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We investigate the blow-up properties of the positive solutions to a quasilinear parabolic system
with nonlocal boundary condition. We first give the criteria for finite time blowup or global
existence, which shows the important influence of nonlocal boundary. And then we establish
the precise blow-up rate estimate. These extend the resent results of Wang et al. (2009), which
considered the special case m1 = m2 = 1, p1 = 0, q2 = 0, and Wang et al. (2007) , which studied the
single equation.

1. Introduction

In this paper, we deal with the following degenerate parabolic system:

ut = Δum1 + up1vq1 , vt = Δvm2 + vp2uq2 , x ∈ Ω, t > 0 (1.1)

with nonlocal boundary condition

u(x, t) =
∫
Ω
f
(
x, y
)
u
(
y, t
)
dy, v(x, t) =

∫
Ω
g
(
x, y
)
v
(
y, t
)
dy, x ∈ ∂Ω, t > 0, (1.2)

and initial data

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.3)
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where mi, pi, qi > 1, i = 1, 2, and Ω ⊂ RN is a bounded connected domain with smooth
boundary. f(x, y)/≡ 0 and g(x, y)/≡ 0 for the sake of the meaning of nonlocal boundary are
nonnegative continuous functions defined for x ∈ ∂Ω and y ∈ Ω, while the initial data
v0,u0 are positive continuous functions and satisfy the compatibility conditions u0(x) =∫
Ω f(x, y)u0(y)dy and v0(x) =

∫
Ω g(x, y)v0(y)dy for x ∈ ∂Ω, respectively.

Problem (1.1)−(1.3) models a variety of physical phenomena such as the absorption
and “downward infiltration” of a fluid (e.g., water) by the porous medium with an internal
localized source or in the study of population dynamics (see [1]). The solution (u(x, t), v(x, t))
of the problem (1.1)−(1.3) is said to blow up in finite time if there exists T ∈ (0,∞) called the
blow-up time such that

lim
t→ T−

(
‖u(·, t) ‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)

)
= +∞, (1.4)

while we say that (u(x, t), v(x, t)) exists globally if

sup
t∈(0,T)

(
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)

)
< +∞ for any T ∈ (0,∞). (1.5)

Over the past few years, a considerable effort has been devoted to the study of the
blow-up properties of solutions to parabolic equations with local boundary conditions, say
Dirichlet, Neumann, or Robin boundary condition, which can be used to describe heat
propagation on the boundary of container (see the survey papers [2, 3] and references
therein). The semilinear case (m1 = m2 = 1, f ≡ 0, g ≡ 0) of (1.1)−(1.3) has been deeply
investigated by many authors (see, e.g., [2–11]). The system turns out to be degenerate if
mi > 1(i = 1, 2); for example, in [12, 13], Galaktionov et al. studied the following degenerate
parabolic equations:

ut = Δum1 + vq1 , vt = Δvm2 + up2 , (x, t) ∈ Ω × (0, T),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω

(1.6)

with m1 > 1, m2 > 1, p2 > 1, and q1 > 1. They obtained that solutions of (1.6) are global if
p2q1 < m1m2, and may blow up in finite time if p2q1 > m1m2. For the critical case of p2q1 =
m1m2, there should be some additional assumptions on the geometry of Ω.

Song et al. [14] considered the following nonlinear diffusion system withm1 ≥ 1, m2 ≥
1 coupled via more general sources:

ut = Δum1 + up1vq1 , vt = Δvm2 + up2vq2 , (x, t) ∈ Ω × (0, T),

u(x, t) = v(x, t) = ε0 > 0, (x, t) ∈ ∂Ω × (0, T),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.7)
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Recently, the genuine degenerate situation with zero boundary values for (1.7) has been
discussed by Lei and Zheng [15]. Clearly, problem (1.6) is just the special case by taking
p1 = q2 = 0 in (1.7)with zero boundary condition.

For the more parabolic problems related to the local boundary, we refer to the recent
works [16–20] and references therein.

On the other hand, there are a number of important phenomena modeled by parabolic
equations coupled with nonlocal boundary condition of form (1.2). In this case, the solution
could be used to describe the entropy per volume of the material (see [21–23]). Over the
past decades, some basic results such as the global existence and decay property have been
obtained for the nonlocal boundary problem (1.1)−(1.3) in the case of scalar equation (see
[24–28]). In particular, in [28], Wang et al. studied the following problem:

ut = Δum + up, (x, t) ∈ Ω × (0, t),

u(x, t) =
∫
Ω
f
(
x, y
)
u
(
y, t
)
dy, (x, t) ∈ ∂Ω × (0, t),

u(x, 0) = u0(x), x ∈ Ω,

(1.8)

with m > 1, p > 1. They obtained the blow-up condition and its blow-up rate estimate. For
the special case m = 1 in the system (1.8), under the assumption that

∫
Ω f(x, y)dy = 1, Seo

[26] established the following blow-up rate estimate:

(
p − 1

)−(1/(p−1))(T − t)−(1/(p−1)) ≤ max
x∈Ω

u(x, t) ≤ C1(T − t)−(1/(γ−1)), (1.9)

for any γ ∈ (1, p). For the more nonlocal boundary problems, we also mention the recent
works [29–34]. In particular, Kong and Wang in [29], by using some ideas of Souplet [35],
obtained the blow-up conditions and blow-up profile of the following system:

ut = Δu +
∫
Ω
um(x, t)vn(x, t)dx, vt = Δv +

∫
Ω
up(x, t)vq(x, t)dx, x ∈ Ω, t > 0 (1.10)

subject to nonlocal boundary (1.2), and Zheng and Kong in [34] gave the condition for global
existence or nonexistence of solutions to the following similar system:

ut = Δu + um

∫
Ω
vn(x, t)dx, vt = Δv + vq

∫
Ω
up(x, t)dx, x ∈ Ω, t > 0 (1.11)

with nonlocal boundary condition (1.2). The typical characterization of systems (1.10)
and (1.11) is the complete couple of the nonlocal sources, which leads to the analysis of
simultaneous blowup.
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Recently, Wang and Xiang [30] studied the following semilinear parabolic systemwith
nonlocal boundary condition:

ut −Δu = vp, vt −Δv = uq, x ∈ Ω, t > 0,

au(x, t) =
∫
Ω
f
(
x, y
)
u
(
y, t
)
dy, v(x, t) =

∫
Ω
g
(
x, y
)
v
(
y, t
)
dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0, v(x, 0) = v0, x ∈ Ω,

(1.12)

where p and q are positive parameters. They gave the criteria for finite time blowup or global
existence, and established blow-up rate estimate.

To our knowledge, there is no work dealing with the parabolic system (1.1) with
nonlocal boundary condition (1.2) except for the single equation case, although this is a very
classical model. Therefore, the main purpose of this paper is to understand how the reaction
terms, the weight functions and the nonlinear diffusion affect the blow-up properties for the
problem (1.1)−(1.3). We will show that the weight functions f(x, y), g(x, y) play substantial
roles in determining blowup or not of solutions. Firstly, we establish the global existence and
finite time blow-up of the solution. Secondly, we establish the precise blowup rate estimates
for all solutions which blow up.

Our main results could be stated as follows.

Theorem 1.1. Suppose that
∫
Ω f(x, y)dy ≥ 1,

∫
Ω g(x, y)dy ≥ 1 for any x ∈ ∂Ω. If q2 > p1 − 1 and

q1 > p2 − 1 hold, then any solution to (1.1)−(1.3) with positive initial data blows up in finite time.

Theorem 1.2. Suppose that
∫
Ω f(x, y)dy < 1,

∫
Ω g(x, y)dy < 1 for any x ∈ ∂Ω.

(1) If m1 > p1, m2 > p2, and q1q2 < (m1 − p1)(m2 − p2), then every nonnegative solution of
(1.1)−(1.3) is global.

(2) If m1 < p1, m2 < p2 or q1q2 > (m1 − p1)(m2 − p2), then the nonnegative solution of
(1.1)−(1.3) exists globally for sufficiently small initial values and blows up in finite time for
sufficiently large initial values.

To establish blow-up rate of the blow-up solution, we need the following assumptions
on the initial data u0(x), v0(x)

(H1) u0(x), v0(x) ∈ C2+μ(Ω)
⋂

(Ω) for some 0 < μ < 1;

(H2) There exists a constant δ ≥ δ0 > 0, such tha

Δum1
0 + u

p1
0 v

q1
0 − δum1k1+1

0 (x) ≥ 0,Δvm2
0 + v

p2
0 u

q2
0 − δvm2k2+1

0 (x) ≥ 0, (1.13)

where δ0, k1, and k2 will be given in Section 4.

Theorem 1.3. Suppose that
∫
Ω f(x, y)dy ≤ 1,

∫
Ω g(x, y)dy ≤ 1 for any x ∈ ∂Ω; q1 > m2, q2 >

m1 and satisfy q2 > p1 − 1 and q1 > p2 − 1; assumptions (H1)-(H2) hold. If the solution (u, v)
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of (1.1)−(1.3) with positive initial data u0, v0 blows up in finite time T�, then there exist constants
Ci > 0(i = 1, 2, 3, 4) such that

C1(T� − t)−(q1−p2+1)/(q2 q1−(1−p1 )(1−p2 ))

≤ max
x∈Ω

u(x, t) ≤ C2(T� − t)−(q1−p2+1)/(q2q1−(1−p1)(1−p2)), for 0 < t < T�,

C3(T� − t)−(q2−p1+1)/(q2q1−(1−p1 )(1−p2))

≤ max
x∈Ω

v(x, t) ≤ C4(T� − t)−(q2−p1+1)/(q2 q1−(1−p1)(1−p2)), for 0 < t < T�.

(1.14)

This paper is organized as follows. In the next section, we give the comparison
principle of the solution of problem (1.1)−(1.3) and some important lemmas. In Section 3,
we concern the global existence and nonexistence of solution of problem (1.1)−(1.3) and show
the proofs of Theorems 1.1 and 1.2. In Section 4, we will give the estimate of the blow-up rate.

2. Preliminaries

In this section, we give some basic preliminaries. For convenience, we denote that QT = Q ×
(0, T), ST = ∂Ω × (0, T) for 0 < T < +∞. As it is now well known that degenerate equations
need not posses classical solutions, we begin by giving a precise definition of a weak solution
for problem (1.1)−(1.3).

Definition 2.1. A vector function (u(x, t), v(x, t)) defined on ΩT , for some T > 0, is called a sub (or
super) solution of (1.1)−(1.3), if all the following hold:

(1) u(x, t), v(x, t) ∈ L∞(ΩT );

(2) (u(x, t), v(x, t)) ≤ (≥)(∫Ω f(x, t)u(y, t)dy,
∫
Ω g(x, y)v(y, t)dy) for (x, t) ∈ ST , and

u(x, 0) ≤ (≥)u0(x), v(x, 0) ≤ (≥)v0(x) for almost all x ∈ Ω;

(3)

∫
Ω
u(x, t)φ(x, t)dx ≤ (≥)

∫
Ω
u(x, 0)φ(x, 0)dx +

∫ t

0

∫
ΩT

(
uφτ + um1Δφ + up1vq1φ

)
dx dτ

−
∫ t

0

∫
∂Ω

∂φ

∂n

(∫
Ω
f
(
x, y
)
u
(
y, τ
)
dy

)m1

dSdτ,

∫
Ω
v(x, t)φ(x, t)dx ≤ (≥)

∫
Ω
v(x, 0)φ(x, 0)dx +

∫ t

0

∫
ΩT

(
vφτ + vm2Δφ + vp2uq2φ

)
dx dτ

−
∫ t

0

∫
∂Ω

∂φ

∂n

(∫
Ω
g
(
x, y
)
u
(
y, τ
)
dy

)m2

dSdτ,

(2.1)
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where n is the unit outward normal to the lateral boundary of ΩT . For every t ∈ [0, T] and
any φ belong to the class of test functions,

Φ ≡
{
φ ∈ C

(
ΩT

)
;φt,Δφ ∈ C(ΩT ) ∩ L2(ΩT );φ ≥ 0, φ(x, t)|∂Ω×(0,T) = 0

}
. (2.2)

A weak solution of (1.1) is a vector function which is both a subsolution and a supersolution
of (1.1)-(1.3).

Lemma 2.2 (Comparison principle). Let(u, v) and (u, v) be a subsolution and supersolution of
(1.1)−(1.3) inQT, respectively. Then (u, v) ≤ (u, v) in ΩT , if (u(x, 0), v(x, 0)) ≤ (u(x, 0), v(x, 0)).

Proof. Let φ(x, t) ∈ Φ, the subsolution (u, v) satisfies

∫
Ω
u(x, t)φ(x, t)dx ≤

∫
Ω
u(x, 0)φ(x, 0)dx +

∫ t

0

∫
ΩT

(
uφτ + um1Δφ + up1vq1φ

)
dx dτ

−
∫ t

0

∫
∂Ω

∂φ

∂n

(∫
Ω
f
(
x, y
)
u
(
y, τ
)
dy

)m1

dSdτ.

(2.3)

On the other hand, the supersolution (u, v) satisfies the reversed inequality

∫
Ω
u(x, t)φ(x, t)dx ≥

∫
Ω
u(x, 0)φ(x, 0)dx +

∫ t

0

∫
ΩT

(
uφτ + um1Δφ + up1vq1φ

)
dx dτ

−
∫ t

0

∫
∂Ω

∂φ

∂n

(∫
Ω
f
(
x, y
)
u
(
y, τ
)
dy

)m1

dSdτ.

(2.4)

Set ω(x, t) = u(x, t) − u(x, t), we have

∫
Ω
ω(x, t)φ(x, t)dx ≤

∫
Ω
ω(x, 0)φ(x, 0)dx +

∫ t

0

∫
QT

(
φτ + Θ1(x, s)Δφ + Θ2(x, s)φv

q1
)
ωdxdτ

+
∫ t

0

∫
Ω
φup1

(
Θ3
(
v − v

))
dx dτ

−
∫ t

0

∫
∂Ω

∂φ

∂n
mξm−1

(∫
Ω
f
(
x, y
)
ω
(
y, τ
)
dy

)
dSdτ, t ∈ (0, T),

(2.5)

where

cΘ1(x, t) ≡
∫1

0
m1
(
θu + (1 − θ)u

)m1−1dθ, Θ2(x, t) ≡
∫1

0
p1
(
θv + (1 − θ)v

)p1−1dθ,

Θ3(x, t) ≡
∫1

0
q1
(
θv + (1 − θ)v

)q1−1dθ.
(2.6)
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Since (u, v) and (u, v)are bounded in ΩT , it follows from m1 > 1, q1, p1 ≥ 1 that Θi(i =
1, 2, 3) are bounded nonnegative functions. ξ is a function between

∫
Ω f(x, y)u(x, τ)dy and∫

Ω f(x, y)u(x, τ)dy. Noticing that (u, v) and (u, v) are nonnegative bounded function and
∂φ/∂n ≤ 0 on ∂Ω, we choose appropriate function φ as in [36] to obtain that

∫
Ω
ω(x, t)+dx ≤ C1

∫
Ω
ω(x, 0)+dx + C2

∫ t

0

∫
Ω
ω(y, τ)+dy dτ

+ C3

∫ t

0

∫
Ω

[
v − v

]
+dx dτ

(
using ω(x, 0) = u(x, 0) − u(x, 0) ≤ 0

)
.

(2.7)

By Gronwall’s inequality, we know that ω(x, t) = u(x, t) − u(x, t) ≤ 0, v(x, t) ≤ v(x, t) can be
obtained in similar way, then (u, v) ≥ (u, v).

Local in time existence of positive classical solutions of the problem (1.1)−(1.3) can be
obtained using fixed point theorem (see [37]), the representation formula and the contraction
mapping principle as in [38]. By the above comparison principle, we get the uniqueness of
the solution to the problem. The proof is more or less standard, so is omitted here.

Remark 2.3. From Lemma 2.2, it is easy to see that the solution of (1.1)−(1.3) is unique if
p1, p2, q1, q2 > 1.

The following comparison lemma plays a crucial role in our proof which can be
obtained by similar arguments as in [24, 38–40]

Lemma 2.4. Suppose that w1(x, t), w1(x, t) ∈ C2,1(ΩT ) ∩ C(ΩT ) and satisfy

w1t − d1(x, t)Δw1 ≥ c11(x, t)w1 + c21(x, t)w2(x, t), (x, t) ∈ Ω × (0, T),

w2t − d2(x, t)Δw2 ≥ c12(x, t)w2 + c22(x, t)w1(x, t), (x, t) ∈ Ω × (0, T),

w1(x, t) ≥
∫
Ω
c13
(
x, y
)
w1
(
y, t
)
dy, (x, t) ∈ ∂Ω × (0, T),

w2(x, t) ≥
∫
Ω
c23
(
x, y
)
w2
(
y, t
)
dy, (x, t) ∈ ∂Ω × (0, T),

w1(x, 0) ≥ 0, w2(x, 0) ≥ 0, x ∈ Ω,

(2.8)

where cij(x, t)(i = 1, 2; j = 1, 2, 3) are bounded functions and di(x, t) > 0(i = 1, 2), c2j(x, t) ≥
0, (x, t) ∈ Ω × (0, T), and ci3(x, y) ≥ 0(i = 1, 2), (x, y) ∈ ∂Ω × Ω and is not identically zero.
Then wi(x, 0) > 0(i = 1, 2) for x ∈ Ω imply that wi(x, t) > 0(i = 1, 2) in ΩT . Moreover, if
ci3(x, y) ≡ 0(i = 1, 2) or if

∫
Ω ci3(x, y)dy ≤ 1, x ∈ ∂Ω, then wi(x, 0) ≥ 0(i = 1, 2) for x ∈ Ω imply

that wi(x, t) ≥ 0 in ΩT .

Denote that

A =
(
m1 − p1 −q1
−q2 m2 − p2

)
, l =

(
l1
l2

)
. (2.9)
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We give some lemmas that will be used in the following section. Please see [41] for their
proofs.

Lemma 2.5. If m1 > p1, m2 > p2, and q1q2 < (m1 − p1)(m2 − p2), then there exist two positive
constants l1, l2, such that Al = (1, 1)T . Moreover, A(cl) > (0, 0)T for any c > 0.

Lemma 2.6. Ifm1 < p1,m2 < p2 or q1q2 > (m1−p1)(m2−p2), then there exist two positive constants
l1, l2, such that Al < (0, 0)T . Moreover, A(cl) < (0, 0)T for any c > 0.

3. Global Existence and Blowup in Finite Time

Compared with usual homogeneous Dirichlet boundary data, the weight functions f(x, y)
and g(x, y) play an important role in the global existence or global nonexistence results for
problem (1.1)−(1.3).

Proof of Theorem 1.1. We consider the ODE system

F ′(t) = Fp1Hq1(t), H ′(t) = Hp2Fq2(t), t > 0,

F(0) = a > 0, H(0) = b > 0,
(3.1)

where a = (1/2)minΩu0(x), b = (1/2)minΩv0(x), and we use the assumption u0, v0 > 0.
Set

F0 =

( (
q2 − p1 + 1

)q1(q1 − p2 + 1
)1−p2

(
q1q2 −

(
p1 − 1

)(
p2 − 1

))q1−p2+1
)1/(q1q2−(p1−1)(p2−1))

× (T1 − t)−(q1−p2+1)/(q1q2−(p1−1)(p2−1)),

H0 =

( (
q1 − p2 + 1

)q2(q2 − p1 + 1
)1−p1

(
q1q2 −

(
p1 − 1

)(
p2 − 1

))q2−p1+1
)(1/q1q2−(p1−1)(p2−1))

× (T2 − t)−(q2−p1+1)/(q1q2−(p1−1)(p2−1)),

(3.2)

with

T1 = a−(q1 q2−(p1−1)(p2−1))/(q1−p2+1)
( (

q2 − p1 + 1
)q1(q1 − p2 + 1

)1−p2
(
q1q2 −

(
p1 − 1

)(
p2 − 1

))q1−p2+1
)1/(q1−p2+1)

,

T2 = b−(q1 q2−(p1−1)(p2−1))/(q2−p1+1)
( (

q1 − p2 + 1
)q2(q2 − p1 + 1

)1−p1
(
q1q2 −

(
p1 − 1

)(
p2 − 1

))q2−p1+1
)1/(q2−p1+1)

.

(3.3)

It is easy to check that (F0,H0) is the unique solution of the ODE problem (3.1), then q2 >
p1 − 1 and q1 > p2 − 1 imply that (F0,H0) blows up in finite time. Under the assumption
that

∫
Ω f(x, y)dy ≥ 1,

∫
Ω g(x, y)dy ≥ 1 for any x ∈ ∂Ω, (F0,H0) is a subsolution of problem
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(1.1)−(1.3). Therefore, by Lemma 2.2, we see that the solution (u, v) of problem (1.1)−(1.3)
satisfies (u, v) ≥ (F0,H0) and then (u, v) blows up in finite time.

Proof of Theorem 1.2. (1) Let Ψ1(x) be the positive solution of the linear elliptic problem

−ΔΨ1(x) = ε1, x ∈ Ω, Ψ1(x) =
∫
Ω
f
(
x, y
)
dy, x ∈ ∂Ω, (3.4)

and Ψ2(x) be the positive solution of the linear elliptic problem

−ΔΨ2(x) = ε2, x ∈ Ω, Ψ2(x) =
∫
Ω
g
(
x, y
)
dy, x ∈ ∂Ω, (3.5)

where ε1, ε2 are positive constant such that 0 ≤ Ψ1(x) ≤ 1, 0 ≤ Ψ2(x) ≤ 1. We remark that∫
Ω f(x, y)dy < 1 and

∫
Ω g(x, y)dy < 1 ensure the existence of such ε1, ε2.

Denote that

max
Ω

Ψ1 = K1, min
Ω

Ψ1 = K1; max
Ω

Ψ2 = K2, min
Ω

Ψ2 = K2. (3.6)

We define the functions u, v as following:

u(x, t) = u(x) = Ml1Ψ1/m1
1 , v(x, t) = v(x) = Ml2Ψ1/m2

2 , (3.7)

where M is a constant to be determined later. Then, we have

u(x, t) |x∈∂Ω = Ml1Ψ1/m1
1 = Ml1

(∫
Ω
f
(
x, y
)
dy

)1/m1

> Ml1

∫
Ω
f
(
x, y
)
dy ≥ Ml1

∫
Ω
f(x, t)Ψ1/m1

1

(
y
)
dy =

∫
Ω
f
(
x, y
)
u
(
y
)
dy.

(3.8)

In a similar way, we can obtain that

|v(x, t)|x∈∂Ω >

∫
Ω
g
(
x, y
)
v
(
y
)
dy, (3.9)

here, we used 0 ≤ Ψ1(x) ≤ 1, 0 ≤ Ψ2(x) ≤ 1,
∫
Ω f(x, y)dy < 1, and

∫
Ω g(x, y)dy < 1.

On the other hand, we have

ut −Δum1 − up1vq1 = Ml1m1ε1 −Mp1l1+l2q1Ψp1/m1

1 Ψq1/m2

2

≥ Ml1m1ε1 −Mp1l1+l2q1K
p1/m1

1 K
q1/m2

2 ,

(3.10)

vt −Δvm2 − vp2uq2 = Ml2m2ε2 −Mp2l2+l1q2Ψp2/m2

2 Ψq2/m1

1

≥ Ml2m2ε2 −Mp2l2+l1q2K
p2/m2

2 K
q2/m1

1 .

(3.11)
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Let

M1 =

⎛
⎝K

p1/m1

1 K
q1/m2

2

ε1

⎞
⎠

1/(l1m1−p1 l1−l2q1)

,

M2 =

⎛
⎝K

p2/m2

2 K
q2/m1

1

ε2

⎞
⎠

1/(l2 m2−p2 l2−l1 q2)

.

(3.12)

Ifm1 > p1, m2 > p2, and q1p2 < (m1−p1)(m2−p2), by Lemma 2.5, there exist positive constants
l1, l2 such that

p1l1 + q1l2 < m1l1, q2l2 + p2l2 < n2l2. (3.13)

Therefore, we can choose M sufficiently large, such that

M > max{M1,M2}, (3.14)

Ml1Ψ(1/m 1 )
1 ≥ u0(x), Ml2Ψ(1/m 2 )

2 ≥ v0(x). (3.15)

Now, it follows from (3.8)−(3.15) that (u, v) defined by (3.7) is a positive supersolution of
(1.1)−(1.3).

By comparison principle, we conclude that (u, v) ≤ (u, v), which implies (u, v) exists
globally.

(2) If m1 < p1, m2 < p2 or (m1 − p1)(m2 − p2) < q1q2, by Lemma 2.6, there exist positive
constants l1, l2 such that

p1l1 + q1l2 > m1l1, q2l2 + p2l2 > n2l2. (3.16)

So we can choose M = min{M1,M2}. Furthermore, assume that u0(x), v0(x) are small
enough to satisfy (3.15). It follows that (u, v) defined by (3.7) is a positive supersolution
of (1.1)−(1.3). Hence, (u, v) exists globally.

Due to the requirement of the comparison principle we will construct blow-up
subsolutions in some subdomain ofΩ in which u, v > 0. We use an idea from Souplet [42] and
apply it to degenerate equations. Let ϕ(x) be a nontrivial nonnegative continuous function
and vanished on ∂Ω. Without loss of generality, we may assume that 0 ∈ Ω and ϕ(0) > 0. We
will construct a blow-up positive subsolution to complete the proof.

Set

u(x, t) =
1

(T − t)l1
ω(1/m1)

( |x|
(T − t)σ

)
, u(x, t) =

1

(T − t)l2
ω(1/m2 )

( |x|
(T − t)σ

)
, (3.17)

with

ω(r) =
R3

12
− R

4
r2 +

1
6
r3, r =

|x|
(T − t)

, 0 ≤ r ≤ R, (3.18)
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where l1, l2, σ > 0 and 0 < T < 1 are to be determined later. Clearly, 0 ≤ ω(r) ≤ R3/12 and
ω(r) is nonincreasing since ω′(r) = r(r − R)/2 ≤ 0. Note that

suppu(·, t) = suppv(·, t) = B
(
0, R(T − t)σ

) ⊂ B(0, RTσ) ⊂ Ω, (3.19)

for sufficiently small T > 0. Obviously, (u, v) becomes unbounded as t → T−, at the point
x = 0. Calculating directly, we obtain that

ut −Δum1(x, t) =
m1l1ω

1/m1(r) + σrω′(r)ω(1−m1)/m1

m1(T − t)l1+1
+

R − 2r

2(T − t)m1+2σ
+
(N − 1)(R − r)

2(T − t)m1l1+σ
(3.20)

≤ l1
(
R3/12

)1/m1

(T − t)l1+1
+
NR − (N + 1)r

2(T − t)m1l1+2σ
, (3.21)

notice that T < 1 is sufficiently small.
Similarly, we have

vt −Δvm2(x, t) ≤ l2
(
R3/12

)1/m2

(T − t)l2+1
+
NR − (N + 1)r

2(T − t)m2l2+2σ
. (3.22)

Case 1. If 0 ≤ r ≤ NR/(N + 1), we have ω(r) ≥ (3N + 1)R3/12(N + 1)3, then

up1vq1 =
ωp1/m1ωq1/m2

(T − t)p1l1+q1l1
≥
(
R3/12

)(q1/m2)

(T − t)p1l1+q1l2

(
R3(3N + 1)

12(N + 1)3

)p1/m1

,

vp2uq2 =
ωp2/m2ωq2/m1

(T − t)p2l2+q2l2
≥
(
R3/12

)(p1/m1)

(T − t)p2l2+q2l1

(
R3(3N + 1)

12(N + 1)3

)q1/m2

.

(3.23)

Hence,

ut −Δum1(x, t) − up1vq1 ≤ l1
(
R3/12

)1/m1

(T − t)l1+1
−
(
R3/12

)q1/m2

(T − t)p1l1+q1l2

(
R3(3N + 1)

12(N + 1)3

)p1/m1

,

vt −Δvm2(x, t) − vp2uq2 ≤ l2
(
R3/12

)1/m2

(T − t)l2+1
−
(
R3/12

)p1/m1

(T − t)p2l2+q2l1

(
R3(3N + 1)

12(N + 1)3

)q1/m2

.

(3.24)

Case 2. IfNR/(N + 1) < r ≤ R, then

ut −Δum1(x, t) − up1vq1 ≤ l1
(
R3/12

)1/m1

(T − t)l1+1
+
NR − (N + 1)r

2(T − t)m1l1+2σ
,

vt −Δvm2(x, t) − vp2uq2 ≤ l2
(
R3/12

)1/m2

(T − t)l2+1
+
NR − (N + 1)r

2(T − t)m2l2+2σ
.

(3.25)
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By Lemma 2.6, there exist positive constants l1, l2 large enough to satisfy

p1l1 + q1l2 > m1l1 + 1, q2l1 + p2l2 > m2l2 + 1, (m1 − 1)l1 > 1, (m2 − 1)l2 > 1, (3.26)

and we can choose σ > 0 be sufficiently small that

σ < max
{
p1l1 + q1l2 −m1l1

2
,
p2l2 + q2l1 −m2l2

2

}
. (3.27)

Thus, we have

p1l1 + q1l2 > m1l1 + 2σ > l1 + 1, p2l2 + q2l1 > m2l2 + 2σ > l2 + 1. (3.28)

Hence, for sufficiently small T > 0, (3.24) and (3.25) imply that

ut −Δum1(x, t) − up1vq1 ≤ 0, (x, t) ∈ Ω × (0, T), (3.29)

vt −Δvm2(x, t) − vp2uq2 ≤ 0, (x, t) ∈ Ω × (0, T). (3.30)

Since ϕ(0) > 0 and ϕ(x) is continuous, there exist two positive constants ρ and ε such that
ϕ(x) ≥ ε, for all x ∈ B(0, ρ) ⊂ Ω. Choose T small enough to insure B(0, RTσ) ⊂ B(0, ρ), hence
u ≤ 0, v ≤ 0 on ∂Ω × (0, T). Under the assumption that

∫
Ω f(x, y)dy < 1 and

∫
Ω g(x, y)dy <

1 for any ∂Ω, we have u(x, t) ≤ ∫Ω f(x, y)u(y, t)dy, v(x, t) ≤ ∫Ω f(x, y)v(y, t)dy and x ∈
∂Ω × (0, T). Furthermore, choose u0(x), v0(x) so large that u0(x) > u(x, 0), v0(x) > v(x, 0). By
comparison principle, we have (u, v) ≤ (u, v). It shows that solution (u, v) to (1.1)−(1.3) blows
up in finite time.

4. Blow-Up Rate Estimates

In this section, we will estimate the blow-up rate of the blow-up solution of (1.1). Throughout
this section, we will assume that

q1 > m2, q2 > m1 and satisfy q2 > p1 − 1, q1 > p2 − 1. (4.1)

To obtain the estimate, we firstly introduce some transformations. Let U(x, t) =
um1(x, t), V (x, t) = (m2/m1)

m2/(m2−1)vm2(x, t), then problem (1.1)−(1.3) becomes

Ut = Ur1(ΔU + aUp3V q3(x, t)), Vt = V r2(ΔV + bV p4Uq4(x, t)), x ∈ Ω, t > 0,

U(x, t) =
(∫

Ω
f
(
x, y
)
Um3
(
y, t
)
dy

)m1

, V (x, t) =
(∫

Ω
g
(
x, y
)
Vm4
(
y, t
)
dy

)m2

,

x ∈ ∂Ω, t > 0,

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ Ω,

(4.2)
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where U0(x) = um1
0 (x), V0(x) = (m2/m1)

m2/(m2−1)vm2
0 (x); m3 = 1/m1 < 1, m4 = 1/m2 < 1; p3 =

p1/m1, q3 = q1/m2, p4 = p2/m2, q4 = q2/m1; 0 < r1 = (m1−1)/m1 < 1, 0 < r2 = (m2−1)/m2 < 1;
a = (m1/m2)

q1/(m1−1), b = (m1/m2)
(p2−m2)/(m2−1). By the conditions (4.1), we have q3 > 1, q4 > 1

and satisfy that q4 − p3 − r1 + 1 > 0, q3 − p4 − r2 + 1 > 0. Under this transformation, assumptions
(H1)-(H3) become

(H1′) U0(x), V0(x) ∈ C2+μ(Ω) ∩ (Ω), for some 0 < μ < 1;

(H2′) there exists a constant δ ≥ δ0 > 0, such that

ΔU0 + aU
p3
0 V

q3
0 − δUk1+1−r1

0 (x) ≥ 0, ΔV0 + bV
p4
0 U

q4
0 − δV k2+1−r2

0 (x) ≥ 0, (4.3)

where δ0, k1, k2 will be given later.

By the standard method [16, 42], we can show that system (4.2) has a smooth
nonnegative solution (U,V ), provided that U0, V0 satisfy the hypotheses (H1)′-(H2)′. We
thus assume that the solution (U,V ) of problem (4.2) blows up in the finite time T�. Denote
M1(t) = maxΩU(x, t),M2(t) = maxΩV (x, t). We can obtain the blow-up rate from the
following lemmas.

Lemma 4.1. Suppose that U0(x), V0(x) satisfy (H1)′-(H2)′, then there exists a positive constant
K1 such that

M1(t)q4−p3−r1+1 +M2(t)q3−p4−r2+1

≥ C1(T� − t)−((q3−p4−r2+1)(q4−p3−r1+1))/(q3 q4−(1−r1−p3)(1−r2−p4)).
(4.4)

Proof. By (4.2), we have (see [43])

M′
1 ≤ aM

p3+r1
1 M

q3
2 , M′

2 ≤ bM
q4
1 M

p4+r2
2 . (4.5)

Noticing that q4 − p3 − r1 + 1 > 0 and q3 − p4 − r2 + 1 > 0, hence we have

(
M

q4−p3−r1+1
1 (t) +M

q3−p4−r2+1
2 (t)

)′

≤ (a(q4 − p3 − r1 + 1
)
+ b
(
q3 − p4 − r2 + 1

))
M

q4
1 (t)Mq3

2 (t)

≤ C2

(
M

q4−p3−r1+1
1 (t) +M

q3−p4−r2+1
2

)((q4−p3−r1+1)q3+(q3−p4−r2+1)q4)/((q4−p3−r1+1)(q3−p4−r2+1))
,

(4.6)

by virtue of Young’s inequality. Integrating (4.6) from t to T�, we can obtain (4.4).

Lemma 4.2. Suppose that U0, V0 satisfy (H1)′-(H2)′, (U,V ) is a solution of (4.2). Then

Ut − δUk1+1 ≥ 0, Vt − δV k2+1 ≥ 0, (x, t) ∈ Ω × (0, T�), (4.7)
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where

k1 =
q4q3 −

(
1 − r1 − p3

)(
1 − r2 − p4

)
q3 − r2 − p4 + 1

, k2 =
q4q3 −

(
1 − r1 − p3

)(
1 − r2 − p4

)
q4 − r1 − p3 + 1

,

δ1 =
ak1
(
1 + k1 − p3

)
r1
(
2k1 + 1 − r1 − p3

)
(
1 + k1 − p3
q3 + k2

)(q3 (2k1+1−r1−p3))/(k1 (q3+k2))

,

δ2 =
bk2
(
1 + k2 − p4

)
r2
(
2k2 + 1 − r2 − p3

)
(
1 + k2 − p4
q4 + k1

)(q4(2k2+1−r2−p4))/(k2 (q4+k1))

,

δ > δ0 = max{|δ1|, |δ2| > 0}.

(4.8)

Proof. Set J1(x, t) = Ut − δUk1+1, J2(x, t) = Vt − δV k2+1, (x, t) ∈ Ω × (0, T�), a straightforward
computation yields

J1t −Ur1ΔJ1 −
(
2δr1Uk1 + ap3U

r1+p3−1V q3
)
J1 − aq3U

r1+p3V q3−1J2

= r1U
−1J21 + δk1(k1 + 1)Uk1+r1−1|∇U|2 + r1δ

2U2k1+1

+ aq3δU
r1+p3V q3+k2 − aδ

(
1 + k1 − p3

)
Uk1+r1+p3V q3

≥ r1δ
2U2k1+1 + aq3δU

r1+p3V q3+k2 − aδ
(
1 + k1 − p3

)
Uk1+r1+p3V q3 .

(4.9)

If 1 + k1 ≤ p3, obviously we have

J1t −Ur1ΔJ1 −
(
2δr1Uk1 + ap3U

r1+p3−1V q3
)
J1 − aq3U

r1+p3V q3−1J2 ≥ 0. (4.10)

Otherwise, noticing that k1/(2k1+1−r1−p3)+q3/(q3+k2) = 1, by virtue of Young’s inequality,

Uk1V q3 ≤ k1
2k1 + 1 − r1 − p3

(
θUk1

)(2k1+1−r1−p3)/k1
+

q3
q3 + k2

(
V q3

θ

)(q3+k2)/q3
, (4.11)

where θ = ((k1 + 1 − p3)/(q3 + k2 ))q3/(q3+k2), we have

J1t −Ur1ΔJ1 −
(
2δr1Uk1 + ap3U

r1+p3−1V q3
)
J1 − aq3U

r1+p3V q3−1J2

≥ r1δ
2U2k1+1 + aq3δU

r1+p3V q3+k2 − aδ
(
1 + k − p3

)
Uk1+r1+p3V q3

≥ r1δ(δ − δ1)U2k1 ≥ 0.

(4.12)

Similarly, we also have

J2t − V r2ΔJ2 −
(
2δr2V k2 + bp4V

r2+p4
)
J2 − bq4V

r2+p4Uq4−1J1 ≥ 0. (4.13)
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Fix (x, t) ∈ ∂Ω × (0, T�), we have

J1(x, t) = Ut − δUk1+1

=
(∫

Ω
f
(
x, y
)
u
(
y, t
))m1−1

(∫
Ω
m1f

(
x, y
)
ut

(
y, t
)
dy − δ

(∫
Ω
f(x, y)u(y, t)dy

)λ
)
,

(4.14)

where λ = m1k1 + 1 > 1. Since Ut(x, t) = J1(x, r) + δUk1+1, we have

∫
Ω
m1f

(
x, y
)
ut

(
y, t
)
dy − δ

(∫
Ω
f(x, t)u

(
y, t
)
dy

)λ

=
∫
Ω
f
(
x, y
)
U(1−m1)/m1 J1

(
y, t
)
dy

+ δ

(∫
Ω
f
(
x, y
)
Uλ/m1

(
y, t
) −
(∫

Ω
f
(
x, y
)
U1/m1

(
y, t
)
dy

)λ
)
.

(4.15)

Noticing that 0 < Φ(x) =
∫
Ω f(x, y)dy ≤ 1, x ∈ ∂Ω, by virtue of Jensen’s inequality, we have

∫
Ω
f
(
x, y
)
Uλ/m1

(
y, t
)
dy −

(∫
Ω
f
(
x, y
)
U1/m1

(
y, t
)
dy

)λ

≥
∫
Ω
f
(
x, y
)
dy

(∫
Ω f
(
x, y
)
U1/m1

(
y, t
)
dy∫

Ω f
(
x, y
)
dy

)λ

−
(∫

Ω
f(x, t)U1/m1

(
y, t
))λ

≥ Φ(x)
(∫

Ω
f(x, t)U1/m1

(
y, t
) dy

Φ(x)

)λ

−
(∫

Ω
f
(
x, y
)
U1/m1

(
y, t
)
dy

)λ

=

(
1

Φ(x)λ−1

)(∫
Ω
f
(
x, y
)
U1/m1

(
y, t
)
dy

)λ

≥ 0,

(4.16)

here, we used λ > 1 and 0 < Φ(x) ≤ 1 in the last inequality. Hence (x, t) ∈ ∂Ω × (0, T�),

J1(x, t) ≥
(∫

Ω
f(x, t)U1/m1

(
y, t
)
dy

)m1−1 ∫
Ω
f
(
x, y
)
U(1−m1)/m1

(
y, t
)
J1dy. (4.17)

Similarly, we also have

J2(x, t) ≥
(∫

Ω
g(x, t)V 1/m2

(
y, t
)
dy

)m2−1 ∫
Ω
g
(
x, y
)
V (1−m2)/m2

(
y, t
)
J2dy. (4.18)
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On the other hand, (H1)′-(H2)′ imply that J1(x, 0) ≥ 0, J2(x, 0) ≥ 0, x ∈ Ω. Combined
inequalities (4.12)-(4.18) and Lemma 2.4, we obtain J1 ≥ 0, J2 ≥ 0, that is, (4.7)
holds.Integrating (4.7) from t to T�, we conclude that

M1(t) ≤ C3(T� − t)−(q3−p4−r2+1)/(q4 q3−(1−r1−p3)(1−r2−p4)),

M2(t) ≤ C4(T� − t)−(q4−p3−r1+1)/(q4 q3−(1−r1−p3)(1−r2−p4)).
(4.19)

where C3, C4 are positive constants independent of t. It follows from Lemma 4.1 and (4.19),
we have the following lemma.

Lemma 4.3. Suppose thatU0(x), V0(x) satisfy (H1)′-(H3)′. If (U,V ) is the solution of system (4.2)
and blows up in finite time T�, then there exist positive constants Ci(i = 3, 4, 5, 6) such that

C5 ≤ max
x∈Ω

U(x, t)(T� − t)(q3−p4−r2+1)/(q4 q3−(1−r1−p3)(1−r2−p4)) ≤ C3, for 0 < t < T�,

C6 ≤ max
x∈Ω

V (x, t)(T� − t)(q4−p3−r1+1)/(q4 q3−(1−r1−p3)(1−r2−p4)) ≤ C4, for 0 < t < T�.
(4.20)

According the transform and Lemma 4.3, we can obtain Theorem 1.3.
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