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The design of nanocapsules for targeted delivery of therapeutics presents many, often
seemingly self-contradictory, constraints. An algorithm for predicting the physico-
chemical characteristics of nanocapsule delivery and payload release using a novel all-
atom, multiscale technique is presented. This computational method preserves key
atomic-scale behaviours needed to make predictions of interactions of functionalized
nanocapsules with the cell surface receptors, drug, siRNA, gene or other payload. We
show how to introduce a variety of order parameters with distinct character to enable a
multiscale analysis of a complex system. The all-atom formulation allows for the use of
an interatomic force field, making the approach universal and avoiding recalibration
with each new application. Alternatively, key parameters, which minimize the need for
calibration, are also identified. Simultaneously, the methodology enables predictions of
the supra-nanometer-scale behaviour, such as structural transitions and disassembly of
the nanocapsule accompanying timed payload release or due to premature degradation.
The final result is a Fokker–Planck equation governing the rate of stochastic payload
release and structural changes and migration accompanying it. A novel “salt shaker”
effect that underlies fluctuation-enhancement of payload delivery is presented.
Prospects for computer-aided design of nanocapsule delivery system are discussed.

Keywords: nanomedicine; nanocapsules; liposomes; drug delivery; computer-aided
design

I. Background

The delivery of cancer drugs, siRNA or genes via a functionalized nanocapsule is a subject

of great interest. Current methods for treating cancer are generally intrusive, involving

long and repeated procedures (surgery, chemotherapy and radiation). In addition,

chemotherapeutics have strong side effects so that they cannot be administered in

sufficiently high doses to kill all the abnormal cells without affecting the healthy ones [1].

Hence, the need for drugs that have the ability to target only the cancer cells without

affecting other tissues is a current objective, which, however, may not be feasible. In other

words, a way to deliver the drug only when it reaches the surface of the tumour is needed

[2–4]. Another major requirement for drug delivery nanocapsules is the ability to control

the release of the drug over a long period of time with constant concentration [3]. Other

promising applications of nanocapsule delivery are for siRNA [5–7] and genes [8–10]

therapies.

An example of well-studied drug delivery systems is liposome-based nanocapsules

[2,11–25,38,39]. Because of the broad range of size, shape, surface morphology,
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composition, surface charge and bilayer fluidity [11] in which they can be created,

liposomes constitute a very promising solution to the challenges encountered during drug

delivery. For efficient anti-tumour delivery, liposomes should be small enough to avoid

MPS uptake and thus reduce toxicity and prolong circulation in the blood, and big enough

to be able to selectively enter tumour pores taking advantage of the tumour’s increased

permeability compared to normal tissues. Altering lipid composition affects not only the

affinity of the liposomal carrier to certain tissues, but also its circulation time and rate of

release of the drug encapsulated in it; while saturated phospholipids reduce membrane

fluidity and thus prolong circulation in the blood, negatively charged lipids have the

opposite effect [12]. Similarly, lipids with low phase transition temperature (short,

unsaturated fatty acid chains) increase rate of drug release while those with high phase

transition (long, unsaturated fatty acid chains) decrease release rate [13]. It was also

discovered that circulation time can be greatly enhanced by coating the liposomes with

polymer polyethylene glycol, PEG (Stealth liposomes) [14]. However, this method was

found to cause additional side effects such as skin toxicity [15]. Finally, it is important that

drug is released at the surface of the target cell. This can be done either by coating the

liposome with antibodies – immunoliposomes – [16,17] or attaching ligands that target

specific receptors at the site of interest [18]; or by developing liposomes that are sensitive

to specific triggers such as pH [19–21], heat [22,23], light [24] or enzyme [25].

Considering the variations in the nature of the payload and the thermal and chemical

environments that nanocapsules must address, it is necessary to have a general physico-

chemical simulator that can be used in computer-aided nanocapsule therapeutic delivery.

Prediction of the rate of drug release for given nanocapsule structure and conditions in the

microenvironment based on a parameter-free model of supra-molecular structures that

would optimize payload targeting would be a valuable asset.

Pharmacodynamics/pharmacokinetics models have been built in order to study the

optimum release scenario to achieve high anti-tumour activity [26]. Other theoretical

models have been developed to simulate drug release from polymeric delivery systems

(see Ref. [27] for a good review). These models are either empirical or mechanistic.

Empirical models [28,29] only take into consideration the overall order of the rate of drug

release while mechanistic ones [30,31] take into account the mechanisms involved in the

rate-limiting step such as diffusion, swelling and erosion. However, these models are

macroscopic and do not take into consideration atomistic effects, and therefore neglect

fluctuations.

Release of payloads takes seconds to hours, a timescale not accessible to existing

molecular dynamics codes, which are impractical for suprananosecond studies. Computations

are further hindered because of the millions of atoms that must be accounted for in a

nanometer-scale problem that involves the payload, capsule and microenvironment. While

payload release is a suppressed timescale process, atomic collisions/vibrations take place on

the 10–12 second scale. The objective of this study is to show how such systems can be

simulated even though they support phenomena that simultaneously involve many scales

across space and time. An all-atom multiscale approach has been developed recently for

simulating the migration and structural transitions of nanoparticles and other nanoscale

phenomena [32–35], and is applied here to the nanocapsule delivery problem.

The starting point of our approach is the identification of variables (order parameters)

that capture the nanoscale features of the payload/capsule/host system, can be

demonstrated to be slow via Newton’s equations, and are “complete” (i.e. there are no

other slow variables that couple to them). Examples of these order parameters are
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nanocapsule centre of mass (CM) position, orientation and similar measures of the payload

and other objects in the microenvironment. We show how a variety of types of order

parameters needed to describe specific nanoscale features can be integrated into a fully

coupled model of a complex bionanosystem. Next, we formulate the Liouville equation that

yields the statistical dynamics of the positions and momenta of all atoms in the system and, via

multiscale techniques [33–35], the order parameters as well. A perturbation technique is used

to derive a Fokker–Planck (FP) equation for the dynamics of the order parameters alone.

While multiscale analysis has a long history of application to Brownian motion (see Refs.

[32,33] for reviews), our approach introduces novel technical advances that capture key

aspects of the nanoscale structures needed for nanocapsule therapeutic delivery analysis.

There are several strategies for targeted delivery and associated phenomena that should

be incorporated in a simulation approach. Like viruses that target specific types of host

cells, the nanocapsule could be constructed of proteins whose sequence and structure allow

binding to selected cell surface protein/receptor sites. Alternatively, injected nanocapsules

could contain a magnetic component part [36] that allows the use of external applied fields

to guide them to target tissue. Finally, release of the payload must be correctly controlled

spatially and temporally, by either designing nanocapsule disassembly to initiate upon

contact with or emersion into the cell membrane, or manipulating it by application of

localized heating in the target area. The simulation algorithm must account for the

migration of a nanostructure and its structural stability, i.e. to predict thermal or host

medium conditions favouring a leaky structure or disassembly of the nanocapsule in the

target medium. In summary, we present a mathematical approach that can be used for the

computer-aided design of nanocapsule therapeutic payload delivery systems.

In this study, we formulate the nanocapsule delivery problem in terms of a set of order

parameters characterizing the transporter capsule and its payload (Section II). We use

multiscale analysis to derive an FP equation for this set of interacting order parameters

(Section III). We present predicted drug release scenarios and show that calibration can be

reduced to two parameters, friction and barrier height. Given the size and properties of both

nanocapsule and its payload, the rate of release can be predicted. Alternatively, given a

release rate and calibrated friction coefficients, the optimum size of the nanocapsule can be

found (Section IV). We discuss the notion of fluctuation enhanced payload release (Section

V) and draw conclusions in Section VI.

II. Order parameters for migration, structural transformation and dispersal

The nanocapsule/payload delivery system displays several distinct behavioural regimes.

These include long-length scale migration to and across the diseased tissue, random motion

in the vicinity of target cell surfaces, interaction with these surfaces and changes induced by

variations in temperature or chemical environment that initiate and sustain drug release. In

the present study, we focus on the short-scale processes and not the long-scale transport to

the target tissue. For simplicity, we do not consider the cell surface explicitly; rather, we

focus on payload release within a host fluid. However, our methodology can also be applied

to a wider range of phenomena.

The system of interest consists of the nanocapsule, payload and host medium. It is

described in terms of its N classical atoms, which interact via bonded and non-bonded

forces. The all-atom multiscale approach starts with the identification of order parameters

and a reformulation of the Liouville equation. We arrive at an FP equation for stochastic

order parameter dynamics. We follow our earlier methodology developed for other

problems [33–35,37], except we introduce several technical innovations.
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Denote the CM position of the nanocapsule kR and that of the drug or other payload kRd:

kR ¼
XN
i¼1

mikri

m*
Qi; ð1Þ

kRd ¼
XN
i¼1

mikri

m*
d

Qd
i ; ð2Þ

where mi and kri are the mass and position of the ith atom; m* ¼
PN

i¼1 miQi; and m*
d ¼PN

i¼1 miQ
d
i are the total mass of the nanocapsule and payload. Qi ¼ 1 when i is in the

nanocapsule and zero otherwise; and similarly with Qd
i for the payload. If the CM

coordinates are to be used as order parameters, one should first demonstrate that they

evolve slowly. Newton’s equations imply dkR=dt ¼ 2LkR and dkRd=dt ¼ 2LkRd, where L is

the Liouville operator:

L ¼ 2
XN
i¼1

kpi

mi

·
›

›kri
þ kFi·

›

›kpi

� �
; ð3Þ

where kFi and kpi are the force on and momentum of atom i. Introducing the total momentum

of the nanocapsule kP* and that of the payload kP
*
d yields dkR=dt ¼ kP*=m* and

dkRd=dt ¼ kP
*
d=m

*
d, where kP* ¼

PN
i¼1 kpiQi and kP

*
d ¼

PN
i¼1 kpiQ

d
i . Similarly, dkP*=dt ¼

2LkP* ¼
PN

i¼1
kFiQi (the net force on the nanocapsule) and dkP

*
d=dt ¼ 2LkP

*
d ¼

PN
i¼1

kFiQ
d
i

(the net force on the payload). This completes Newton’s equations for the CM variables

for the nanocapsule and payload.

Both payload and nanocapsule are composed of many atoms (typically millions); thus,

we take them to have a diameter of O(121) for small factor 1; while kR and kRd are scaled as

O(10). To define 1, we take 12 ¼ m/m* for typical mass of a capsule atom m, and similarly

12 ¼ md=m
*
d, where md ; mm*

d=m* and is on the order of the mass of a typical payload

atom. The 12 scaling is consistent with the fact that the nanocapsule is a shell-like object

and the payload fits inside the nanocapsule initially.

Under the assumption that the system is near equilibrium with respect to the

momentum degrees of freedom, the CM momentum of the nanocapsule scales as the

square root of its mass, i.e. P*2=m* , kBT . Thus, kP* is O(121), and similarly for kP
*
d. With

this, we adopt the scaled variables kP and kPd such that

kP* ¼ 121kP; kP
*
d ¼ 121kPd: ð4Þ

Near equilibrium there is much cancellation of the individual forces acting on a

nanostructure. Although there are O(122) atoms in the nanocapsule, partial cancellation is

assumed to make a net force that scales as O(1 0), not O(122), i.e. not as the surface area of

the nanocapsule. Thus, we introduce net forces via kf ¼
PN

i¼1
kFiQi for the nanocapsule and

kfd ¼
PN

i¼1
kFiQ

d
i for the payload. In summary, Newton’s equations imply

dkR

dt
¼ 1

kP

m
;

dkRd

dt
¼ 1

kPd

md

; ð5Þ

dkP

dt
¼ 1kf;

dkPd

dt
¼ 1kfd: ð6Þ
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We conclude that kR, kRd, kP and kPd are slowly varying, qualifying them as order parameters.

Furthermore, they comprise a self-consistent set in that they all evolve on the same

timescale, i.e. O(121).

To describe payload release, we introduce additional variables characterizing

structural transitions in the nanocapsule (with attendant permeability changes) and

dispersal (i.e. spatial extent of the cloud of payload molecules). For the former, order

parameters F and rotation matrix kXkprovide measures of capsule dilatation and orientation:

F ¼
XN
i¼1

miksi·kX
k ŝ0

iQi

m*
; ð7Þ

where ksi is the position of atom i relative to kR; kXk is a length-preserving rotation matrix

that depends on a set of three Euler angles specifying nanocapsule orientation; ŝ0
i ¼ ks0

i =s
0
i ,

where s0
i is the length of ks

0
i and the superscript 0 indicates a reference nanocapsule

structure. Note that ks
0
i is not a dynamical variable but, for example, is derived from

cryoTEM data. As F is a sum of O(122) terms, each of O(12), F is O(10).

Newton’s equations imply

dF

dt
¼ 2LF ¼

1

m*

XN
i¼1

kpi

mi

2
kP*

m*

� �
·kXk ŝ0

i miQi: ð8Þ

An additional term from dkXk=dt has been neglected for simplicity; it is small relative to

dksi=dt due to the large moment of inertia of the nanocapsule (see Ref. [34]). Define P*
such that

P* ¼
XN
i¼1

kpi·kX
k ŝ0

iQi;
kpi

mi

¼
kpi

mi

2
kP*

m*
: ð9Þ

The contribution to P* of O(1 22) terms of fluctuating signs; hence P* scales as the square

root of the number of contributing terms. Thus, we introduce the scaled parameter

P ¼ 1P*. With this, F and P evolve via

dF

dt
¼ 1

P

m
; ð10Þ

And to good approximation

dP

dt
¼ 1g; g ¼

XN
i¼1

kFi·kX
k ŝ0

iQi; ð11Þ

for “dilatation force” g that we take to scale as 1 0 using an argument similar to that for kf

and kfd. Thus, F and P are slowly varying and are a consistent set of order parameters.

An order parameter L is introduced to describe the dispersal of the payload:

L ¼
XN
i¼1

mis
d
iQ

d
i =m

*
d; ð12Þ

where ksd
i is the position of atom i relative to kRd and sd

i is its length. As argued for F, L

scales as O(10).
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Newton’s equations imply

dL

dt
¼
XN
i¼1

mi

m*
d

kpi

mi

2
kP

*
d

m*
d

" #
·ŝd
iQ

d
i ; ð13Þ

where ŝd
i ¼ ks

d
i =s

d
i . Introducing relative velocities ð kp

d
i =miÞ ¼ ðkpi=miÞ2 ðkP

*
d=m

*
dÞ for

payload atoms yields

dL

dt
¼

1Pd

md

; Pd ¼ 1
XN
i¼1

kp
d
i ·ŝd

iQ
d
i : ð14Þ

The scaling of Pd is based on the assumption that while there are O(122) atoms in the

payload, the contributions to the sum in Equation (14) are of fluctuating sign, and thusPN
i¼1 kp

d
i ·ŝ

d
iQ

d
i is O(121), a result again consistent with the scaling of kP

*
d and which reflects

the near-equilibrium state of the momentum degrees of freedom. With this

dPd

dt
¼ 2LPd ¼ 1

XN
i¼1

kFi· ŝd
i 2

XN
j¼1

mjŝ
d
j

m*
d

Qd
j

 !
þ

pd
i

� �2
2 kp

d
i ·ŝ

d
i

� �2
h i

mis
d
i

8<
:

9=
;Qd

i : ð15Þ

The j-sum is over many vector contributions, which tend to cancel; as the m*
d factor in this

term is proportional to the number of atoms in the payload, the j-sum acts like an average

and therefore is small relative to the unit vector ŝd
i . Similarly, the second term is O(1) and

is therefore negligible. Thus, to good approximation

dPd

dt
¼ 1h; h ¼

XN
i¼1

kFi·ŝ
d
iQ

d
i ; ð16Þ

for “dispersal force” h. We conclude that L and Pd constitute a self-consistent set of order

parameters.

It can be demonstrated that dkXk=dt is O(1) so the rotation is slow [33]. In what follows,

we make the simplifying assumption that the coupling of dilatation or dispersal with

overall slow capsule rotation can be neglected, an assumption warranting further

investigation in the future. For example, for capsules whose properties are far from

spherically symmetric (see Figure 1), payload release may be enhanced by, and in the

same time, propel rotation.

The set of order parameters and associated momenta introduced above constitute the

starting point for the multiscale analysis of the nanocapsule/payload/host medium system

presented in this study. We suggest that this set constitutes a minimal description capturing

many nanocapsule delivery phenomena.

III. Equations of stochastic therapeutic delivery

Multiscale approach is now used to derive an FP equation of stochastic dynamics for the

order parameters of Section II. We follow the prescription of Refs. [33–35,37]. For the

nanocapsule/payload delivery problem, the N-atom probability density r is taken to have

the dependence

r G; Z; Y; t0;
�
t

� �
ð17Þ
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with G ; Gr;Gp

� �
, Gr ¼ kr1; . . . ; krNf g and Gp ¼ kp1; . . . ; kpNf g; Z ; kR; kRd;F;L

� �
and

Y ; kP; kPd;P;Pd

� �
; for simplicity kXk and its rate of change kVk are not accounted for

explicitly. A set of scaled times, tn ¼ 1n t; ðn ¼ 0; 1; . . . Þ, is introduced to capture the

various ways in which r depends on time. Through the ansatz Equation (17), we account

for the multiple ways in which r depends on G, i.e. both directly, and through Z and Y,

indirectly. Finally,
�
t ¼ t1; t2; . . .f g represents the set of long-time variables.

With this and the chain rule, the Liouville equation takes the form

X1
n¼0

1n ›r

›tn
¼ L0 þ 1L1ð Þr; ð18Þ

L0 ¼ 2
XN
i¼1

kpi

mi

·
›

›kri
þ kFi·

›

›kpi

� �
; ð19Þ

L1 ¼ 2
kP

m
·
›

›kR
þ kf·

›

›kP
þ

P

m

›

›F
þ g

›

›P

�
þ

kPd

md

·
›

›kRd

þ kfd·
›

›kPd

þ
Pd

md

›

›L
þ h

›

›Pd

�
: ð20Þ

From the chain rule, derivatives with respect to G in L0 are at constant Z and Y, while those

with respect to Z and Y in L1 are at constant G.

A perturbative solution of the multiscale Liouville Equation (18) is developed such

that

r ¼
X1
n¼0

rn1
n: ð21Þ

To O(1 0), we seek quasi-equilibrium solutions such that L0r0 ¼ 0, i.e. r0 is

equilibrated with respect to the atomistic variables G and hence is independent of t0.

Introducing a “nanocanonical ensemble” as generalized from that in Ref. [33] for the

Figure 1. Dispersal can be enhanced when the capsule is spinning and escape is local; conversely,
local asymmetric dispersal can drive spinning.
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present problem, we obtain

r0 ¼
e2bH

Q b; Z;Y
� �W Z;Y;

�
t

� �
; r̂W ; ð22Þ

where W is the reduced probability density and H is the total energy. H is defined as

H ¼
XN
i¼1

p2
i

2mi

þ V Grð Þ; ð23Þ

where V(Gr) is the N-atom potential energy.

The partition function Q is given by

Q ¼

ð
dG0D G0;Z;Y

� �
e2bH0

; ð24Þ

where

D G0; Z;Y
� �

¼ d Z 2 Z 0
� �

d Y2 Y0
� �

; ð25Þ

where H0, Z0 and Y0 are the G0-dependent values of H, Z and Y. Further discussion of (22)

for a simpler problem is provided elsewhere [37].

To O(1), the Liouville equation implies

›

›t0
2 L0

� �
r1 ¼ 2

›r0

›t1
þ L1r0: ð26Þ

As we have assumed that initially r is near equilibrium, r0 contains all the initial (i.e.

t0 ¼ 0) information; thus, r1 is zero at t0 ¼ 0. With this, using (20) for L1, and recalling

that L0r̂ ¼ 0, we find

r1 ¼ 2t0r̂
›W

›t1
2

ðt0
0

dt
0

0eL0 t02t
0

0

� �
kP

m
·
›

›kR
þ kf·

›

›kP
þ

P

m

›

›F

�

þg
›

›P
þ

kPd

md

·
›

›kRd

þ kfd·
›

›kPd

þ
Pd

md

›

›L
þ h

›

›Pd

�
r̂W : ð27Þ

The statistical mechanical postulate “the longtime and ensemble averages for equilibrium

systems are equal” is assumed and implies

lim
t!1

1

t

ð 0

2t

ds e2L0sA
� �

¼

ð
dG0r̂DA G0

� �
; A th ð28Þ

for any dynamical variable A(G).

By multiplying both sides of Equation (27) by D, integrating with respect to G,

and removing secular behaviour in r1 (i.e. balancing terms that are divergent at large t0),

we obtain

r1 ¼ 2r̂
Ð t0

0
dt

0

0eL0 t02t
0

0

� �
kf2 kf th
� �

· b
kP
m
þ ›

›kP

	 

þ g2 g th
� �

bP
m
þ ›

›P

� �n
þ kfd 2 kf

th

d

	 

· b

kPd

md
þ ›

›kPd

	 

þ h2 h th
� �

bPd

md
þ ›

›Pd

	 
o
W : ð29Þ
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In the above equation, we used the expressions for ›r̂=›Z [Equations (66)–(69)] and

›r̂=›Y [Equations (82)–(85)] derived in Appendix A.

An equation for W can be obtained as follows. Define the reduced probability

density ~W via

~W Z;Y; t
� �

¼

ð
dG 0D G0; Z;Y

� �
r G0; t
� �

: ð30Þ

Using the chain rule, properties of the delta function, integration by parts, and the

Liouville equation, we obtain

› ~W

›t
¼ 21

›

›kR
·

ð
dG0Dr

kP0

m
þ

›

›kP
·

ð
dG0Drkfþ

›

›kRd

·

ð
dG0Dr

kP
0

d

md

þ
›

›kPd

·

ð
dG0Drkfd

(

þ
›

›F

ð
dG0Dr

P0

m
þ

›

›P

ð
dG0Drgþ

›

›L

ð
dG0Dr

P
0

d

md

þ
›

›Pd

ð
dG0Drh

)
:

ð31Þ

Thus, to compute › ~W=›t to O(1 2) we only require r0 and r1. Using Equation (29) for

r1 and Equation (22) for r0, upon noting that ~W!W as 1 ! 0, we find

›W

›t
¼ 1D0W ; ð32Þ

where

D0 ¼D2
kP

m
·
›

›kR
þ kf th·

›

›kP
þ

P

m

›

›F
þ g th ›

›P

�

þ
kPd

md

·
›

›kRd

þ kf
th

d ·
›

›kPd

þ
Pd

md

›

›L
þ h th ›

›Pd

� ð33Þ

and D is defined as follows

D ¼ kgk ff
›

›kP
· b

kP

m
þ

›

›kP

� �
þ kgfg·

›

›kP
b
P

m
þ

›

›P

� �
þ kgkff d

›

›kP
· b

kPd

md

þ
›

›kPd

� �

þ kgfh·
›

›kP
b
Pd

md

þ
›

›Pd

� �
þ kggf ·

›

›P
b
kP

m
þ

›

›kP

� �
þ ggg

›

›P
b
P

m
þ

›

›P

� �

þ kggf d
·
›

›P
b
kPd

md

þ
›

›kPd

� �
þ ggh

›

›P
b
Pd

md

þ
›

›Pd

� �
þ kgkf df

›

›kPd

· b
kP

m
þ

›

›kP

� �

þ kgf dg·
›

›kPd

b
P

m
þ

›

›P

� �
þ kgkf df d

›

›kPd

· b
kPd

md

þ
›

›kPd

� �
þ kgf dh·

›

›kPd

b
Pd

md

þ
›

›Pd

� �

þ kghf ·
›

›Pd

b
kP

m
þ

›

›kP

� �
þ ghg

›

›Pd

b
P

m
þ

›

›P

� �
þ kghf d

·
›

›Pd

b
kPd

md

þ
›

›kPd

� �

þ ghh
›

›Pd

b
Pd

md

þ
›

›Pd

� �
: ð34Þ
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The g-factors are given in Appendix B and mediate frictional exchange of momentum with

the host medium and among themselves. This equation provides a theory of the stochastic

dynamics of a nanocapsule/payload system. It accounts for the cross-coupling between the

various order parameters through the thermal average forces and the friction terms.

The fact that this FP equation is equivalent to a set of eight Langevin equations for Z

and Y, suggests a way to simulate stochastic payload delivery accounting for fluctuations

in the position of the nanocapsule and its structure, as well as that of the payload.

IV. Simulating stochastic payload release

To illustrate the application of the theory, a series of simulations of drug release from a

nanocapsule was carried out. For simplicity, the nanocapsule was assumed to be attached

to the target cell surface at the time release was triggered, i.e. the CM of the nanocapsule

was kept constant. The CM of the payload and the nanocapsule structural order parameter

were taken to remain constant during release as well. In this case, our model reduces to an

FP equation for dispersal only:

›W

›t
¼ 2

Pd

md

›W

›L
þ ghh

›

›Pd

b
Pd

md

þ
›

›Pd

� �
W ; ð35Þ

for t ¼ 1t. The equivalent Langevin model allows for practical simulation:

dL

dt
¼

Pd

md

; ð36Þ

dPd

dt
¼ h th 2 ghhPd þ A tð Þ; ð37Þ

where A(t) is a random force whose autocorrelation function is chosen to be consistent

with g. The objective of this section is to adopt a Monte Carlo approach by repeatedly

solving the Langevin equations and then computing the average time course to model a

collection of nanocapsules releasing their payloads.

To compare our predictions on release scenario with experimentally observable

quantities, a relationship between dispersal and the concentration profile C(r) is

introduced:

C r; t
� �

¼ C0 tð Þe2 r=aLð Þ
2

; ð38Þ

where r is the distance from the CM of the nanocapsule, a is a constant and C0 is the

payload concentration at the CM of the nanocapsule. This profile is consistent with the

assumption that payload release is spherically symmetric and concentration is a maximum

at the CM; it also builds in the meaning of L which, by definition, is a measure of the radial

extent of the cloud of payload molecules. Since there is assumed to be no degradation of

payload molecules during dispersal, the total number, n, of payload molecules is

conserved. This implies

C0 ¼ n= a
ffiffiffiffi
p

p
L

� �3
; ð39Þ

where C0 is assumed to be defined in units of number of molecules per volume.
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The percent of drug release is the quantity most readily comparable to observations;

one finds

%moles released ¼
2ffiffiffiffi
p

p ye2y 2

þ erf y
� �� �

£ 100%: ð40Þ

as can be computed directly from C(r) by integration over the volume outside the

nanocapsule; y is defined below.

The thermal average force h th appearing in Equation (37) can be found via

h th ¼ 2›U=›L; ð41Þ

where U is the potential energy. For the latter, a simple phenomenological expression was

adopted

U ¼ 4p

ð1
0

uCr 2dr; u ¼
�u Rc # r # Ro;

0 otherwise;

(
ð42Þ

where Rc is the inner radius of the nanocapsule and Ro is its outer radius. With this

U ¼ n�u
2ffiffiffiffi
p

p xe2x 2

2 ye2y 2
	 


þ erf xð Þ2 erf y
� �� 


; ð43Þ

where x ¼ Rc/aL and y ¼ Ro/aL.

The friction coefficient is a property related to the dispersal via an averaging reflecting

the local friction and the overall concentration profile. The following formula was adopted

g ¼

Ð1
0 ~g rð ÞC0e2 r=aLð Þ

2

r 2drÐ1
0
C0e2 r=aLð Þ

2

r 2dr
; ð44Þ

~g rð Þ ¼

gin 0 # r # Rc;

gmax Rc , r , Ro;

gout r . Ro;

8>><
>>: ð45Þ

where gmax ¼ g*e�u=RT , g* is a calibrated coefficient, gin; gmax and gout are the maximum

friction values in the nanocapsule’s cavity, in the outer shell, and in the external medium,

respectively.

Drug release in the above model is inhibited by the energy barrier created by the

nanocapsule and by friction. Below, we show release profiles computed via the above

model for indicated g* values (Figure 2). Values for the radii, masses and number of atoms

(see Table 1) are chosen to be consistent with the experimental observations on a typical

liposome loaded with doxorubicin [11]. Doxorubicin is an anthracycline antibiotic that is

used in chemotherapy and has many acute side effects, particularly a fatal cardiac toxicity.

However, cardio toxicity was shown to be reduced for liposome-encapsulated doxorubicin

[38] and the rate of release of the drug was found to play an important role in mediating

toxicity and improving therapeutic efficacy [39].

As gmax increases with �u, increasing the latter will have similar effect on the release

profile as increasing g*. Thus, as the barrier height or friction inside the shell increases, the
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Table 1. Values used for the simulation.

n (atoms) Ro (nm) Rc (nm) m* (g) m*
d (g)

6.7 £ 105 100 92 7.208 £ 10– 17 9.01 £ 10– 18
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Figure 3. Residence time inside the nanocapsule simulated with different g* values.

100

80

60

%
 r

el
ea

se

40

20

0
5.0 10.0 15.0

τ (hr)

20.00.0 25.0

g* = 2 / hr
g* = 5 / hr
g* = 10 / hr
g* = 15 / hr
g* = 20 / hr

Figure 2. Release profile simulated using Equations (36) and (37) for parameter values as in Table 1.
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rate of release of drug from the nanocapsule decreases. This is consistent with the fact that

increasing the length and/or saturation of the fatty acyl chains comprising a liposome leads

to slower release rates. The energy barrier and friction coefficients for the drug–

nanocapsule interaction can be modified via temperature changes or interaction with the

cell membrane. Increasing gmax also leads to longer residence time in the nanocapsule, as

shown from the simulation results summarized in Figure 3.

Further discussion of fluctuation effects is provided in Section V.

V. The stochastic nanoshaker enhanced payload delivery

Consider the enhancement of the migration and payload delivery induced by the stochastic

dynamics of the nanocapsule/payload system. We analyse a special case of the FP

equation of Section III that illustrates a nanoshaker enhancement of payload release.

Fluctuations are constantly agitating the nanocapsule so that one expects that this could

facilitate the escape of payload molecules across the encapsulating membrane. To account

for this effect, consider a model cast in terms of the relative position kR2 kRd and the

dispersal L. We limit the analysis to the case where the nanocapsule/payload system is in

an otherwise homogeneous system and no external forces are applied. Define the new

order parameters

kRr ¼ kR2 kRd; ð46Þ

kRt ¼
m

mt

kRþ
md

mt

kRd; ð47Þ

kPr ¼ mt

kP

m
2

kPd

md

� �
; ð48Þ

kPt ¼ kPþ kPd; ð49Þ

where mt ¼ m þ md is the total scaled mass of the nanocapsule/payload composite; kRr and
kRt are the relative and CM positions; and kPr and kPt are the relative and CM momenta.

Defining the forces

kfr ¼
md

mt

kf2
m

mt

kfd; ð50Þ

kft ¼ kfþ kfd; ð51Þ

Equation (32) becomes

›W

›t1
¼ 21

kPr

mt

·
›

›kRr

þ Kkf
th

r ·
›

›kPr

þ
kPt

mt

·
›

›kRt

þ kf
th

t ·
›

›kPt

þ
Pd

md

›

›L
þ h th ›

›Pd

� 

W

þ 1DW ; ð52Þ
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and D is rewritten as

D ¼K kgkf rf r
·
›

›kPr

· b
kPr

mt

þ K
›

›kPr

� �
þ K kgkf rf t

·
›

›kPr

· b
kPt

mt

þ
›

›kPt

� �

þ K kgf rh·
›

›kPr

b
Pd

md

þ
›

›Pd

� �
þ kgkf tf r

·
›

›kPt

· b
kPr

mt

þ K
›

›kPr

� �

þ kg
kf tf t

·
›

›kPt

· b
kPt

mt

þ
›

›kPt

� �
þ kgf th·

›

›kPt

b
Pd

md

þ
›

›Pd

� �

þ kghf r
·

›

›Pd

b
kPr

mt

þ K
›

›kPr

� �
þ kghf t

·
›

›Pd

b
kPt

mt

þ
›

›kPt

� �
þ ghh

›

›Pd

b
Pd

md

þ
›

›Pd

� �
;

ð53Þ

where K ¼ m2
t =mmd and the friction tensors are given in Appendix B.

Practical simulation of nanocapsule/payload dynamics can be attained via numerical

solution of Langevin equations that are equivalent to the FP Equation (52). For the present

system, these take the form

dRra

dt
¼

Pra

mt

; ð54Þ

dRta

dt
¼

Pta

mt

; ð55Þ

dL

dt
¼

Pd

md

; ð56Þ

dPra

dt
¼ K f th

ra 2
b

mt

X3

â¼1

ðgf raf râPra þ gf raf tâPtaÞ2
b

md

gf rahPd þ A1aðtÞ

( )
; ð57Þ

dPta

dt
¼ f th

ta 2
b

mt

X3

â¼1

ðgf taf râPra þ gf taf tâPtaÞ2
b

md

gf tahPd þ A2aðtÞ; ð58Þ

dPd

dt
¼ h th 2

b

mt

X3

â¼1

ðghf râPra þ ghf tâPtaÞ2
b

md

ghhPd þ A3ðtÞ; ð59Þ

for a ¼ 1, 2, 3. The A terms are random forces and are related to the friction coefficients;

and

ð1
0

dtdt0AqaðtÞAq̂âðt
0Þ ¼ 2gqaq̂â ð60Þ

for a; â ¼ 1; 2; 3 and q; q̂ ¼ 1; 2; 3 referring to fr, ft and h, respectively.

As can be seen in the above equations and the simulations in Section IV, the

fluctuating forces are a necessary element in release phenomena. To avoid premature

release, before a nanocapsule reaches the target site its membrane should be able to
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withstand perturbations in the surroundings (i.e. the fluctuating forces are not large

enough to overcome the barrier height). To induce the release of payload, fluctuations

should be enhanced in order to destabilize the polymer network composing the

nanocapsule. This will lead to either decomposing the nanocapsule or increasing the size

of the pores to allow the payload to traverse the membrane. Perturbations at the target site

can either be intrinsic to the system (i.e. release is triggered by the different environment

at the target site) or due to an externally applied field such as heat, light or ultrasound.

Nonlinear effects could emerge wherein fluctuations are affected by the molecules of the

payload. For example, the local environment created by a payload molecule could widen a

channel traversing the membrane. In some cases, such as gene delivery, the payload

consists of only a few molecules so that release from a given capsule has a strongly

stochastic character. Finally, when average channel width is less than the size of payload

molecules, then the rate of escape is determined by the channel expansion/contraction

statistics.

VI. Conclusions

An all-atom, multiscale approach for modelling nanocapsule therapeutic delivery systems

has been presented. Order parameters were introduced to characterize special features of

these systems, notably the state of the capsule; the dispersal of the therapeutic compound,

siRNA, gene, or other payload; and the centre of mass of the payload and nanocapsule.

Then, a coarse-grained equation for the stochastic dynamics of these parameters was

derived. To illustrate the approach, the time-course of liposomal doxorubicin delivery was

simulated. For simplicity, the simulation starts with the fully loaded capsule at the target

zone and ready for release. Finally, the nanoshaker effect, i.e. fluctuation-enhanced

payload release, was identified.

Benefits of the approach include the following:

. The all-atom description allows for the use of an interatomic force field, thereby

avoiding the need for recalibration with each new application.

. Additional order parameters can readily be introduced to account for the presence of

a cell surface and other nanoobjects, include other system-specific effects such as

externally applied heat, magnetic forces, ligand properties, etc. or provide a more

detailed description of the nanocapsule (i.e. shape, orientation or distribution of

small-scale structure across the nanocapsule).

In light of the above, we believe that our approach is a starting point for a computer-aided

nanomedical design strategy.

Subsequent studies can be done to investigate specific delivery methods using the

framework presented here. One can develop modules to estimate the friction coefficients

and thermal average forces, thereby enabling a parameter-free modelling approach. Order

parameters to describe specific targeted delivery methods and/or release triggers can be

added. For example, magnetic forces can be included to account for magnetic

nanoparticles used either to guide the capsule to the target zone or as a way to remotely

trigger payload release. Also, thermal triggering of the release can be represented by

introducing parameters that describe thermal effects and by including reactions in the

formalism that allow accounting for thermal breakdown of the capsule and the payload.

Finally, a description of the target surface accounting for interaction between the

nanocapsule and the cell surface receptors in the target zone can also be included in the

formalism.

Computational and Mathematical Methods in Medicine 63



Acknowledgements

We appreciate the support of the U.S. Department of Energy, AFRL, and Indiana University’s
College of Arts and Sciences and the Office of the Vice President for Research.

References

[1] S.S. Feng and S. Chien, Chemotherapeutic engineering: Application and further development
of chemical engineering principles for chemotherapy of cancer and other diseases, Chem. Eng.
Sci. 58(18) (2003), pp. 4087–4114.

[2] J.W. Park, Liposome-based drug delivery in breast cancer treatment, Breast Cancer Res. 4(3)
(2002), pp. 93–97.

[3] R. Sinha, G.J. Kim, S.M. Nie, and D.M. Shin, Nanotechnology in cancer therapeutics:
Bioconjugated nanoparticles for drug delivery, Mol. Cancer Ther. 5(8) (2006), pp. 1909–1917.

[4] L. Brannon-Peppas and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy,
Adv. Drug Deliv. Rev. 56(11) (2004), pp. 1649–1659.

[5] G.R. Devi, siRNA-based approaches in cancer therapy, Cancer Gene Ther. 13(9) (2006),
pp. 819–829.

[6] J. Halder, A.A. Kamat, C.N. Landen, L.Y. Han, S.K. Lutgendorf, Y.G. Lin, W.M. Merritt,
N.B. Jennings, A. Chavez-Reyes, R.L. Coleman et al., Focal adhesion kinase targeting using in
vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy, Clin.
Cancer Res. 12(16) (2006), pp. 4916–4924.

[7] F. Takeshita and T. Ochiya, Therapeutic potential of RNA interference against cancer, Cancer
Sci. 97(8) (2006), pp. 689–696.

[8] T.H. Kim, H. Jin, H.W. Kim, M.H. Cho, and C.S. Cho, Mannosylated chitosan nanoparticle-
based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26
carcinoma cells, Mol. Cancer Ther. 5(7) (2006), pp. 1723–1732.

[9] L.W. Seymour, The future of gene therapy in the UK, Trends Biotechnol. 24(8) (2006), pp.
347–349.

[10] J. Suh, D. Wirtz, and J. Hanes, Efficient active transport of gene nanocarriers to the cell
nucleus, Proc. Natl. Acad. Sci. USA 100(7) (2003), pp. 3878–3882.

[11] D.C. Drummond, O. Meyer, K.L. Hong, D.B. Kirpotin, and D. Papahadjopoulos, Optimizing
liposomes for delivery of chemotherapeutic agents to solid tumors, Pharmacol. Rev. 51(4)
(1999), pp. 691–743.

[12] A. Nagayasu, K. Uchiyama, and H. Kiwada, The size of liposomes: A factor which affects their
targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs, Adv. Drug
Deliv. Rev. 40(1–2) (1999), pp. 75–87.

[13] G.J.R. Charrois and T.M. Allen, Drug release rate influences the pharmacokinetics,
biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin
formulations in murine breast cancer, Biochim. Biophys. Acta Biomembr. 1663(1–2)
(2004), pp. 167–177.

[14] P. Srinath and P.V. Diwan, Stealth liposomes – an overview, Indian J. Pharm. 26 (1994), pp.
179–184.

[15] B. Uziely, S. Jeffers, R. Isacson, K. Kutsch, D. Weitsao, Z. Yehoshua, E. Libson, F.M. Muggia,
and A. Gabizon, Liposomal doxorubicin – activity and unique toxicities during 2
complementary phase-I studies, J. Clin. Oncol. 13(7) (1995), pp. 1777–1785.

[16] D.R. Siwak, A.M. Tari, and G. Lopez-Berestein, The potential of drug-carrying
immunoliposomes as anticancer agents, Clin. Cancer Res. 8(4) (2002), pp. 955–956.

[17] J. Huwyler, D.F. Wu, and W.M. Pardridge, Brain drug delivery of small molecules using
immunoliposomes, Proc. Natl. Acad. Sci. USA 93(24) (1996), pp. 14164–14169.

[18] E. Forssen and M. Willis, Ligand-targeted liposomes, Adv. Drug Deliv. Rev. 29(3) (1998),
pp. 249–271.

[19] A. Khan, Y. Shukla, N. Kalra, M. Alam, M.G. Ahmad, S.R. Hakim, and M. Owais, Potential of
diallyl sulfide bearing pH-sensitive liposomes in chemoprevention against DMBA-induced skin
papilloma, Mol. Med. 13(7–8) (2007), pp. 443–451.

[20] A.A. Kale and V.P. Torchillin, Enhanced transfection of tumor cells in vivo using ‘Smart’
pH-sensitive TAT-modified pegylated liposomes, J. Drug Target. 15(7–8) (2007), pp. 538–545.

[21] D.C. Drummond, M. Zignani, and J.C. Leroux, Current status of pH-sensitive liposomes in
drug delivery, Prog. Lipid Res. 39(5) (2000), pp. 409–460.

Z. Shreif and P. Ortoleva64



[22] J. Wells, A. Sen, and S.W. Hui, Localized delivery to CT-26 tumors in mice using
thermosensitive liposomes, Int. J. Pharm. 261(1–2) (2003), pp. 105–114.

[23] S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J.W. Xie, S.K. Libutti,
K.C.P. Li et al.,Pulsed-high intensity focused ultrasound and low temperature sensitive liposomes
for enhanced targeted drug delivery and antitumor effect, Clin. Cancer Res. 13(9) (2007), pp.
2722–2727.

[24] P. Shum, J.M. Kim, and D.H. Thompson, Phototriggering of liposomal drug delivery systems,
Adv. Drug Deliv. Rev. 53(3) (2001), pp. 273–284.

[25] P. Meers,Enzyme-activated targeting of liposomes, Adv. Drug Deliv. Rev. 53(3) (2001), p. 04490.
[26] H. Harashima and H. Kiwada, The pharmacokinetics of liposomes in tumor targeting, Adv.

Drug Deliv. Rev. 40 (1999), pp. 39–61.
[27] D.G. Kanjickal and S.T. Lopina, Modeling of drug release from polymeric delivery systems – a

review, Crit. Rev. Ther. Drug Carrier Syst. 21(5) (2004), pp. 345–386.
[28] D.O. Cooney, Effect of geometry dissolution of pharmaceutical tablets and other solids –

surface detachment kinetics controlling, AIChE J. 18(2) (1972), pp. 446–449.
[29] N.A. Peppas, Analysis of Fickian and non-Fickian drug release from polymers, Pharm. Acta

Helvetiae 60(4) (1985), pp. 110–111.
[30] P.I. Lee, Diffusional release of a solute from a polymeric matrix – approximate analytical

solutions, J. Membr. Sci. 7(3) (1980), pp. 255–275.
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Appendix A

To evaluate the partition function Q arising in the lowest order solution in the multiscale perturbation
method of Section III several steps must be taken. First, we express the N-atom potential and kinetic
energies in terms of the order parameters and residual effects of the detailed all-atom configuration.
We then introduce a Fourier transform method to evaluate the momentum integrations.

The set of atomic positions can be written in terms of coherent and incoherent parts as follows:

kri ¼ Qi kRþ ksi þFkXk ŝ0
i

	 

þQd

i
kRd þ Lŝd

i

� �
; Qi þQd

i – 0: ð61Þ

Introduction of the residual (incoherent) displacement ksi accounts for fluctuations of the
nanocapsule’s atoms over-and-above the coherent motion generated by F and kXk: For the payload’s
atoms, there is no relevant reference configuration as during delivery these atoms migrate via a
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random walk relative to each other. The coherent aspect of payload delivery is embedded in L as it
captures the overall range of the random walk.

With this, the derivatives of the N-atom potential energy with respect to the order parameters can
be found by using the chain rule and the fact that ð›VÞ=ð›kriÞ ¼ 2kFi

›V

›kR
¼
XN
i¼1

›V

›jri
Qi ¼ 2kf; ð62Þ

›V

›kRd

¼
XN
i¼1

›V

›jri
Qd

i ¼ 2kfd; ð63Þ

›V

›F
¼
XN
i¼1

›V

›jri
·kXk ŝ0

iQi ¼ 2g; ð64Þ

›V

›L
¼
XN
i¼1

›V

›jri
·ŝd
iQ

d
i ¼ 2h: ð65Þ

Now, proceeding as in Ref. [37], we get

›r̂

›kR
¼ 2br̂kf th; ð66Þ

›r̂

›kRd

¼ 2br̂kf
th

d ; ð67Þ

›r̂

›F
¼ 2br̂g th; ð68Þ

›r̂

›L
¼ 2br̂h th: ð69Þ

Now, we can rewrite the partition function in Equation (24) as

Q ¼ Q0Q1Q2 ð70Þ

where

Q0 ¼

ð
dG

0

p0
exp 2b

XN
j¼1

p2
j

2mj

ð1 2QjÞ 1 2Qd
j

	 
( )
; ð71Þ

Q1 ¼

ð
dG

0

rdG
0

pd
e2bVd kPd 2 kP

0

d

	 

d Pd 2P

0

d

	 

exp 2b

XN
j¼1

p2
j

2mj

Qd
j

( )
; ð72Þ

Q2 ¼

ð
dG

0

pc
dðkP2 kP0ÞdðP2P0Þ exp 2b

XN
j¼1

p2
j

2mj

Qj

( )
; ð73Þ

where G
0

p0
, G

0

pd
and G

0

pc
are G

0

p for the medium, payload and nanoparticle atoms.

Z. Shreif and P. Ortoleva66



Using the Fourier transform we get

DðkP2 kP0ÞdðP2P0Þ ¼
1

ð2pÞ2

ð1
21

dk1 exp ik1 Px 2 1
XN
j¼1

pjxQj

" #( )

ð1
21

dk2 exp ik2 Py 2 1
XN
j¼1

pjyQj

" #( )ð1
21

dk3 exp ik3 Pz 2 1
XN
j¼1

pjzQj

" #( )

ð1
21

dk4 exp ik4 P2 1kXk
XN
j¼1

pjxŝ
0
jx þ pjyŝ

0
jy þ pjzŝ

0
jz

	 

Qj

"(

þ1 3 kXk
XN
j¼1

pjx
XN
l¼1

mlŝ
0
lx þ pjy

XN
l¼1

mlŝ
0
ly þ pjz

XN
l¼1

ml ŝ
0
lz

 !
Qj

#)
ð74Þ

Inserting Equation (74) in Equation (73) we get

Q2 ¼
1

2pð Þ2

ð
dk1dk2dk3dk4 exp ½ik1Px� exp ½ik2Py� exp ½ik3Pz� exp ½ik4P�

�
ð

dp1x exp 2b
p2

1x

2m1

� �
exp 2i 1k1 þ 1 kXk k4ŝ

0
1x 2 13 kXk

XNc

‘¼1

m‘ ŝ
0
‘x

 !
p1x

" #

ð
dp2x exp 2b

p2
2x

2m2

� �
exp 2i 1k1 þ 1kXkk4ŝ

0
2x 2 13 kXk

XNc

‘¼1

m‘ŝ
0
‘x

 !
p2x

" #

· · ·

ð
dp1y exp 2b

p2
1y

2m1

 !
exp 2i 1k2 þ 1kXkk4ŝ

0
1y 2 13 kXk

XNc

‘¼1

m‘ŝ
0
‘y

 !
p1y

" #

· · ·

ð
dp1z exp 2b

p2
1z

2m1

� �
exp 2i 1k3 þ 1kXkk4ŝ

0
1z 2 13 kXk

XNc

‘¼1

m‘ ŝ
0
‘z

 !
p1z

" #

· · ·

ð
dpNcz exp 2b

p2
Ncz

2mNc

 !
exp 2i 1k3 þ 1kXkk4ŝ

0
Ncz

2 13 kXk
XNc

‘¼1

m‘ ŝ
0
‘z

 !
pNcz

" #)
;

ð75Þ

where Nc is the number of atoms on the nanocapsule.
For simplicity, we take the reference nanocapsule configuration to be symmetric (i.e.PNc

i¼1 miŝ
0
ia ¼ 0 for a ¼ x, y, z). With this, and using the inverse Fourier transform

exp ð2lk 2Þ ¼
1ffiffiffiffiffiffi
2p

p

ð1
21

1ffiffiffiffiffiffiffiffiffi
4pl

p exp ð2ikzÞ exp
2z 2

4l

� �
dz; ð76Þ

Computational and Mathematical Methods in Medicine 67



Q2 takes the form

Q2 ¼
C 3

ð2pÞ2

ð1
21

dk1 exp ðik1PxÞ exp 2
m

2b
k2

1

� �ð1
21

dk2 exp ðik2PyÞ exp 2
m

2b
k2

2

� �
ð1
21

dk3 exp ðik3PzÞ exp 2
m

2b
k2

3

� �ð1
21

dk4 exp ðik4PÞ exp 2
m

2b
kXk 2k2

4

� �

¼ C0 exp 2b
P 2

2m

� �
exp 2b

P2

2mkXk2

� �
; ð77Þ

where C ¼ 2p
ffiffiffiffi
m1

b

q
· · · 2p

ffiffiffiffiffiffi
mNc

b

q
; C0 ¼ C

kXk
2pb
m

� �2
.

Similarly

d kPd 2 kP
0

d

	 

d Pd 2P

0

d

	 

¼

1

2pð Þ2

ð1
21

dk1 exp ik1 Pdx 2 1
XN
j¼1

pjxQ
d
j

" #( )

ð1
21

dk2 exp ik2 Pdy 2 1
XN
j¼1

pjyQ
d
j

" #( )

ð1
21

dk3 exp ik3 Pdz 2 1
XN
j¼1

pjzQ
d
j

" #( )
ð1
21

dk4 exp ik4 Pd 2 1
XN
j¼1

pjxŝ
d
jx þ pjyŝ

d
jy þ pjzŝ

d
jz

	 

Qd

j

"(

þ1 3
XN
j¼1

pjx
XN
l¼1

mlŝ
d
lx þ pjy

XN
l¼1

ml ŝ
d
ly þ pjz

XN
l¼1

mlŝ
d
lz

 !
Qj

#)
: ð78Þ

Thus,

Q1 ¼
1

2pð Þ2

ð
dG

0

re
2bVdk1dk2dk3dk4 exp ½ik1Pdx� exp ½ik2Pdy� exp ½ik3Pdz�

�

exp ½ik4Pd�

ð
dp1x exp 2b

p2
1x

2m1

� �
exp 2i 1k1 þ 1k4ŝ

d
1x 2 1 3

XNd

‘¼1

m‘ŝ
d
‘x

 !
p1x

" #

ð
dp2x exp 2b

p2
2x

2m2

� �
exp 2i 1k1 þ 1k4ŝ

d
2x 2 1 3

XNd

‘¼1

m‘ŝ
0
‘x

 !
p2x

" #

· · ·

ð
dp1y exp 2b

p2
1y

2m1

 !
exp 2i 1k2 þ 1k4ŝ

d
1y 2 1 3

XNd

‘¼1

m‘ ŝ
d
‘y

 !
p1y

" #

· · ·

ð
dp1z exp 2b

p2
1z

2m1

� �
exp 2i 1k3 þ 1k4ŝ

d
1z 2 1 3

XNd

‘¼1

m‘ ŝ
d
‘z

 !
p1z

" #

· · ·

ð
dpNdz exp 2b

p2
Ndz

2mNc

 !
exp 2i 1k3 þ 1k4 ŝ

d
Ndz

2 1 3
XNd

‘¼1

m‘ŝ
d
‘z

 !
pNdz

" #)
; ð79Þ

where Nd is the number of atoms on the payload. In addition, the indices are renumbered in the above
equation.
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After release, payload atoms would go in all directions and therefore
PNd

‘¼1 m‘ ŝ
d
‘a is

approximately zero. Following the same method as above, we get

Q1 ¼ C00

ð
dG

0

re
2bV exp 2b

P2
d

2m

� �
exp 2b

P2
d

2m

� �
; ð80Þ

where C
00

¼ 2p
ffiffiffiffi
m1

b

q
· · · 2p

ffiffiffiffiffiffi
mNd

b

q� �
2pb
md

	 

:

Noting that Pd and Pd are independent of G0 and ignoring kXk (which is consistent with Section III),
we get

Q ¼ C0C00Q0

Ð
dG

0

re
2bV

	 

exp 2b

P 2

2m

� �
exp 2b

P2

2m

� �
exp 2b

P2
d

2m

� �
exp 2b

P2
d

2m

� �
: ð81Þ

With this, we get

›r̂

›kP
¼ br̂

kP

m
; ð82Þ

›r̂

›P
¼ br̂

P

m
; ð83Þ

›r̂

›kPd

¼ br̂
kPd

md

; ð84Þ

›r̂

›Pd

¼ br̂
Pd

md

; ð85Þ

Appendix B

Multiple scale analyses have focused on two extreme cases – inertial and friction dominated
dynamics. In the latter, one obtains Smoluchowsky equations which do not track the momentum
variables. In the present formulation, we attempted to balance both tendencies. This can be
accomplished when either the inertial terms are small (i.e. entering in O(1) in the perturbative
analysis of the Liouville equation, or the friction coefficients are large (i.e O(121)). In the following,
the second approach is considered.

Assume the phenomena under study to be characterized by long-lived modes such that the
integrated generalized-force correlation functions are O(1 21) and not O(1 0). We thus introduce g-
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factors as follows:

gff ;kl ; 1

ð0

21

dt ðf kð0Þf lðtÞÞ
th 2 f th

k f
th
l

� �
;

gfg;k ; 1

ð0

21

dt ðf kð0ÞgðtÞÞ
th 2 f th

k g
th

� �
;

gff d;kl ; 1

ð0

21

dt ðf kð0Þf dlðtÞÞ
th 2 f th

k f
th
dl

� �
;

gfh;k ; 1

ð0

21

dt ðf kð0ÞhðtÞÞ
th 2 f th

k h
th

� �
;

ggf ;k ; 1

ð0

21

dt ðgð0Þf kðtÞÞ
th 2 g thf th

k

� �
;

ggg ; 1

ð0

21

dt ðgð0ÞgðtÞÞth 2 g thg th
� �

;

ggf d ;k ; 1

ð0

21

dt ðgð0Þf dkðtÞÞ
th 2 g thf th

dk

� �
;

ggh ; 1

ð0

21

dt ðgð0ÞhðtÞÞth 2 g th h th
� �

;

gf d f ;kl ; 1

ð0

21

dt ðf dkð0Þf lðtÞÞ
th 2 f th

dk f
th
l

� �
;

gf dg;k ; 1

ð0

21

dt ðf dkð0ÞgðtÞÞ
th 2 f th

dkg
th

� �
;

gf d f d;kl ; 1

ð0

21

dt ðf dkð0Þf dlðtÞÞ
th 2 f th

dk f
th
dl

� �
;

gf dh;k ; 1

ð0

21

dt ðf dkð0ÞhðtÞÞ
th 2 f th

dk h
th

� �
;

gf rf r;kl ; 1

ð0

21

dt ðf rkð0Þf rlðtÞÞ
th 2 f th

rk f
th
rl

� �
;

gf r f t ;kl ; 1

ð0

21

dt ðf rkð0Þf tlðtÞÞ
th 2 f th

rk f
th
tl

� �
;

gf t f r;kl ; 1

ð0

21

dt f tkð0Þf rlðtÞ
� �th

2f th
tk f

th
rl

n o
;

gf t f t;kl ; 1

ð0

21

dt f tk 0ð Þf tl tð Þ
� �th

2f th
tk f

th
tl

n o
; k; l ¼ 1; 2; 3:

With this and the assumed long-time behaviour of the correlation functions, the g’s are O(10).
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