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We develop a state space model documenting Gompertz behaviour of tumour growth.
The state space model consists of two sub-models: a stochastic system model that is an
extension of the deterministic model proposed by Gyllenberg and Webb (1991), and an
observation model that is a statistical model based on data for the total number of
tumour cells over time. In the stochastic system model we derive through stochastic
equations the probability distributions of the numbers of different types of tumour cells.
Combining with the statistic model, we use these distribution results to develop a
generalized Bayesian method and a Gibbs sampling procedure to estimate the unknown
parameters and to predict the state variables (number of tumour cells). We apply these
models and methods to real data and to computer simulated data to illustrate the
usefulness of the models, the methods, and the procedures.
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1. Introduction

It has long been documented that the growth of cancer tumours follows a sigmoidal growth

curve, exhibiting at first a phase of exponential growth and later a phase of slowed growth.

The character of such curves is simulated by various mathematical formulations, including

deterministic models, stochastic models, and cellular automata models. The most

recognized pattern of tumour growth is Gompertz growth, which has been utilized by

many researchers to provide a basis for description and prediction, including

[6,7,8,14,15,27,33,35,37,38,40–42,44,45,73]. To explain the Gompertzian growth pattern

of cancer tumours, many phenomenological rationales have been proposed based on

tumour cell population heterogeneity, tumour mass geometry, or tumour environmental

constraints [2,19,24,25,30,39]. The model in Refs. [24,25] demonstrated that the

Gompertz growth of tumours resulted from the increased transition of proliferating cells

(cancer stem cells) to quiescent cells (differentiated cells) as tumour mass increased. This

model complies with the basic theoretical view of cancer as heterogeneous populations

consisting of a minority of tumourigenic cancer stem cells and a majority of other non-

tumourigenic cells ([4,5]). The number of these cancer stem cells may be as few as 100 and

tumour growth is generated only by these cells ([4,5]). Furthermore, therapeutic

intervention results in complex alteration of the growth characteristics of these
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heterogeneous populations. Recent studies and observations from cancer molecular

biology have provided strong support for the existence of quiescent cancer cells and cancer

stem cells and for the dynamics as described in Refs. [24,25] in the growth of tumour, thus

providing strong biological support for the model of Refs. [24,25]; see [20,31,34,43,46].

While various models provide a rational explanation of Gompertzian growth of

tumours, application of these models to experimental and clinical tumours confront

practical limitations. First, these models are typically deterministic, and assume that all

response variables and input variables are deterministic functions of time, ignoring

completely the randomness of these variables. Because the fundamental biological

processes involved are stochastic, ignoring their inherent randomness may lead to

misleading and erroneous results. Second, even if deterministic Gompertz growth models

are theoretically sound, it is often difficult to fit the models to actual data and estimate their

unknown parameters. The objective of this paper is to overcome these limitations by

extending the deterministic model of Refs. [24,25] to a stochastic state space model for

Gompertz growth of cancer tumours. In this stochastic state space model, the stochastic

system model is a stochastic extension of the model by Refs. [24,25], whereas the

observation model is statistical and is based on the count of the total number of tumour cells

over time. By using this state space model, we will develop a generalized Bayesian

approach to estimate the relevant cancer parameters, predict tumour growth patterns, and

validate the models based on recent experimental data. We will apply this model to some

experimental data to demonstrate the application and usefulness of the model and methods

to assess growth of cancer tumours. We note in passing that stochastic Gompertz models of

tumour growth have also been considered by the first author ([51,52]) and by others

([2,3,23]) but these models have never been combined with statistical models to estimate

parameters and to predict state variables. Also these models were developed through

stochastic birth–death processes and diffusion processes by incorporating the Gompertz

behaviour of tumour growth into the proliferation rates and diffusion rates, ignoring the

biological dynamic and the interaction between different types of cells.

In Section 2 we will develop a stochastic model for Gompertz growth of cancer tumours

based on heterogeneity of tumour cell populations. In Section 3 we will develop a state space

model for cancer tumours by combining the model in Section 2 with a statistical model

based on the total number of tumour cells over time. In Section 4 we will develop procedures

based on multi-level Gibbs sampling to estimate the unknown parameters and to predict the

state variables. In Section 5 we will apply the model and the methods to real data, and

illustrate the usefulness and application of the model and methods of this paper. Finally in

Section 6 we will discuss further the basic model and methods proposed by this paper and

suggest possible other applications.

2. A stochastic model for cancer tumour growth

To develop a stochastic model for tumour growth we follow [24,25] and assume that cancer

tumours are heterogeneous populations consisting of two sub-populations of tumour cells:

tumour stem cells and tumour quiescent cells. Only tumour stem cells can divide and

proliferate giving rise to new tumour stem cells and new quiescent cells. Quiescent cells do

not divide and hence do not proliferate; however, quiescent cells can be induced by some

genetic or epigenetic change to become tumour stem cells. [24,25] have shown that the

above mechanism of quiescent cells is a major driving force for generating Gompertz

growth curves for tumours. (This mechanism is strongly supported by recent observations

from cancer molecular biology; see [20,31,34,43,46].)
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Let N(t) denote the total number of tumour cells at time t, P(t) the total number of

tumour stem cells at time t, and Q(t) the total number of tumour quiescent cells at time t.

Thus, N(t) ¼ P(t) þ Q(t). Set
~
X(t) ¼ {P(t), Q(t)}0. To describe the stochastic growth of

this tumour, we employ a two-dimensional stochastic process
~
X(t) with continuous time

t $ 0, which is basically a two-dimensional Markov process with continuous time and

discrete state space S ¼ {(i, j), i, j ¼ 0,1, . . . ,1}.

2.1 The traditional Kolmogorov approach

Denote by P{P(t) ¼ i,Q(t) ¼ jjP(0) ¼ P0,Q(0) ¼ Q0} ¼ Pij(t) and f(x,y;t) the prob-

ability generating function (PGF) of Pij(t). Let {bp(t), dp(t)} denote the birth rate and the

death rate of the tumour stem cells at time t respectively, and dq(t) the death rate of tumour

quiescent cells at time t. Let r0(t) denote the transition rate of P ! Q at time t for tumour

stem cells to become tumour quiescent cells, and let r1(t) denote the transition rate of

Q ! P at time t for tumour quiescent cells to become tumour stem cells. Following

[24,25], we assume bp(t) . 0, dp(t) and dq(t) are non-negative constants, r0(t) is a non-

negative non-decreasing function of E{N(t)} and r1(t) a non-negative non-increasing

function of E{N(t)}. Then it can be shown that f(x,y;t) satisfies the following Kolmogorov

forward equation (see Remark 1):

›

›t
fðx; y; tÞ ¼ ½xðx2 1ÞbpðtÞ2 ðx2 1ÞdpðtÞ� þ ðy2 xÞr0ðtÞ

� � ›

›x
fðx; y; tÞ

þ {ð1 2 yÞdqðtÞ þ ðx2 yÞr1ðtÞ}
›

›y
fðx; y; tÞ; ð1Þ

with initial condition fðx; y; 0Þ ¼ xP0 yQ0 .

The above partial differential equation is quite difficult to solve. Furthermore, even if a

solution is obtainable, it is often difficult to apply it to estimate parameters and to fit data.

Thus, we use an alternative approach through stochastic differential equations. It is shown

in the Appendix that the two approaches are equivalent, but the latter approach can yield

more useful results than possible by the traditional approach. For example, as illustrated in

Sections (2.3) and (2.4), the latter approach would not only provide equations for the

expected numbers and the variances and covariances of the state variables, but also would

provide a means to derive the probability distributions of the state variables.

Remark 1 : The traditional approach in standard textbooks of stochastic processes (see for

example, [9]) is to derive Kolmogorov forward equations for probabilities of the state

variables. These are systems of infinitely many differential equations involving transition

probabilities. By using these equations, one then derives partial differential equations for

the probability generating functions. The transition probabilities of the processes are then

derived by taking partial derivatives of these probability generating functions and by

setting the dummy variable to be zero. This standard approach has been used by the first

author ([52]) to derive partial differential equations for probability generating functions of

transition probabilities, and consequently the probabilities of tumour cell counts and the

time evolution of tumours. The same approach has been used to derive Equation (1) above.

Because this approach is extremely complicated, the first author ([53,54]) has proposed an

alternative approach through stochastic differential equations. This is the approach used

here and given in the Appendix.
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2.2 The stochastic differential equations of the state variables

To derive stochastic differential equations for the state variables P(t) and Q(t), we define

the following transition variables:

Bp(t) ¼ Number of births of proliferating cells during [t,t þ Dt);

Fp(t) ¼ Number of proliferating cells that become quiescent during [t,t þ Dt);

Fq(t) ¼ Number of quiescent cells that become proliferating during [t,t þ Dt);

Dp(t) ¼ Number of deaths of proliferating cells during [t,t þ Dt);

Dq(t) ¼ Number of deaths of quiescent cells during [t,t þ Dt).

Then it is easily seen that given
~
XðtÞ, to the order of o(Dt), the conditional probability

distribution of {Bp(t), Dp(t), Fp(t)} and the conditional probability distribution of {Dq(t),

Fq(t)} are multinomial distributions with parameters given by [P(t); bp(t)Dt, dp(t)Dt,

r0(t)Dt ] and [Q(t);dq(t)Dt,r1(t)Dt], respectively. That is, using standard probability and

statistical notation ([26]), we have:

{BpðtÞ;DpðtÞ;FpðtÞ}j
~
XðtÞ , Multinomial ½PðtÞ; bpðtÞDt; dpðtÞDt; r0ðtÞDt�; ð2Þ

{DqðtÞ;FqðtÞ}j
~
X , Multinomial ½QðtÞ; dqðtÞDt; r1ðtÞDt� ð3Þ

Equation (2) is equivalent to stating that the conditional probability of {Bp(t) ¼ j1,

Dp(t) ¼ j2, Fp(t) ¼ j3} given {P(t) ¼ n1, Q(t) ¼ n2} is, with j4 ¼ n1 2
P3

u¼1 ju:

P{BpðtÞ ¼ j1;DpðtÞ ¼ j2;FpðtÞ ¼ j3jPðtÞ ¼ n1;QðtÞ ¼ n2} ¼

n1

j1; j2; j3

0
@

1
A½bpðtÞDt�

j1

£ ½dpðtÞDt�
j2 ½r0ðtÞDt�

j3½1 2 bpðtÞDt2 dpðtÞDt2 r0ðtÞDt�
j4 ;

where
n1

j1; j2; j3

 !
¼ n1!Q4

u¼1
ju!
:

Similarly, Equation (3) is equivalent to stating that the conditional probability of

{Dq(t) ¼ i1, Fq(t) ¼ i2} given {P(t) ¼ n1, Q(t) ¼ n2} is, with i3 ¼ n2 2
P2

u¼1iu:

P{DqðtÞ ¼ i1;FqðtÞ ¼ i2jPðtÞ ¼ n1;QðtÞ ¼ n2} ¼

n2

i1; i2

0
@

1
A½dqðtÞDt�

i1

£ ½r1ðtÞDt�
i2 ½1 2 dqðtÞDt2 r1ðtÞDt�

i3 ;

where

n2

i1; i2

 !
¼

n2!Q3
u¼1iu!

:

From Equations (2) and (3), it follows that E{BpðtÞj
~
XðtÞ} ¼ PðtÞbpðtÞDt;E{DpðtÞj

~
X

ðtÞ} ¼ PðtÞdpðtÞDt;E{FpðtÞj
~
XðtÞ} ¼ PðtÞr0ðtÞDt; E{DqðtÞj

~
XðtÞ} ¼ QðtÞdqðtÞDt; and E{Fq

ðtÞj
~
XðtÞ} ¼ QðtÞr1ðtÞDt:
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During the time interval [t, t þ Dt), define the following random noises:

e1ðtÞDt ¼ ½BpðtÞ2 PðtÞbpðtÞDt�2 ½DpðtÞ2 PðtÞdpðtÞDt�

2 ½FpðtÞ2 PðtÞr0ðtÞDt� þ ½FqðtÞ2 QðtÞr1ðtÞDt�;

e2ðtÞDt ¼ ½FpðtÞ2 PðtÞr0ðtÞDt�2 ½DqðtÞ2 QðtÞdqðtÞDt�

2 ½FqðtÞ2 QðtÞr1ðtÞDt�;

From Equations (2) and (3), it is obvious that the above random noises are linear

combinations of multinomial random variables. Further, by the conservation law, we have

the following stochastic differential equations for P(t) and Q(t) (see Remark 2):

DPðtÞ ¼ Pðt þ DtÞ2 PðtÞ ¼ BpðtÞ2 DpðtÞ2 FpðtÞ þ FqðtÞ

¼ {½bpðtÞ2 dpðtÞ2 r0ðtÞ�PðtÞ þ r1ðtÞQðtÞ}Dt þ e1ðtÞDt; ð4Þ

DQðtÞ ¼ Qðt þ DtÞ2 QðtÞ ¼ FpðtÞ2 DqðtÞ2 FqðtÞ

¼ {r0ðtÞPðtÞ2 ½dqðtÞ þ r1ðtÞ�QðtÞ}Dt þ e2ðtÞDt: ð5Þ

In the above equations, it can easily be shown that the random noises e1(t) and e2(t)

have expected value zero and are uncorrelated with the state variables P(t) and Q(t).

Further, by using the above conditional probability distributions of {Bp(t), Dp(t), Fp(t)}

and {Dq(t),Fq(t)} given
~
XðtÞ, the variances and co-variance of these random variables are

easily obtained as COV{ei(t)Dt, ej(t)Dt} ¼ Qij(t)Dt þ o(Dt), where

Q11ðtÞ ¼ ½bpðtÞ þ dpðtÞ þ r0ðtÞ�E{PðtÞ} þ r1ðtÞE{QðtÞ};

Q22ðtÞ ¼ ½dqðtÞ þ r1ðtÞ�E{QðtÞ} þ r0ðtÞE{PðtÞ};

Q12ðtÞ ¼ 2r0ðtÞE{PðtÞ} 2 r1ðtÞE{QðtÞ}:

Remark 2 : Equations (4) and (5) are stochastic equations because all variables in the

equations are random variables as each equation contains a random noise term. These

stochastic equations are derived through biological mechanisms and biological stochastic

transitions. Notice that for fixed Dt, the random noises in the equations are linear

combinations of multinomial random variables. In the limit asDt goes to zero, in most cases

these random noises may be approximated by Brownian motion and Wiener processes; in

these cases the above equations reduce to Ito equations (see for example [70]).

2.3 The expected numbers and the variances and covariances of the state variables

Let up(t) ¼ E{P(t)} and uq(t) ¼ E{P(t)} denote the expected numbers of P(t) and Q(t),

respectively. Then, by taking expectations of Equations (4) and (5) on both sides, we
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obtain the following differential equations for up(t) and uq(t):

d

dt
upðtÞ ¼ ½bpðtÞ2 dpðtÞ2 r0ðtÞ�upðtÞ þ r1ðtÞuqðtÞ; ð6Þ

d

dt
uqðtÞ ¼ r0ðtÞupðtÞ2 ½dqðtÞ þ r1ðtÞ�uqðtÞ: ð7Þ

Equations (6) and (7) are exactly the same equations as the equations of {P(t),Q(t)} from

the deterministic model given in Refs. [24,25]. (In the deterministic model, P(t) ¼ up(-

t),Q(t) ¼ uq(t)). It follows that the results for the deterministic model given by Refs. [24,25]

are equivalent to working with the mean numbers of the stochastic model. In this sense one

may consider the deterministic model of Refs. [24,25] as a special case of the above

stochastic model. Notice, however, by working with the stochastic model one may derive

many useful results which are not possible by working with the deterministic model. In

particular, one may derive the variances and covariances of the state variables, which may be

used to assess how some risk factors affect the variation of the state variables. (As an

illustration, see [60].) In fact, by using the approach given by [60], we have the following

equations for the variance VP(t) ¼ Var{P(t)} of P(t), the variance VQ(t) ¼ Var{Q(t)} of

P(t), and the covariance CPQ(t) ¼ Cov{P(t),Q(t)} between P(t) and Q(t):

d

dt
VPðtÞ ¼ 2½bpðtÞ2 dpðtÞ2 r0ðtÞ�VPðtÞ þ 2r1ðtÞ}CPQðtÞ þ Q11ðtÞ;

d

dt
VQðtÞ ¼ 2r0ðtÞCPQðtÞ2 2½dqðtÞ þ r1ðtÞ�VQðtÞ þ Q22ðtÞ;

d

dt
CPQðtÞ ¼ r0ðtÞVPðtÞþ ½bpðtÞ2dpðtÞ2dqðtÞ2 r0ðtÞ2 r1ðtÞ�CPQðtÞþ r1ðtÞVQðtÞþQ12ðtÞ:

As in Ref. [60], one may use the above equations to assess how some risk factors affect

the variances and covariance of the state variables. Similarly, it is straightforward to derive

equations for higher moments and cumulants of the state variables (P(t), Q(t)) but the

formulae are too complicated to be of much use; we will thus not go any further here.

2.4 The probability distributions of the state variables

Using the stochastic equations of the state variables as given in (4) and (5), besides the

expected values and the variances and covariance of the state variables, one may also

derive probability distributions of the state variables. This provides a significant advantage

of the stochastic model over the deterministic model, because one may not only use this

probability distribution to assess the stochastic impact of the model but also provide a

useful means to estimate efficiently unknown parameters, to predict outcomes of

statevariables, and to validate the model.

To derive this distribution, discretize the time scale by letting Dt ¼ 1 correspond to

some small time interval. Then the state variables are X ¼ {
~
XðtÞ; t ¼ 0; 1; . . . ; tn},

where tn is the most recent time of interest. By Markov theory, the probability density
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of X is then:

P{X} ¼ P{
~
Xð0Þ}

Ytn
t¼1

P{
~
XðtÞj

~
Xðt2 1Þ}; ð8Þ

where P{
~
Xð0Þ} is the probability distribution density of

~
Xð0Þ and P{

~
XðtÞj

~
Xðt2 1Þ} the

conditional probability density of
~
XðtÞ given

~
Xðt2 1Þ.

By using the stochastic equations in (4) and (5) with Dt ¼ 1 and by using the

conditional probability distributions of {Bp(t),Dp(t),Fp(t)} and {Dq(t),Fq(t)} given
~
XðtÞ as

given in Equations (2) and (3), P{
~
XðtÞj

~
Xðt2 1Þ} is readily derived as (see Remark 3):

P{
~
XðtÞj

~
Xðt2 1Þ} ¼

XPðtÞ
i1¼0

XPðtÞ2i1

i2¼0

XQðtÞ
j¼0

PðtÞ

i1; i2

0
@

1
A QðtÞ

j

0
@

1
A½bpðtÞ�

i1 ½r0ðtÞ�
i2

£ ½dpðtÞ�
g1ðtÞ½1 2 bpðtÞ2 dpðtÞ2 r0ðtÞ�

Pðtþ1Þ2j

£ ½r1ðtÞ�
j½dqðtÞ�

g2ðtÞ½1 2 dqðtÞ2 r1ðtÞ�
Qðtþ1Þ2i2 ; ð9Þ

where

PðtÞ

i;j

 !
¼

PðtÞ!

ði!Þðj!Þ ðPðtÞ2 i2 jÞ!
� �; QðtÞ

j

 !
¼

QðtÞ!

j! ðQðtÞ2 jÞ!
� �;g1ðtÞ¼PðtÞ2Pðtþ1Þ2i12 i2þj;

and

g2ðtÞ ¼ Qðt þ 1Þ2 i2:

Remark 3 : Equation (9) is the standard notation in probability and statistics for the

probability density function that gives the probability values of the random variables ([26]).

For example, the conditional probability of {P(t þ 1) ¼ j1, Q(t þ 1) ¼ j2} given {P(t) ¼ i1,

Q(t) ¼ i2} is given by Equation (9) by substituting the values {P(t þ 1) ¼ j1, Q(t þ 1) ¼ j2}

and {P(t) ¼ i1,Q(t) ¼ i2}.

3. A state space model for cancer tumour growth

A state space model of a system is a stochastic model of the system consisting of two

sub-models: The stochastic system model, which is the stochastic model of the system

and the observation model, which is a statistical model relating some available data to

the system. A state space model of a system combines a stochastic model of the system

with a statistical model of the system based on some observed data from the system. As

such, it extracts biological information from the system via its stochastic system model

and integrates this information with data through its observation equation. Thus, as

illustrated in the books by [53], Chapter 6; [54], Chapters 8 and 9) and in [61], a state

space model of the system is advantageous over the stochastic model of the system

alone and the statistical model of the system alone in several aspects. In particular, the

state space model has the following advantages over the stochastic model used alone or

statistical model used alone ([53], Chapter 6; [54], Chapters 8–9; [61]):

(1) The statistical model alone or the stochastic model alone very often are not

identifiable and cannot provide information regarding some of the parameters

and variables. These problems usually disappear in state space models. For
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some specific examples see [11,53], Chapter 5) and [67,68].

(2) A state space model provides an optimal procedure to update the model by new

data, which may become available in the future. This is the smoothing step of

the state space models (see ([13,21,48])).

(3) The state space model provides an optimal procedure via Gibbs sampling to

estimate simultaneously the unknown parameters and the state variables of

interest (see [67,68]).

(4) The state space model provides a means to combine information from various

sources. For some examples see [58].

Many natural systems are highly complex and require integration of information from

many possible models and many data sources to be realistic and applicable. This

complexity leads to the state space modelling approach (see Remark 4), which is made

practical by the advance of biometric technology and bioinformatics.

For the growth of tumours, the available data are usually the observed total number of

tumour cells in the tumour over time. It is thus possible to construct a statistical model for

this observed data for tumour growth. Combining this statistical model with the stochastic

model given in Section 2, we have then a state space model for the growth of a tumour. In

this state space model, the stochastic system model is represented by the stochastic

Equations (4) and (5) and the probability distributions given in Section (2.3); the

observation model of this state space model is a statistical model based on data of the

observed total number of tumour cells in the tumour over time.

Remark 4 : The state space model was originally proposed by Kalman in the early 1960s for

engineering control and communication [32]. Since then it has been used successfully as a

powerful tool in aero-space research, satellite research, and missile research. It has also been

used by economists in econometrics research ([28]) and by mathematician and statisticians

in time series research [1,16]) to solve many challenging problems, which appear to be

extremely difficult with other approaches. It was first proposed by Tan and his associates for

AIDS research and for cancer research [55,57–59,62–68,71–72].

3.1 The stochastic system model, the expanded model and the probability distributions

To apply the stochastic system model and to implement the Gibbs sampling procedure to

estimate unknown parameters, we expand the model by defining dummy state un-

observable variables
~
UðtÞ ¼ {BpðtÞ;FpðtÞ;FqðtÞ}

0 and put U ¼ {
~
UðtÞ; t ¼ 0; 1; . . . ; tn 2 1}.

Then, by using the conditional probability distributions of {Bp(t),Dp(t),Fp(t)} and

{Dq(t),Fq(t)} given
~
XðtÞ as given in Section (2.2), one can easily generate

~
UðtÞ

stochastically; and given {
~
XðtÞ;

~
UðtÞ} one can easily generate

~
Xðt þ 1Þ stochastically. The

conditional probability density of
~
UðtÞ given

~
XðtÞ is:

P{
~
UðtÞj

~
XðtÞ} ¼

PðtÞ

BpðtÞ;FpðtÞ

 !
½bpðtÞ�

BpðtÞ½r0ðtÞ�
FpðtÞ½1 2 bpðtÞ2 r0ðtÞ�

PðtÞ2BpðtÞ2FpðtÞ

£
QðtÞ

FqðtÞ

 !
r1ðtÞ½ �FqðtÞ½1 2 r1ðtÞ�

QðtÞ2FqðtÞ: ð10Þ
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The conditional probability density of
~
Xðt þ 1Þ given {

~
XðtÞ;

~
UðtÞ} is:

P{
~
Uðt þ 1Þj

~
XðtÞ;

~
UðtÞ} ¼

PðtÞ2 BpðtÞ2 FpðtÞ

jðtÞ

0
@

1
A dpðtÞ

1 2 bpðtÞ2 r0ðtÞ

� �jðtÞ

£ 1 2
dpðtÞ

1 2 bpðtÞ2 r0ðtÞ

� �Pðtþ1Þ2FqðtÞ QðtÞ2 FqðtÞ

hðtÞ

0
@

1
A

£
dqðtÞ

1 2 r1ðtÞ

� �hðtÞ

1 2
dqðtÞ

1 2 r1ðtÞ

� �Qðtþ1Þ2FpðtÞ

; ð11Þ

where j(t) ¼ P(t) 2 P(t þ 1) 2 Bp(t) 2 Fp(t) þ Fq(t), and h(t) ¼ Q(t) 2 Q(t þ 1) þ

(t) ¼ Q(t) 2 Q(t þ 1) þ Fp(t) 2Fq(t).

The joint probability density of {X, U} is:

P{X;U} ¼ P{
~
Xð0Þ}

Ytn
t¼1

P{
~
XðtÞj

~
Xðt2 1Þ;

~
Uðt2 1Þ} £ P{

~
Uðt2 1Þj

~
Xðt2 1Þ}: ð12Þ

Notice that by summing over all elements of
~
UðtÞ in P{

~
Xðt þ

1Þj
~
XðtÞ;

~
UðtÞ}P{

~
UðtÞj

~
XðtÞ} over the sample space of

~
UðtÞ, one obtains P{

~
Xðt þ 1Þj

~
XðtÞ}

as given in Equation (9). Thus one may derive P{X} as given in Equation (8) by summing

over all elements of U over the sample space of U.

3.2 The observation model

Assume that the observed number of tumour cells in the tumour are counted at times

{tj, j ¼ 1, . . . , n} and denote these observed numbers by {Y( j), j ¼ 1, . . . ,n}. Then the

observation model is represented by the following statistical model:

Yð jÞ ¼ NðtjÞ þ ½NðtjÞ�
1=2eð jÞ ¼ ½PðtjÞ þ QðtjÞ� þ ½PðtjÞ þ QðtjÞ�

1=2eð jÞ; j

¼ 1; . . . ; n; ð13Þ

where e( j) is the random measurement error for measuring Y( j).

One may assume that the e( j)’s are independently distributed as normal variables with

mean 0 and variance s 2 and that the e( j)’s are independently distributed of the random

noises ei(t)’s. Put Y ¼ {Y( j), j ¼ 1, . . . , n}. Then, the conditional probability density of Y
given {X, U} and given the parameters Q is, with t0 ¼ 0:

P{YjX;U;Q} ¼
Yn
j¼1

f {YðjÞ;NðtjÞ;s
2}; ð14Þ

where

f ðx;NðtjÞ;s
2} ¼ {s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNðtjÞ

p
}21 exp 2

1

2s2 NðtjÞ
½x2 NðtjÞ�

2

� 	
: ð15Þ
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The joint probability density of {X, U, Y} given the parameters Q is:

P{X;U;YjQ} ¼ P{
~
Xð0Þ}

Yn
j¼1

f {ðYð jÞ;NðtjÞ;s
2} £

Ytj
t¼tj21þ1

P{
~
XðtÞj

~
Xðt2 1Þ;

~
Uðt2 1Þ}

£ Pð
~
Uðt2 1Þj

~
Xðt2 1Þ}: ð16Þ

In the above density, the unknown parameters are Q ¼ {bp(t), dp(t), dq(t), r0(t), r1(t),

s 2}. It is reasonable to assume {bp(t) ¼ bp, dp(t) ¼ dp, dq(t) ¼ dq}([25]). One may also

assume that during the time interval Lj ¼ [sj21,sj)(sj . sj21, j ¼ 1, . . . ,m; s0 ¼ 0,

sm ¼ tn), we have {r0(t) ¼ r0( j), r1(t) ¼ r1( j)} for all t [ Lj. Then the unknown

parameters are Q ¼ {bp, dp, dq, s 2, r0( j), r1( j), j ¼ 1, . . . ,m}.

Using the density of Equation (16), the likelihood function of Q given {X, U, Y} is:

L{QjX;U;Y} /
Ytn
t¼1

{bBpðtÞ
p djðtÞp ½r0ðtÞ

FpðtÞ½1 2 bp 2 dp 2 r0ðtÞ�
Pðtþ1Þ2FqðtÞdhðtÞq

£ ½r1ðtÞ�
FqðtÞ½1 2 dq 2 r1ðtÞ�

Qðtþ1Þ2FpðtÞ}{s2}2n=2exp 2
n

2s2
ŝ2

n o
¼ ½bp�

Ptn

t¼1
BpðtÞ½dp�

Ptn

t¼1
jðtÞ

½1 2 bp 2 dp�
Ptn

t¼1
½Pðtþ1ÞþFpðtÞ2FqðtÞ

£ ½dp�
Ptn

t¼1
hðtÞ½1 2 dq�

Ptn

t¼1
½Qðtþ1Þ2FpðtÞþFqðtÞ�

£
Ym
j¼1

r0ð jÞ

1 2 bp 2 dp

� �Psj

i¼sj21þ1
FpðiÞ

1 2
r0ð jÞ

1 2 bp 2 dp

� �Psj

t¼sj21þ1
½Pðtþ1Þ2FqðtÞ�

£
Ym
j¼1

r1ð jÞ

1 2 dq

� �Psj

i¼sj21þ1
FqðiÞ

1 2
r1ð jÞ

1 2 dq

� �Psj

t¼sj21þ1
½Qðtþ1Þ2FpðtÞ�

£ {s2}2n=2exp 2
n

2s2
ŝ2

n o
; ð17Þ

where ŝ2 ¼ 1=n
Pn

j¼1ð1=NðtjÞÞ½Yð jÞ2 NðtjÞ�
2.

4. The generalized Bayesian procedure for estimating unknown parameters

In this section, we propose a generalized Bayesian approach to estimate the unknown

parameters, to predict state variables, and to validate the model. This approach combines the

prior distribution of the parameters with the joint density of {Y,X,U} given by Equation (16).

It follows that besides drawing information from the statistical model via the probability

distribution of Y and information from the prior distribution of Q, this approach also

incorporates and integrates information from the stochastic system model via the probability

distribution of {X, U}. This additional information from {X, U} provides a significant

advantage of the generalized Bayesian approach over the traditional Bayesian approach,

which in turn is advantageous over the classical sampling theory approach (see [12]).

To illustrate the approach, let P{Q} be the prior distribution of Q. Then using Equation

(17), the conditional posterior distribution of Q given {X, U, U} is:

P{QjX;U;Y} / P{Q}L{QjX;U;Y}: ð18Þ

Using Equations (12), (16) and (18), one may then generate Q from the posterior

distribution P{QjY} via the multi-level Gibbs sampling procedure given in Refs. [49] and
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[54]. Similarly, by using the Gibbs sampling procedure, one may also generate the state

variables {X, U} given Y. Given {X, U} and given Q, the predicted Y’s are then generated

by using Equation (14).

4.1 The prior distribution of Q

For the prior distribution of Q, we will basically use conjugate prior if previous studies are

available. That is, we assume P(Q) as:

PðQÞ / ½bp�
mb21½dp�

md21½1 2 bp 2 dp�
kf21½dq�

mq21½1 2 dq�
kq21

£
Ym
j¼1

r0ð jÞ

1 2 bp 2 dp

� �mr 021

1 2
r0ð jÞ

1 2 bp 2 dp

� �kr021

£
Ym
j¼1

r1ð jÞ

1 2 dq

� �mr121

1 2
r1ð jÞ

1 2 dq

� �kr121

£ {s2}2n0=2exp 2
1

2s2
s 2

0

� 	
; ð19Þ

where {mb;md;mr 0;mr1; kf ; kq; kr0; kr1; n0;s
2
0 } are hyper-parameters.

In the above prior distribution, the hyper-parameters are positive constants and can

be estimated by data from previous studies or prior information if such previous

studies are available. In the event that our prior knowledge is vague and imprecise, we

then follow [10] to assume a non-informative prior P{Q} / {s2}21, unless otherwise

stated.

From Equation (17), if one assumes a non-informative prior distribution for Q as

above, then the conditional posterior distribution of ðn=s2Þŝ2 given {X, U, Y} is a central

chi-square variate with degrees of freedom n; the conditional posterior distribution of

(bp, dp) given {X, U, Y} is a bi-variate beta vector with parameters

Xtn
t¼1

BpðtÞ þ 1;
Xtn
t¼1

jðtÞ þ 1;
Xtn
t¼1

½Pðt þ 1Þ þ FpðtÞ2 FqðtÞ� þ 1

( )
;

the conditional posterior distribution of dq given {X, U, Y} is a beta variate with

parameters

Xtn
t¼1

hðtÞ þ 1;
Xtn
t¼1

½Qðt þ 1Þ2 FpðtÞ þ FqðtÞ� þ 1

( )
;

the conditional posterior distribution of ðr0ð jÞÞ=ð1 2 bp 2 dpÞ given {X, U, Y} is a beta

variate with parameters

Xsj
t¼sj21þ1

FpðtÞ þ 1;
Xsj

t¼sj21þ1

½Pðt þ 1Þ2 FqðtÞ� þ 1

8<
:

9=
;;
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the conditional posterior distribution of (r1( j))/(1 2 dq) given {X, U, Y} is a beta variate

with parameters

Xsj
t¼sj21þ1

FqðtÞ þ 1;
Xsj

t¼sj21þ1

½Qðt þ 1Þ2 FpðtÞ� þ 1

8<
:

9=
;:

4.2 The multilevel Gibbs sampling procedure

Using the distribution results given in Section 3, one may use the multi-level Gibbs

sampling procedures to estimate the unknown parameters Q and to predict the state

variables. These Gibbs sampling procedures ([49,54]) are given by the following loop:

. Given {Q, Y}, generate {X, U} from the conditional probability distribution of {X,

U} given {Y, Q}. Since this conditional distribution is very complicated and not

available, we use an indirect procedure due to [50] to implement this step. Given Q,

this indirect procedure first generates a large sample {X{i), U{i), i ¼ 1, . . . , N} of

{X, U} by using the stochastic equations (4) and (5), the probability distributions in

Section 2 and in Equation (12); then by combining this large sample with the

conditional density of Y given {X, U, Q} as given by Equation (14), one selects a

{X, U}, say {X {*Þ; U {*Þ}, from the sample through the weighted Bootstrap method

due to [50]. Then it can be shown that {X {*Þ; U {*Þ} is a sample of size one from the

density P{X, UjY, Q} although the latter is not available; for proof and the weighted

bootstrap procedure, see [54], Chapter 3).

. Using {X {*Þ; U {*Þ} from Step 1, generate Q (say Qð*Þ) from the posterior

distribution of Q given {X ¼ X ð*Þ; U ¼ U ð*Þ; Y} given by Equation (18). As shown

in Section (4.1) and in Equation (18), under non-informative prior this step can

readily be implemented by using central chi-square variate and beta variate.

. With Q ¼ Qð*Þ generated in Step 2, go to Step 1 and continue until convergence.

Figure 1. The growth curve of tumour induced by T53cl4 cells in a nude mouse treated with
PNU153429.
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The convergence of the above procedures have been proved in Chapter 3 of Ref. [54]

and by Ref. [69]. At convergence, one then generates a random sample of {X, U} from the

conditional distribution P{X, UjY} of {X, U} given Y, independently of Q and a random

sample of Q from the posterior distribution P{QjY} of Q given Y, independently of {X,

U}. Repeat these procedures and one then generates a random sample of size N of {X, U}

and a random sample of size M of Q. One may then use the sample mean of Q as estimate

of Q and the sample mean of {X, U} as predicted values of {X, U} and use the sample

variances as the variances of these estimates and predicted values. Alternatively, one may

also use Efron’s bootstrap method ([17]) to derive estimates of the standard errors of the

estimates and predicted values.

Table 1. Estimates of parameters and standard errors.

Time (day) Parameter Estimate Standard error Minimum Maximum

0–60 bp 0.4203 0.0378 0.3866 0.4547
0–60 dp 0.1213 0.0104 0.1028 0.1414
0–60 dq 0.0716 0.0088 0.0575 0.0861

0–3 r0(t) 0.0822 0.0063 0.0756 0.0908
4–6 0.1215 0.0112 0.1095 0.1334
7–9 0.1712 0.0207 0.1532 0.1912

10–12 0.2283 0.0213 0.2079 0.2488
13–18 0.2826 0.0265 0.2627 0.3179
19–36 0.3325 0.0284 0.3093 0.3615
37–60 0.3849 0.0326 0.3523 0.4176

0–3 r1(t) 0.4123 0.0512 0.3987 0.4332
4–6 0.3574 0.0413 0.3382 0.3854
7–9 0.2912 0.0338 0.2725 0.3131

10–12 0.2357 0.0219 0.2107 0.2512
13–18 0.1687 0.0187 0.1375 0.1787
19–36 0.1149 0.0123 0.1043 0.1398
37–60 0.0751 0.0091 0.0612 0.0945

Figure 2. Modified growth curve of tumour induced by T53cl4 cells in a nude mouse treated with
PNU153429.
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Notice that these estimates of the parameters are equivalent to the posterior mean

values of these parameters. As such, these estimates minimize the Bayesian risk under

squared loss function, for proof, see [26].

5. An illustrative example

In this section we use the actual data from [47] to illustrate the application of the above

model and methods. This data set gives the growth of tumours developed in nude mice

inoculated with the T53 cell line. In this experiment, similar mice (equal age, equal weight

and equal size) were examined daily until the appearance of a tumour with initial volume

equal to 1 mm3. Afterward, the mouse was treated with PNU153429 (100 mg/kg of body

weight) given intraperitoneally, and the tumour volume was measured every 3 days for 2

months. The growth curve of the tumours is given in Figure 1. The picture in Figure 1

clearly shows that the growth curve of cancer tumour fits a typical S-shape of the

Gompertz curve.

The growth curve of the tumour given in Figure 1 is expressed using the volume (mm3)

of the tumour as its size. To apply the above state space model, we follow [29] to transform

the three dimensional volume into number of cells by noting that on the average, 1 mm3

volume contains 76,872 cells (see p. 36, [29]). This is presented in Figure 2.

Using the data in Figure 2 and assuming a non-informative uniform prior for the

parameters, we have applied the multi-level Gibbs sampling procedure and the weighted

Bootstrap procedure given in Section 4 to estimate the unknown parameters and the state

variables. The parameters are the birth or division rate bp of the proliferating cells, the

Table 2. Generated total numbers of proliferating and quiescent cells.

Time 0 5 10 15 20 25 30 35 40 45 50
Y 10 17 29 45 61 82 100 120 141 156 172

Time 55 60 65 70 75 80 85 90 95 100
Y 187 201 211 221 231 239 244 250 258 265

Figure 3. Estimated and observed numbers of total cells (——: estimated; –†–†–: observed).
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death rate of the proliferating cells dp, the death rate of quiescent cells dq, the transition

rate r0(t) by which proliferating cells become quiescent cells, and the transition rate r(t) by

which the quiescent cells change into proliferating cells. Given in Table 1 are the estimates

of the unknown parameters with the standard errors of the estimates obtained by using

Efron’s bootstrap method ([17]). Plotted in Figure 3 are the predicted numbers of the state

variables together with the respective observed numbers. From Figure 3, it is apparent that

the predicted numbers of the total cells are very close to the observed numbers.

From results in Table 1, we have also observed the following interesting results:

(1) The proliferation rate gp ¼ bp 2 dp is positive. It follows that the number of

proliferating cells would increase with time. However, r0(t) also increases with

Table 3. Estimates of parameters and standard errors.

Time (day) Parameter Estimate Standard error Minimum Maximum

0–100 bp 0.2817 0.0266 0.2538 0.3074
0–100 dp 0.1628 0.0141 0.1385 0.1903
0–100 dq 0.0327 0.0047 0.0275 0.0462

0–5 r0(t) 0.1242 0.0116 0.1126 0.1408
6–10 0.1851 0.0212 0.1675 0.1934

11–15 0.2442 0.0235 0.2232 0.2712
16–20 0.2853 0.0279 0.2579 0.2988
21–30 0.3364 0.0364 0.3227 0.3679
31–50 0.3841 0.0388 0.3593 0.4015
51–100 0.4253 0.0376 0.4023 0.4576

0–5 r1(t) 0.3852 0.0401 0.3689 0.4131
6–10 0.3127 0.0322 0.2982 0.3353

11–15 0.2542 0.0306 0.2265 0.2732
16–20 0.2179 0.0224 0.1987 0.2433
21–30 0.1663 0.0155 0.1465 0.1797
31–50 0.1248 0.0112 0.1076 0.1486
51–100 0.0741 0.0082 0.0612 0.0978

Figure 4. Generated numbers of total cancer tumour cells.
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time so that as time increases, more P cell will become Q cells. This will lead to

the situation that the number of proliferating cells (P cells) would not change

significantly with time.

(2) r0(t) is a monotone increasing function of time with very small value

r0(t) ¼ 0.0822 during the first 3 days, but increases to 0.3849 by 60 days. On

the other hand, r1(t) is a monotone decreasing function of time with r1(t) ¼ 0.4123

during the first 3 days, but decreases to r(t) ¼ 0.0751 by day 60. Notice also that

r0(t) , r1(t) during the first 12 days but r0(t) . r(t) during days 13–60. It follows

that during the first 12 days, more Q cells would become P cells but the opposite is

true during days 13–60. These results help explain why the population of cancer

stem cells in tumours is in general not very large.

5.1 Simulation study

To further examine our approach, in this Section we have assumed some parameter values

and generated some computer Monte Carlo data. Since the transition rate r0(t) at which

proliferating cells become quiescent is a non-negative non-decreasing function of N(t) and

the transition rate r1(t) at which quiescent cells become proliferating is a non-negative

non-increasing function of N(t), we assumed that

r0ðtÞ ¼ r0ðNðtÞÞ ¼
r00 £ NðtÞ

r01 þ NðtÞ
; r1ðtÞ ¼ r1ðNðtÞÞ ¼

r10 £ r11

r11 þ NðtÞ
;

where r00, r01, r10, r11 are constants.

The generated numbers are given in Table 2 and plotted in Figure 4. The parameter

values for generating these data are taken as {b ¼ 0.3, dp ¼ 0.15, dq ¼ 0.03, r00 ¼ 0.5,

r01 ¼ 40, r10 ¼ 0.5, r11 ¼ 40, P(0) ¼ 5, Q(0) ¼ 5}.

Using the data in Table 2 and assuming a non-informative uniform prior for the

parameters, we have applied the procedures of Section 3 to estimate the unknown

parameters and the state variables. Given in Table 3 are the estimates of the unknown

Figure 5. Estimated and observed numbers of total cancer tumour cells (——: estimated; –†–†–:
observed).
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parameters. Plotted in Figure 5 are the predicted numbers of the state variables together

with the generated numbers. It is apparent from results in Table 3 that the estimates are

very close to its true values. From Figure 5, it is also apparent that the predicted numbers

of the state variables are very close to the generated numbers. These results indicate that

the methods we propose are quite promising and useful.

6. Discussion

In 1825 Benjamin Gompertz published an empirical law for the growth of populations

given by the formula NðtÞ ¼ aebe
2gt

; which is a solution of the ordinary differential

equation

d

dt
NðtÞ ¼ NðtÞðd2 g logðNðtÞÞÞ ð20Þ

with a ¼ ed/g, b ¼ 2d/g, and the initial value N(0) ¼ 1. In Ref. [25] it was shown that the

solution of the system of ordinary differential equations given by (6) and (7) with

bp . dp, d ¼ bp 2 dp, dq ¼ 0, r0(N) ¼ g(1 þ log(N)), r1(N) ; 0, up(0) ¼ 1, and

uq(0) ¼ 0 yields a solution N(t) of (20) with N(t) ¼ up(t) þ uq(t). With up(t) interpreted

as the population of proliferating cells and uq(t) interpreted as the population of quiescent

cells, the system of Equations (6) and (7) provides a rationale for the characteristic

Gompertz form of tumour growth. Consequently, the principal mechanism driving the

Gompertz growth form is the transition of proliferating cells to non-proliferating cells as

the total cell count increases.

We have developed a stochastic model of tumour growth by following the basic

mechanism given in Refs. [24,25]. We have shown that the deterministic model and the

defining system of equations given in Refs. [24,25] are equivalent to the mean numbers of

a corresponding stochastic model. Working with the stochastic model, however, provides

several advantages: (a) the stochastic model allows derivation of the variances and

covariances of the state variables, which may be used to assess risk factors effecting

variation in the state variables and in prediction; (b) the stochastic model provides a formal

means to assess effects of many stochastic input variables on the model and the system; (c)

the stochastic model provides a formal means to give efficient estimates of unknown

parameters and to validate the model through predicted numbers.

By using a stochastic equation approach and by discretizing the time scale, we have

derived for the first time the probability distributions for the numbers of various types of

tumour cells in Gompertz tumour growth. Such a derivation using the classical approach is

extremely difficult and has not been attempted previously. By incorporating these

probability distributions into state space models, we are then able to derive efficient

procedures to estimate unknown parameters to predict state variables and to validate the

model.

Our state space model combines a stochastic system model with a statistical model of

data as data from the system become available. Because the available data for tumour

growth are typically the total tumour cell count number over time, the observation model

of our state model is based on this type of data set. Based on this state space model, we

have further developed a generalized Bayesian approach to estimate the unknown

parameters and to predict the state variables. This approach combines the joint density of

observed data, state variables, and expanded state variables of the stochastic system with

the prior distribution of the parameters. Because the approach we proposed draws

information from three sources (the statistical model and data, the stochastic system
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model, and the prior distribution of parameters), it can overcome many difficulties which

would normally be encountered in estimating a large number of unknown parameters. For

example, in many practical situations, if one uses the statistical model of data alone or

stochastic model of state variables alone or deterministic model with least squares method

to estimate unknown parameters, one usually encounters many problems of identifiability

of parameters; that is, because of the limited amount of information, one can at most

estimate functions of these parameters and cannot estimate all parameters. This has been

illustrated in detail by [53], [54] for many AIDS and cancer problems. Notice that in the

example in Section 5, there are 19 unknown parameters and the observed data points

(.20) are barely sufficient. Hence, using a statistical model alone would be very difficult

and inefficient, as the information from the data is very limited. In our approach, the

stochastic system model provides additional information besides the information from the

statistical model and data, and the prior distribution of the parameters.

To illustrate the application of our model and methods, we used the data in Ref. [47] as

an illustrative example. We obtained an excellent fit to this experimental data, due

presumably to efficient estimation of the unknown parameters by the generalized Bayesian

approach. The estimated parameters indicated that the population size of the proliferating

cells (cancer stem cells) is stable and does not change significantly over time. To further

illustrate the usefulness and effectiveness of our model and methods, we have generated

some simulation data by computer. For the simulated data, the model and methods in this

paper gave estimates which are very close to the true assumed values; also the predicted

total number of cells are very close to the generated numbers. From these analyses, we

believe that our model and methods will provide a useful approach to prediction of

experimental and clinical tumour growth. For further applications more research is

needed, and some key questions are: (1) Given available prior data or previous

experiments, how can the prior distribution of the unknown parameters be constructed

from these previous data sets? (2) How can one apply the model and methods to assess

effects of cancer chemotherapy? (3) How can one apply the model and methods to develop

efficient procedures for controlling tumour growth?
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Appendix: Equivalence of the traditional Markov theory approach and the stochastic

differential equation approach

To prove the equivalence of the Markov theory approach and the stochastic differential equation
approach, it suffices to show that the probability generating function of the probabilities of

~
XðtÞ can

be derived by the stochastic differential equations in (4) and (5). Notice that applying the stochastic
equations in (4) and (5) we obtain:

fðx; y; t þ DtÞ ¼ E½xPðtþDtÞyQðtþDtÞ�

¼ E{xPðtÞþBpðtÞ2FpðtÞ2DpðtÞþFqðtÞy
QðtÞþFp ðtÞ2Dq ðtÞ2Fq ðtÞ

}

¼ E{ðxPðtÞyQðtÞxBpðtÞðx21ÞDpðtÞðyx21ÞFpðtÞðy21ÞDqðtÞðxy21ÞFqðtÞ}

¼ E{ðxPðtÞyQðtÞÞf 1ðx; y; t;DtÞf 2ðx; y; t;DtÞ};

where

f 1ðx; y; t;DtÞ ¼ E{xBpðtÞðx21ÞDpðtÞðyx21ÞFpðtÞjPðtÞ}

¼ {1 þ ½ðx2 1ÞbpðtÞ þ ðx21 2 1ÞdpðtÞ þ ðyx21 2 1Þr0ðtÞ�Dt}
PðtÞ

¼ 1 þ PðtÞh1ðx; y; tÞDt þ oðDtÞ; ð21Þ

where h1(x, y; t) ¼ [(x 2 1)bp(t) þ (x 21 2 1)dp(t) þ (yx 21 2 1)r0(t)], and o(Dt) is defined by
limDt!0o(Dt)/Dt ¼ 0;

f 2ðx; y; t;DtÞ ¼ E{ðy21ÞDqðtÞðxy21ÞFqðtÞjQðtÞ}

¼ {1 þ ½ðy21 2 1ÞdqðtÞ þ ðxy21 2 1Þr1ðtÞ�Dt}
QðtÞ

¼ 1 þ QðtÞh2ðx; y; tÞDt þ oðDtÞ;

where h2(x, y; t) ¼ (y 21 2 1)dq(t) þ (xy 21 2 1)r1(t).
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It follows that

fðx; y; t þ DtÞ ¼ E{ðxPðtÞyQðtÞÞ½1 þ PðtÞh1ðx; y; tÞDt þ oðDtÞ�

£ ½1 þ QðtÞh2ðx; y; tÞDt þ oðDtÞ�} ¼ E{ðxPðtÞyQðtÞÞ

� ½1 þ PðtÞh1ðx; y; tÞDt þ QðtÞh2ðx; y; tÞDt þ oðDtÞ�} ¼ fðx; y; tÞ

þ xh1ðx; y; tÞ
›

›y
fðx; y; tÞ

� 	
Dt þ yh2ðx; y; tÞ

›

›y
fðx; y; tÞ

� 	
Dt þ oðDtÞ:

In the above equation, notice that xh1(x, y; t) ¼ x(x 2 1)bp(t) þ (1 2 x)dp(t) þ (y 2 x)r0(t) and
yh2(x, y; t) ¼ (1 2 y)dq(t) þ (x 2 y)r1(t). On both sides of the above equation, subtracting f(x, y; t),
dividing by Dt and letting Dt ! 0, we obtain the partial differential equation for f(x, y; t):

›

›t
fðx; y; tÞ ¼ {½xðx2 1ÞbpðtÞ2 ðx2 1ÞdpðtÞ� þ ðy2 xÞr0ðtÞ}

›

›x
fðx; y; tÞ

þ {ð1 2 yÞdqðtÞ þ ðx2 yÞr1ðtÞ}
›

›y
fðx; y; tÞ;

ð22Þ

with initial condition fðx; y; 0Þ ¼ xP0yQ0 .

W.-Y. Tan et al.138


