg)) = d(f/ (),0D1) < d(f (x),dD) < cd(Qp, 7 (y5)).
Also if supp#; Nsuppn; N Q +# @, then for x’ € suppy; U supp "
f&) = £ < e
Using (6.6)—(6.11) it follows that ||y« < ce?d(X) and
ly(x)—w(y)| <clx’ —y'| whenx',y €Q.
Moreover, if x” € supp#; N 6/ andie W, then for some ¢ = ¢(n),
c el <d({(x,y(x))},0D1) < d({(x',y(x"))},0D) < cr;
while if x” € suppE, for some a € L, where

Eq =\ J{Q] :suppr; n (B (ywd(ya))) # @},

then
%ezdiamEa <d({(¢,y(x))},aD1) = d({(¥',w(x'))],dD) < 16> diam E,.

Thus if Q; is defined as in Lemma 5.4, then Q; C D;.

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

Let Q" = {x € Q :d(x',Q \ Q) >2ediamQ’}. We note from (5.36), (6.3), and (6.6)
that if either M = Q; with Q; N Q" NA # @ or M = 7[B(Ya,100d(y4))], @ € L, and M N

Q" # @, then for € >0, small enough

e

diamM < exp [ ~an

]diamQ', soMc {x'eqQ 2dx,Q\Q) >ediamQ'}.

(6.16)
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Set

W' = {i:Q,T NANQ" +@, QN [U ﬂ(B(ya,d(y(X)))] = @}. (6.17)

acl

If i € W', choose w; with (w;) = w; and d(w;) = cd(w], {n(yq) : ¢ € 1}) where ¢ =
c(n) = 1 is chosen large enough so that w; € Q; and d(w;,0Q,) = d(w;)/c. This choice
is possible as we see from (6.13). Let W"' be the set of i € W’ such that B(w;,d(w;)) is a
not so fine tangent ball. We consider two cases. If

H’H[ U ﬂ{B(Wi,d(Wi))}] > e"H"'(Q), (6.18)

iew”

we can repeat the argument in case (b) of Lemma 5.5 with L, replaced by W, ¢ W' where
{m[B(w;,5d(w;))] : i € Wi} are pairwise disjoint and

71[ U B(wi,ZOd(wi))} C 71[ U B(wi,IOOd(w,-))}. (6.19)

iew” ieW,

Define Wj relative to W, as in (5.66) with y, replaced by w;. Using (6.13) and arguing as
in (5.66), (5.67), we get (5.69) with &, replaced by

{(X’,w(x')) x'e QE}- (6.20)

ieWs

The rest of the argument is unchanged. Thus (5.17) implies (5.18) when (6.18) holds.

To complete the description of our algorithm it remains to consider the case when
(6.18) is false. Let W* = W'\ W" be the subset of W’ with B(w;,d(w;)) a fine tangent
ball when i € W*.Ifi € W*, let 0;, P(w;,0;) be defined as in (5.29) with y; replaced by w;.
We note from (6.3), (6.6) and the same argument as in (5.36) that arccos({0;,e,)) < ce'/1°
for some ¢ = c¢(n). Given o € L, let

Eq = {n(ya)} U {Qi: Qi n7(B(yad(ya))) # O} (6.21)

Next let L* = W* U{a € L: E,, NnQ" + @} and Q' =Qiw,,(1—¢€)ry). If me WH*,
define f, : R"™! = P(Wp,0) by frn(W') = (W, wy) € P(W,04,) while if m € I, let fm be
as defined earlier. Put T,, = f,,(Q,;) for m € W* and set Ty, = fiu(E,,), whenm € L. Then
from our construction and the definition of ); we see for some ¢ = c(n) > 1,

d(vim)

< d(Vm,agl) < Cd(Vm)J
<d(T,n,0Dy) < 8€%d(v), (6.22)

IA

d[n Y (7 (T,n)) N, 0D ] < cd(vin),
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where v,,, = w,,, when m € W* while v,,, = y,, when m € L. From (6.3) we see for € small
enough that

(%)H”‘l[Tm] < H"'[7(T,)] < (1+€")H"[T,,] wheneverm & LN L*.
(6.23)

If m € L*, let C,, be the closed cylinder with height 16€2d(v,,), base T, axis parallel to
Om>and C,, N 0D # @. Let T} = {y+ (—=€2+3/2)d(vin)0m : y € T }. We note that

CunC =9, C,uC cC wheneverm,lcL*. (6.24)

Indeed from our construction we have 7(C,,) contained in the interior of Q;,(w,,, (1 —
(1/2)€)ry) when Ty, = f,n(Q,,). Using this fact and basic geometry one sees that 7(C,,) N
7(Cy) = & whenever m,l € L* and that all projections are contained in Q’ provided € >0
is small enough. Thus (6.24) is valid.

Next from the definition of L, Q”, E/, the fact that (6.18) is false, and (6.23) we deduce

2H"1(6’)2H”1[ Ur ] (1+€”)H"'(Q) (6.25)

meL*

for € sufficiently small. This completes the description of our algorithm.

Let Q = T§ and Ly = {0}, L* = L}. For each m; € L} we can repeat our algorithm
with Q replaced by T, and %, e, replaced by v,,,,, 0n, defined as in (6.22). Let E be as in
(5.17). If m; € L} and

H" ' [B(vp, € ) (vin,)) NE] = (1 - f(e))H”’l [B(Vin,,€0d) (vin,)) N OD1], (6.26)

then for f (€) > 0 and sufficiently small it follows from our algorithm (see Lemma 5.5 and
the discussion following (5.20)) that either

~

@1[B (Vi€ 2d1 (Vi) NE, v, | = &(€) (6.27)

or there is a projection 7, onto a plane through the origin with normal, g,,, (which we
now regard as R" '), a Lipschitz domain Q, (1), and (X", Yy, (x")) : 70, (T ) — 0 (m1)
satisfying (6.12) with Q" replaced by 7, (T}; ). We also get indices {m;m;}, centers
{Vinm, }> linear mappings { f,m, } of certain skeletal complexes in 7, (T} ) onto { Ty, m, 1
cylinders {Cp,m, } satisfying (6.22)—(6.24), with m replaced by m;m, and Q, by Q,(m,)
(replace C = G in (6.24) by C,, ). Moreover we define {T;, ,,,} and

1
(E)H”‘l[ U Tmm]sH”‘l[ﬂml(Tml)] < (1+€)H™ 1[ U T,W} (6.28)
m €Ly my €L}

Let LT be the subset of L for which (6.26) is false. We note that if & (€) > 0 is small
enough, then we can repeat the argument following (5.69) to get (see (6.38) for a more
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> H"(Tp) <e"H" Q). (6.29)

mleLf
Let L] be the subset of L for which (6.27) is true. If

> H"(Tp,) =2¢"H"(Q), (6.30)

my€L;

we stop and note from (6.29), (6.30) that

> H"Y(T,,) = €"H" Q). (6.31)
mieL \L}

Using Harnack’s inequality, (6.22), and (6.27) we see first that

>&e) on |J m'(n(TE))noq (6.32)

meLy\L}

for some small EN((—:) > 0. Second from (6.31) and a use of Theorem 4.3 as in the proof of
Lemma 5.5 we conclude that (5.18) is valid. If (6.21) is false we let L} = L¥ \ (LT U L})
and observe from (6.25), (6.29) that

2H" 1( >Hn1|:UT:|: UHn—l(T

meL} meL} (633)
> (1+€”?-3¢"H"'(Q) = (1+e")H"(Q)

for € > 0 sufficiently small. To continue we use an inductive argument and ancestor no-
tation. Recall that a < § if « is a descendant of . Suppose after k > 1 times that we have
obtained indices L, = {mm; - - - my}, centers {vg:0 € L}, as well as {Tp, Ty : 0 € L.}
and corresponding cylinders {Cg : 6 € L, }. Assume that

(i) {B(vg,d(vg)) : 6 € L.} consists of fine tangent balls satisfying(6.26)
but not (6.27) with m, replaced by 0,

(ii) Equation (6.22) holds with m replaced by 0 € L, Q, by Q,(y)
where y is the father of 6,

(iii) Equation (6.24) is valid with m, [ replaced by 6, ¢ € L;, Cby C, (6.34)
where y € L _, is the father of 0, ¢,
(iv) |J B(vee*d(ve)) C B(v),e *d(vy)) foreachyeL_,.
{6eL;:0<y}
We also assume that
e Md(R)! > H”l[ U Te] > (1+€")*H"' (@), (6.35)

OeL;
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where ¢ depends only on the data for D so is independent of € and k. Under these as-
sumptions we apply our algorithm to each T with 6 € L;. Let 0p be the normal to the
plane containing Ty and let 7y be the projection of T; onto a plane through the origin
with normal s (which we now regard as R""!). As in the discussion following (6.27)
there exists a Lipschitz domain Q;(0), (x",we(x")) : m(Ty) — 9Q1(6), where yp satisfies
(6.12) on me(Ty ) with y replaced by yy. We also get indices L}, = {my - - - mgmps1 },
centers {vs: 0 € L, }, linear mappings {f5:8 € L}, } of certain skeletal complexes in
me(Ty) onto {T5:80< 6,8 €Ly,,}, as well as cylinders {Cs} and {Ty : 6 <0, € L}, }.
Moreover (6.34)(iii), (iv) hold with L; replaced by L}, and L;_, replaced by L;. Given
el letZ(0) ={5 L, :6<06} Thenasin (6.25) we see for 0 € L, that

2H""1(Tg) = H"" 1( U T5> (1+€)H"1(Tp). (6.36)
dez(6

Given 0 € Ly, let Z,(0) be the subset of Z(8) for which (6.26) is false with m, replaced by
8. Let Ly, be the subset of L, with the property that for 8 € Ly

> H"'(Ts) <€"H" ' (Tp). (6.37)
6621(9)

We claim as in (6.29) that we can choose &;(€) so small that

> H"Y(Tg) = (1—€") > H" (Tp). (6.38)

GELk GEL;{

To verify this claim we essentially repeat the argument following (5.70). In fact suppose
0 € L, \ L. We note from the definition of {C; : § € L, ,} and disjointness of these sets as
well as fineness of {B(vs,d(vs)): 8 € L}, } that for some g5 € Cs N 9D and ¢ depending
only on the data for D, we have

2
B(q,;, € dc(vé)) c Cs. (6.39)

Using (6.39), Ahlfors regularity of oD, and (6.34)(iii) we find Z,(0) C Z,(0) such that

S od(ve)"  <cte) D d(ve)" (6.40)

8eZ,(0) 8€2,(0)
and so that {B(vs,€*d(vs)) : 6 € Z,(0)} are disjoint. Then

H""'[B(vg,€ *°d, (v5)) N 0Dy \ E]
=a(n-1)E€) > di(ve)"" = E(e)c(€) ' H" 1 (Tp) (6.41)

8eZ,(0)
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as we see from (6.40) and the fact that 6 € L, \ Lx. Next we use the same reasoning to
choose Iy C L, \ L with

> H"'(Ty) =c(e) > H"'(Typ) (6.42)
0cL\I Oely

and so that {B(vg,€*%d(vy)): 0 € Ly} are disjoint. Summing (6.41) over 0 € Liand using
(5.17), (6.34)(iv), (6.42) we obtain

£ (e)H"! [B (9? d;g‘)) A aDl] > H™[B(%,¢d, (%)) 1 (3D \ E)]

> > H"'[B(vs,e*°d;(vg)) N 9D \ E]
Geik
> E(e)ee)™ S H ' (T)
GEik

>¢(e)”" > H"'(Ty).

QELI/{ \Zk

(6.43)

Equation (6.43), Ahlfors regularity of dD; and (6.35) imply claim (6.38) for & (€) >0,
sufficiently small.

Next given 0 € Ly, let Z3(0) be the set of all § € Z(0) \ Z1(0) such that (6.27) is valid
with v, replaced by vs. Let L}'f be the subset of 6 € ik for which

> H"(Ts) = €"H" ' (Tp). (6.44)
8e25(6)
If
> H"(Ty) = €" > H" (Tp), (6.45)
GELi HET,/(
we stop. Otherwise, set
L= | 20)\[21(8)uzs(0)]. (6.46)
0eLi\L]

Then from (6.36)—(6.38) as well as falsity of (6.44), (6.45), we see that

s = 3 (1)
seLy, BeTo\L; \OCZONZ(0)UZ:(6)]
> (1+€?—2¢") > H"'(Ty) (6.47)
Beli\L]

> (1-€")’(1+€? —2¢") S H"(T).
OeL;
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Using (6.35), (6.47) it follows that

H”“( U Ta) = > H”‘I(Ta)z(1+61/2)k+1H”‘1(6'). (6.48)

S€ly,, €Ly,

Also from disjointness of {B(gs,€%d(vs)/c) : 8 € L;,,} and Ahlfors regularity of dD we
see that

STOHYNTs) <cer S d(ve)"! < ce? d(R) L, (6.49)

0Ly 0Ly

Combining (6.48), (6.49) we get (6.35) with k replaced by k + 1. From (6.35) and induc-
tion we see for ¢ large enough that our process must stop after at most N < ¢*e~* times.
Thus (5.19) is true. Finally we show by a backward iteration process that (5.17) implies
(5.18) with x replaced by X. Indeed, from our induction assumption and the fact that
the algorithm is now stopped we deduce the validity of (6.44), (6.45) with k = N. Using
(6.34)(ii) and (6.44) we deduce for some ¢, depending only on the data, that

~

() = 4O onxw):aszl(em( U n;l[newgf)]),

¢ 5€2(0)

H™1(X(0)) > %H”‘I(TQ).

(6.50)

Using (6.50), Theorem 4.3 as in the proof of Lemma 5.5, and fineness of B(vg,d(vg)) we
conclude that

wi(E,-)=¢&.(e) onTy (6.51)

provided &,.(€) > 0 is small enough. If N = 2, we can use (6.35), (6.45), (6.51) and once
again Theorem 4.3 to conclude that (5.17) implies (5.18) for X. Otherwise we proceed by
induction. Suppose for some k > 1 that we have obtained (6.51) with &, replaced by &_
for some subset Y with 6 € Yy € L},_; and N — k > 2. Moreover, assume for some large
¢« depending only on the data that

_ €” -
> H"YTy) == > H"'(Ty). (6.52)
OeYi G 0Ly,
Let Yii1 be the set ofall y € Ly, _, for which
n—1 €" n—1
> H"(Tp) = CkHH (T,). (6.53)
*

e Yk,9<y
We claim for ¢, large enough that

equation (6.52) is valid with k replaced by k + 1. (6.54)
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Indeed, otherwise from (6.36) (see also (6.47)), we have

> (3 am)

YEYkr1 \OeYy, <y

n— n— €" n—
<2 > H"YT)) < 2,{+1 > H"NT)) <245 > H"'(Ty),

YE Vi1 * o yeLy ¥ Bely

(6.55)

where ¢ depends only on the data. Moreover from the definition of Yj., we see that

En
1 -1 l
S (3 amm)sg S ams g S e
YELy_ -1 \Yie1 NOEY,0<y ¥ yeLy i * o Gely

(6.56)

Combining (6.55), (6.56) we get

> H"'(Ty) S% > H"(Ty), (6.57)

9eY; G gery,,

which is a contradiction to (6.52) for c4 large enough. Thus claim (6.54) is true. Using
(6.51), (6.54), we see first from (6.34)(ii) that

wl(E,-)ZE on 0Q4(y) N ( U Ty ﬂe(Tg)]> (6.58)
¢ 0eYy, <y

Second from (6.58), (6.52), and Theorem 4.3 we conclude for y € Yj,; that (6.51) holds
for k+ 1, 0 replaced by y and suitably small &, (€). Continuing this argument k = N — 2
times we obtain that (5.17) implies (5.18). We now fix € = €; > 0 small enough so that
(5.17) implies (5.18) and then conclude from the remark after (5.18) that Proposition 5.2
is valid. Finally from the remark after Proposition 5.2 we get Theorem 1.6. The proof of
Theorem 1.6 is now complete.

7. Proof of Theorem 1.7 and concluding remarks

Let u, A, D be as in Theorem 1.7. From (1.4)(b) we see there exists exactly one posi-
tive number a with aA(0,a?) = B; where f3; is as in (1.29). Then from Theorem 1.6 and
(1.4)(b), we deduce that

limsup |Vul(x) < a. (7.1)
x—0D

Next we note that if D is § Reifenberg flat (& small), then it follows as in (3.4), (3.13) that
near oD,

cld(x) < u(x) < cd(x). (7.2)
Moreover by assumption we have

u(B(z,r) N aD) = f1H" ' (B(z,r) ndD) for0<r <ry. (7.3)
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Using (7.1)—(7.3) it can be shown that the machine developed in [16, Section 5] can be
applied to the situation when D is § > 0 Reifenberg flat and ¢ is small enough. In fact these
authors consider slightly less general A and assume that u is a local minimizer for a certain
variational problem. However a careful reading of [16] shows that these assumptions are
essentially to guarantee that (7.1)—(7.3) and slightly weaker assumptions on D are all
valid. Also one has to be careful when A has degenerate ellipticity (see, e.g., [34] for the p-
Laplacian) but this obstacle can be overcome by considering a related partial differential
equation as in (4.13) and using estimates for subsolutions. We omit the details. Applying
this machine we deduce first as in [7, Section 6] that dQ is C>* and thereupon from the
moving plane argument (see [7, Section 7]) that D is a ball.

Remark 7.1. Here we make some remarks concerning possible generalizations of Theo-
rems 1.1, 1.2, 1.6, and 1.7.

(1) As regards Theorem 1.2, we would like to know if u = 0 (i.e., (1.9)) can be replaced
by a weaker condition. For example, assume that C = 0 and A(s,t) = tP/>7!, t € (0, 00).
Suppose D is a bounded domain and that u is a weak solution to the p-Laplacian partial
differential equation in R” \ oD while u is a bounded Lipschitz supersolution to this equa-
tion in R". Then there exists a positive Borel measure y corresponding to u as in (1.10)
with suppy C dD. Under these assumptions, (1.11), (1.13), we would like to know if 0D is
still locally uniformly rectifiable. As an evidence for this query we note that if p = 2, then
one can use the Riesz representation formula for superharmonic functions to get that
certain truncated Riesz transforms of y are bounded on the space of square integrable
functions defined on 0D and taken with respect to y(Lf,(aD)). In case n = 2 it is shown in
[35] that boundedness of the Riesz transforms on L/%(BD) for an Ahlfors regular domain
D implies uniform rectifiability. Thus our query is true when n = 2, p = 2. The difficulty
one encounters in trying to prove this query in general is in finding a meaningful square
function estimate similar to (1.12).

(2) One could also attempt to prove generalizations of Theorem 1.2 for higher-order
partial differential equations and lower dimensional Ahlfors regular sets. For example
suppose that

P(x) = J K(x—y)du(y), xeR" (7.4)
E
is the capacitary potential for a compact set E C R", n > 4, corresponding to the kernel
K(x) = |x|*" whenn >4, K(x) = log|71| forn=4 (7.5)

(see, e.g., [36] for definitions). Assume that
" < u(B(x,r)) < cr"? (7.6)

whenever x € E and 0 < r < ry. It is easily seen from (7.4) that E is n — 3 Ahlfors regular
and a solution to the biharmonic equation in R" \ E. We would like to know if E is locally
n — 3 dimensional uniformly rectifiable (in the language of [1]). This query is true when
n = 4 as follows once again from [35]. Somewhat similar problems occur in (2, Part III,
3.8].
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(3) Another question is whether Theorem 1.6 remains valid when hypothesis (1.13) is
removed. In order to do away with this assumption it appears that one should somehow
make estimates more in terms of y and probably also generalize Theorem 4.3. We note
that somewhat similar questions for nondoubling measures have recently been studied in
[37-40].

(4) Does Theorem 1.7 remain valid without the Reifenberg flatness assumption? It
appears likely from [41, 42] (or perhaps is even implied in [16]) that this theorem remains
valid for Lipschitz domains. We did not pursue the proof of Theorem 1.7 for Lipschitz
domains as we feel strongly that at least in two dimensions the above question is not
beyond our reach.

(5) A theorem in [13] states that if a set, say F, is added to a locally uniformly rectifiable
set E in such a way that EU F = 9D C R?, where D is a simply connected domain, then
w|g is absolutely continuous with respect to H!|g where w denotes harmonic measure in
D taken with respect to a fixed point. What is the analogue of this result in R”, n > 32 That
is, what is the most general class of domains in R” (e.g., NTA) for which this conclusion
is valid. On a related note we believe that the technique in Sections 5 and 6 can be used
to show that if F is taken to be a certain union of balls, then the above conclusion is valid.
Moreover, 0D is locally uniformly rectifiable.
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