
Multiscale estimation of cell kinetics

Larry W. Jeanab, Martin T. Suchorolskicd, Jihyoun Jeone and E. Georg Luebecka*

aProgram in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109,
USA; bDepartment of Applied Mathematics, University of Washington, Seattle, WA 98195-2420,
USA; cProgram in Human Biology, Fred Hutchinson Cancer Research Center, M2-B500, Seattle,
WA 98109, USA; dDepartment of Molecular and Cell Biology, University of Washington, Seattle,
WA 98195-7275, USA; eProgram in Biostatistics and Biomathematics, Fred Hutchinson Cancer

Research Center, Seattle, WA 98109, USA

(Received 27 April 2009; final version received 4 December 2009)

We introduce a methodology based on the Luria–Delbrück fluctuation model for
estimating the cell kinetics of clonally expanding populations. In particular, this
approach allows estimation of the net cell proliferation rate, the extinction coefficient
and the initial (viable) population size. We present a systematic approach based on
spatial partitioning, which captures the local fluctuations of the number and sizes
of individual clones. However, partitioning introduces measurement error by inflating
the number of clones, which is dependent on time and the degree of cell migration.
We perform various in silico experiments to explore the properties of the estimators
and we show that there exists a direct relationship between precision and observation
time. We also explore the trade-off between the measurement error and the estimation
accuracy. By exploring different scales of cellular fluctuations, from the entire
population down to those of individual clones, we show that this methodology is useful
for inferring important parameters in neoplastic progression.
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1. Introduction

Mutations, clonal expansions and (epi)genetic heterogeneity are the hallmarks of many

types of neoplasms [19]. Although Nowell’s description of cancer as an evolutionary system

[21] is widely accepted, key parameters of this description for measuring cell fitness remain

generally undetermined. For example, what is the difference between cell replication and

death rates (net cell proliferation rate)? What is the ratio between cell death and replication

rates (extinction coefficient)? What is the actual number of (viable) cells that contribute to

future neoplastic generations (initial population size)? Knowing these parameters will help

measure, manage and further our understanding of neoplastic progression.

A number of experimental techniques have been devised to quantify the frequency

of cell proliferation and cell death (apoptosis or necrosis), but have limitations [5,18].

In particular, most labelling methods provide only relative measures (or proportions)

of dividing or dying cells, but do not provide absolute rates, i.e. the number of events

(cell divisions or cell deaths) per unit time. Moreover, many labels used, such as the
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mitotic index [9,11], tritiated thymidine labelling index [27,29] and 5-bromodeoxyuridine

(BrdU) [12] have cytotoxic effects [4,24,28] and may lead to biased estimates.

Furthermore, perhaps with the exception of continuous labelling methods, these assays

only provide snapshots of cellular kinetics at the time the assay is performed.

The mathematical approach described here for quantifying cell kinetics has roots in the

classical Luria–Delbrück fluctuation analysis [17], which was initially developed to study

the natural selection of mutations. In an attempt to determine whether mutations arise

spontaneously or from adaptation [30], Luria and Delbrück studied the origin of

phage-resistant mutants when cultures of Escherichia coli bacteria are seeded in the

presence of bacteriophage T1. Surprisingly, the number of observed T1-resistant mutants

varied greatly from culture to culture, which led to the conclusion that mutation to phage

resistance is the result of rare spontaneous events. Several extensions of the original

Luria–Delbrück model were developed over the years [30], including the Lea–Coulson

[13], discretized [3,13], Bartlett [3], Haldane [26,31] extensions and the generalized

Luria–Delbrück formulation by Dewanji et al. [8].

While the use of Luria–Delbrück-type fluctuation models has been limited to the

estimation of mutation rates, the technique remains essentially untested for the estimation

of cell kinetics parameters such as the net cell proliferation rate, extinction coefficient and

the initial (viable) population size in cell culture experiments. A mathematical framework

for the quantitative analysis of the number of clones and their sizes has been developed

previously by Dewanji et al. [7] and was subsequently used for the analysis of

enzyme-altered liver foci generated in animal experiments for the estimation of both

mutation rates and cell kinetics [14–16]. However, information on the number and sizes of

clones are not always available in cell culture experiments.

The limitations of assays with no or imprecise information on the number and sizes of

individual clones signal a need for a generally applicable method which attempts to

capture the net cell proliferation rate, extinction coefficient and the initial population size.

In this study, we introduce such a methodology based on the generalized Luria–Delbrück

model developed by Dewanji et al. The strength of our approach is the capability of

estimating cell kinetics in the absence of information on the number and sizes of individual

clones.

We begin with an overview of the generalized Luria–Delbrück model followed by an

introduction to the methodology, which discusses spatial partitioning of observation areas

and the effects of measurement error on parameter estimation. We carry out a series of

in silico experiments to explore the properties of the estimators, and show that they remain

stable to a point where the measurement error introduced by the spatial partitions begins to

dominate the characteristic size fluctuations of the clones. For each model parameter, this

leads to a range of spatial partitions in which the bias in absolute value is minimized.

We also examine the relationship between the estimation accuracy, precision and the

measurement error due to partitioning of in silico cell cultures. This is done by observing

changes in the estimator properties both in time and under variable spatial dispersion of the

cells in a clone. Finally, the methodology is demonstrated on data obtained from a

Barrett’s Esophagus EPC-2 neoplastic cell line culture.

2. The generalized Luria–Delbrück model

The different variants of the Luria–Delbrück model are characterized according to the

dynamics of the normal and mutant populations [30]. With the exception of the original

formulation, the Luria–Delbrück models involve a stochastic component to either
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describe the dynamics of the normal cells or mutants or both. Here, we adopt a framework

that allows for stochastic cell kinetics in the mutants but not in normal cells, i.e. the size of

the normal cell population is assumed to be large compared with the mutant population

and is modelled deterministically. Specifically, let XðtÞ and YðtÞ represent the population

size of normal cells and mutated cells (mutants) at time t (in days), respectively. It is

assumed that each normal cell acquires a mutation with rate nðsÞ independent of other

cells, and that once a cell has acquired a mutation at time s, it undergoes a clonal expansion

in the form of a birth–death process with birth rate aðt; sÞ (per mutant cell per day) and

death rate bðt; sÞ (per mutant cell per day) to form a clone of size Yðt; sÞ at time t (Figure 1).

The total number of mutants at time t is given by the filtered Poisson process [22]

YðtÞ ¼
0 MðtÞ ¼ 0;PMðtÞ

i¼1 Yðt; siÞ MðtÞ $ 1;

(
ð1Þ

where MðtÞ denotes the number of Poisson mutation events in the normal cell population at

time t. According to Dewanji et al. [8], the distribution of YðtÞ takes the form

P0ðtÞ U Prob{YðtÞ ¼ 0} ¼ exp 2

ðt
0

nðsÞXðsÞ

Gðt; sÞ þ gðt; sÞ
ds

� �
; ð2Þ

PkðtÞ U Prob{YðtÞ ¼ k} ¼
Xk21

i¼0

k2 i

k

� �
PiðtÞhk2iðtÞ; k ¼ 1; 2; 3; . . . ; ð3Þ

Figure 1. The generalized Luria–Delbrück model. XðtÞ is the number of normal cells at time t (in
days), nðtÞ the rate of Poisson mutation events per normal cell, Yðt; sÞ the size of a single mutant clone
at time t whose progenitor cell is initiated at time s, aðt; sÞ and bðt; sÞ the birth and death rates per
mutant cell of such a clone per day, YðtÞ the sum of the sizes of all such clones and its distribution is a
Luria–Delbrück distribution.
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where

hiðtÞ U

ðt
0

nðsÞXðsÞ
gðt; sÞ

Gðt; sÞ2
Gðt; sÞ

Gðt; sÞ þ gðt; sÞ

� �iþ1

ds; i ¼ 1; 2; 3; . . . ð4Þ

gðt; sÞ U exp 2

ðt
s

½aðu; sÞ2 bðu; sÞ� du

� �
; ð5Þ

Gðt; sÞ U

ðt
s

aðu; sÞgðu; sÞ du: ð6Þ

3. Methodology

3.1 Parameter estimation

Here, we describe a general in vitro experiment to determine the rates of both the cell

replication and cell death: x fluorescently labelled cells are seeded in each of y wells (petri

dishes), cells in a specific medium are grown for t days, locations of labelled cells in a

rectangular field are recorded and their spatial locations are digitized. In the case that

individual clones can be distinguished, the final step is to obtain the total number of clones

and their respective sizes; otherwise, count the total number of cells after t days. Some cells

will not survive the initial seeding in such experiments due to damage during culturing or

failure to adhere to medium. This set of procedures may be complemented with

experimental methods of estimating net cell proliferation rate for validation of the estimates.

To keep the presentation simple, we assume constant birth and death rates, i.e. aðt; sÞ ¼
a and bðt; sÞ ¼ b. When a normal cell is initiated (or ‘mutated’ in the Luria–Delbrück

language), it is signalled to undergo clonal expansion. For the cell culture experiment

described above, initiation can be considered as the initial seeding of cells that may

undergo clonal expansion. This is expressed mathematically by defining nðtÞXðtÞ ¼ hdðtÞ,

where h is the initial population size (initial number of viable cells) and dðtÞ the Dirac delta

function. This initial ‘pulse’ seeding of cells has been previously applied to the modelling

of gestational mutations in the context of a multistage theory of carcinogenesis [20].

Within this framework, the cell kinetics parameters, we are interested in estimating, are

defined as r U a2 b (net cell proliferation rate), g U b=a (extinction coefficient) and h

(initial population size). Under the constant parameter assumption, the probability

generating function for the total population, YðtÞ, can be shown to be (see Appendix)

Cðz; tÞ U E½zYðtÞ� ¼
X1
i¼0

Prob{YðtÞ ¼ i}z i ¼ exp
ðg2 1Þhðz2 1Þ

ðg2 zÞ e2rt þ ðz2 1Þ

� �
: ð7Þ

Due to the computational inefficiency of the recursive form of the distribution

PkðtÞ; k ¼ 1; 2; . . . (Equation (3)), we resort to the inverse Laplace transform

approximation of the distribution introduced by Abate et al. [1]. This method incorporates

the Poisson summation formula [32], which uses a periodic function represented by its

Fourier series to approximate the distribution. The formula is also useful for controlling

the discretization error that comes from the numerical approximation. It can be shown that

the exact forms of the distribution PkðtÞ for k ¼ 0 and k ¼ 1 are given by (see Appendix)

P0ðtÞ ¼ e2LðtÞ ð8Þ
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and

P1ðtÞ ¼ e2LðtÞ·
hð1 2 gÞ2 e2rt

ð1 2 g e2rtÞ2
; ð9Þ

respectively, where

LðtÞ ¼
ð1 2 gÞh

1 2 g e2rt
ð10Þ

is the expected number of non-extinct clones at time t. According to Abate et al. [1],

Equation (3) for k ¼ 2; 3; . . . can be approximated by

PkðtÞ <
1

2kr k
Cðr; tÞ þ ð21ÞkCð2r; tÞ þ 2

Xk21

j¼1

ð21Þj Re ½Cðreipj=k; tÞ�

( )
; ð11Þ

where an error bound of 102h may be achieved by choosing r such that r < 102h=2k.

Furthermore, in the case where the total number of clones and their sizes are available, we

use their respective distributions for the likelihood estimation of the model parameters r, g

and h. They are, respectively, given by

PðNÞ
m ðtÞ U Prob{MðtÞ ¼ m} ¼

e2LðtÞLðtÞm

m!
; m ¼ 0; 1; 2; . . . ð12Þ

and

PðSÞ
w ðt;sÞU Prob{Yðt;sÞ ¼w}¼

ð12gÞe2rðt2sÞ

12ge2rðt2sÞ

12 e2rðt2sÞ

12ge2rðt2sÞ

� �w21

; w¼ 1;2; . . . : ð13Þ

The superscripts N and S represent the number and sizes of individual clones,

respectively. The derivation can be found in the Appendix. We point out that PðSÞ
w ðt; sÞ is

the size distribution for non-extinct clones.

In the absence of information on the number ðMðtÞÞ and sizes ðYðt; sÞÞ of individual

clones, we would like to explore the size fluctuations on ever shorter length scales down to

those of individual clones. Furthermore, the need for precision in the parameter estimation

requires a sufficient number of observations. To accomplish this, we exploit the

information hidden in local fluctuations of clone sizes and introduce the idea of

spatial partitioning. Figure 2 shows a sample field spatially partitioned into N different

ways, each time creating n £ n subfields of identical dimension for n ¼ 1; 2; . . . ;N.

In the case where the number and sizes of individual clones are not available, an

observation is referred to as the total number of cells within a particular subfield. Hence, a

field with n £ n subfields will have n £ n independent observations. In order to accurately

obtain the cell count within any given subfield, it is necessary to identify all the cells

within that subfield, which requires knowledge of their spatial coordinates. To accomplish

this task, we digitize the cells and their locations using the ImageJq software [2,23].

Figure 3 shows four identical in silico fields with spatial partitions of n £ n ¼ 4 £ 4,

10 £ 10, 20 £ 20 and 30 £ 30, respectively. In this computer-simulated experiment, the

first progenitor cell of each clone is randomly seeded according to a spatial Poisson

process, then the distance between any daughter cell and the progenitor cell from which it

came is normally distributed with a variance proportional to clone size. Thus, clones with
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a larger number of cells occupy a greater region. This is demonstrated in Figure 3, where

blue, red and green represent the three largest clones in decreasing cell counts. Although

increasing the number of spatial partitions by fine graining increases the number of

observations, each subfield only contains a fraction of cell counts relative to the entire

population. In addition, there is an increasing tendency for a clone to spread across

multiple subfields for the finer partitions. We refer to these clones as partitioned clones.

Thus, the question arises: how does excessive partitioning beyond the scale of local

fluctuations of clone sizes affect parameter estimation? We address this question in more

detail by simulations.
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Figure 3. Single field of an in silico cell culture with spatial partitions (a) 4 £ 4, (b) 10 £ 10,
(c) 20 £ 20 and (d) 30 £ 30. Each cell in an initial population size of h ¼ 1000 undergoes a
birth–death process with parameters a ¼ 0:75 and b ¼ 0:5, respectively (hence r ¼ 0:25 and
g ¼ 0:67) and the field is obtained after t ¼ 1 day. The blue, red and green regions represent the
three largest clones in decreasing sizes. Increasing the number of spatial partitions increases the
occurrence of partitioned clones.

Figure 2. Schematic representation of a single field spatially partitioned into N different ways
where for each n ¼ 1; 2; 3; . . . ;N, n £ n subfields with an identical dimension are created, each
containing a fractional information of the entire field.
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3.2 Trade-offs associated with partitioning a single field

In the absence of experimental replicates and without spatial partitioning (i.e. using a

single 1 £ 1 partition), no estimation is possible since a single data point is insufficient for

estimating three parameters. Spatial partitioning, on the other hand, introduces subfields

(or multiple observations) and allows the estimation of all three model parameters in a

single experiment. However, the process of spatial partitioning increases the frequency of

partitioned clones (see Figure 4), thereby artificially inflating the number of clones and

skewing their sizes towards smaller clones. We refer to this phenomenon simply as

measurement error.

The trade-off associated with spatial partitioning suggests that for each parameter,

there exists a range of partitions with acceptable estimation accuracy and precision.

We refer to this set of partitions for each parameter as the optimal partition range. We will

demonstrate the existence of such ranges via simulations and show how they assist in

identifying the set of optimal estimates in an in vitro cell culture.

4. In silico experiments

Before applying the methodology to actual cell cultures, we explore the properties of the

maximum likelihood estimators for r (net cell proliferation rate), g (extinction coefficient)

and h (initial population size), denoted as r̂n, ĝn and ĥn, respectively, where n represents

the n £ n partition case. In particular, we examine how the estimators behave in the

following distinct in silico cell culture scenarios:

(i) resolvable clones with no measurement error,

(ii) non-resolvable clones with no measurement error,

(iii) non-resolvable clones with measurement error.

In this context, a cell culture with resolvable clones is one in which the number and

sizes of individual clones are known, while measurement error refers to the artificial

inflation of the number of clones due to partitioned clones (Figure 4). Hence, scenarios

(i) and (ii) are less relevant to the real world, but are nevertheless important for

understanding the properties of the estimators. For each scenario, we obtain population

dynamics by randomly seeding cells and simulating clonal expansions based on arbitrarily

chosen but fixed parameters. Doing so allows us to acquire the desired cell culture

information (number of clones, their respective sizes or total cell counts) necessary to

perform the maximum likelihood estimation. Finally, we study the effects of measurement

error on parameters estimation.

Figure 4. A closer look at partitioned clones and measurement error. A schematic field with
(a) five clones is partitioned into (b) 2 £ 2 and (c) 3 £ 3 subfields. Partitioned clones (in blue) are
created as clones spatially spread across multiple subfields, which artificially inflate the number of
clones. The Luria–Delbrück theory regards the original 5 clones as 8 and 11 distinct clones under the
2 £ 2 and 3 £ 3 partitions cases, respectively, leading to biases in the parameters estimation.
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4.1 Case (i): resolvable clones with no measurement error

In the first of three in silico cell cultures designed to explore the properties of the

estimators, we restrict all daughter cells to be situated at the same location as the first

progenitor cell from which they descended. Doing so uniquely assigns a clone to a single

subfield, hence no measurement error is introduced. In addition, it is assumed that the

number of clones and their sizes are known (resolvable) without measurement error,

hence we can use the distributions given by Equations (12) and (13) rather than the

Luria–Delbrück distribution for the estimation of the cell kinetics parameters from such

observations. Consider a field with n £ n subfields, let ~Ni and ~Si ¼ ½~S1i; ~S2i; . . . ; ~S ~Nii
� be the

observed number and sizes of clones, respectively, of the ith subfield for i ¼

1; 2; . . . ; n £ n at t ¼ ~T, then the likelihood is

Lðr;g;hj{ ~Ni; ~Si; i¼ 1;2; . . . ;n£n}; ~TÞ ¼
Yn£n
i¼1

PðNÞ

k¼ ~Ni
ðt¼ ~TÞ·

Y~Ni

j¼1

PðSÞ

k¼~Sji
ðt¼ ~T;s¼ 0Þ

( )
; ð14Þ

where PðNÞ
k ðtÞ and PðSÞ

k ðtÞ are given in Equations (12) and (13), respectively. For the case

that the number and sizes of individual clones are known, it is immediately clear that

different spatial partitions yield the same likelihood, and the estimators are independent of

partition sizes. Indeed, simulations for different observation times reveal that the variances

of the estimates decrease with increasing observation time (Figure 5). This observed effect

may simply reflect the gain in efficiency of the estimators due to an increase in the number

of stochastic events with time.

4.2 Case (ii): non-resolvable clones with no measurement error

A layer of complexity is added to the simulation so that for each cell, only the spatial

location is given, with no information on which clone it belongs to or how many clones are

observed. In this case, the Luria–Delbrück distribution plays a central role in the

parameters estimation and we show that it introduces a bias on the estimates. As in case (i),

measurement error as a result of partitioned clones is still assumed to be absent. For an

n £ n spatial partition, if ~Yi cells are observed at time t ¼ ~T in the ith subfield for

Figure 5. Analysis of resolvable clones with no measurement error. For each time point t ¼ 1–5
days, 1000 independent fields of a cell culture with parameters r ¼ 0:55 (net cell proliferation rate),
g ¼ 0:75 (extinction coefficient) and h ¼ 300 (initial population size) (dotted lines) are simulated
and analyzed. For each parameter, the mean of the 1000 estimates and its 95% CI are plotted. Since
different spatial partitions produce the identical likelihood function, only the results for the 10 £ 10
partition are shown.
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i ¼ 1; 2; . . . ; n £ n, the likelihood function can be approximated by

Lðr; g;hj{ ~Yi; i ¼ 1; 2; . . . ; n £ n}; ~TÞ <
Yn£ n

i¼1

Pk¼ ~Yi
ðt ¼ ~TÞ; ð15Þ

where PkðtÞ for k ¼ 0, k ¼ 1 and k $ 2 are given by Equations (8), (9) and (11),

respectively. Cðz; tÞ is given by Equation (7) and ri < 102h=2 ~Yi gives an accuracy of 102h

for the ith subfield, where i ¼ 1; 2; . . . ; n £ n. In comparison with case (i), we expect the

accuracy of the estimates to diminish for some partitions due to the lack of information on

the number and sizes of individual clones. However, accuracy should increase as the

partition is fine-grained since ultimately every subfield contains at most a single clone,

thus representing case (i).

Figure 6 shows the accuracy of the estimates as a function of spatial partition sizes.

While the estimates for r and h show high accuracy independent of partition sizes, the

estimates for the extinction coefficient g exhibit a downward bias for partitions n # 5.

An inspection of the distribution of the g estimates reveals a bias in the mean for smaller

sample sizes due to a lack of normality of the estimators for coarse-grained partitions

(fewer subfields). For n . 5, the convergence can be attributed to the increasing number of

informative subfields associated with the higher partitions, each capturing local

fluctuations both in the number of clones and their sizes. Note, under this scenario,

{r̂njn ¼ 2; 3; . . . }, {ĝnjn ¼ 2; 3; . . . } and {ĥnjn ¼ 2; 3; . . . } resemble statistically

consistent sequences of estimators, as n!1.

In addition, the confidence intervals for r and g decrease with spatial partitions

but increase for the initial population size h. This can be explained as follows: consider a

field with n £ n subfields, let ĵn be the estimated initial number of viable cells for each

subfield, hence ĥn ¼ n2ĵn is the estimated initial number of viable cells for the entire field.

Then the variance (hence the confidence interval), var ½ĥn� ¼ n4 var ½ĵn�, is amplified by a

factor of n4 for increasing partition size n even though var ½ĵn� decreases with increasing

spatial partitions (not shown). Despite the lack of information on the number and sizes of

individual clones, the information stored in the local fluctuations can be ‘recaptured’ with

fine-grained partitions in the absence of measurement error, since in the limit the

observation of the number of clones is either one or zero in each subfield.

4.3 Case (iii): non-resolvable clones with measurement error

Experimental evidence suggests that cells migrate inside the wells upon seeding.

To represent the spatial dispersion of cells in our simulations which, upon partitioning of

an observation field, leads to measurement error, we assume that all daughter cells disperse

randomly within a radial distance v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aclone=p

p
away from the first progenitor cell.

Aclone ¼ Scloneps
2 is the spatial area occupied by a clone having Sclone cells. Here, 2s is the

average pairwise distance between the centre of masses of any two cells, and we refer to s

as the dispersion factor. The spatial location of any daughter cell is relative to that of the

progenitor. In particular, the displacement ðx; yÞ of a daughter cell from the progenitor is

sampled from N ð0;v2Þ £N ð0;v2Þ.

To better understand the effects of measurement error caused by partitioning on

parameter estimation, we simulated a cell culture 1000 times for four different values of

the cellular dispersion factor s. Figure 7 shows this in silico 3-day culture partitioned into

10 £ 10 subfields for the cellular dispersion factors s ¼ 5, 10, 15 and 20. We see that the
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frequency of occurrence of partitioned clones increases as the dispersion factor, hence the

measurement error increases.

We expect the mean of the estimates in this in silico cell culture to deviate further from

the true parameters as s increases due to the increasing measurement error on the number

of clones and their sizes. This is demonstrated in Figure 8, which shows that for smaller s,

the estimates come closer to the true values in general. As in case (ii), we see a reduction in

estimation accuracy for coarser spatial partitions. However, we now find that the biases for

all three estimators increase for spatial partitions n ¼ 7. The biases occur because fine

graining increases the tendency for partitions to intersect the clones, thereby artificially

Figure 6. Non-resolvable clones with no measurement error. For each observation time of t ¼ 1–5
days (rows), 1000 individual fields from a single cell culture with parameters r ¼ 0:55 (net cell
proliferation rate), g ¼ 0:75 (extinction coefficient) and h ¼ 300 (initial population size)
(solid black lines) are simulated, each time obtaining an estimate. For each parameter, the mean
of the 1000 estimates and its 95% CI are plotted versus the spatial partitions for n £ n ¼ 2 £ 2;
3 £ 3; . . . ; 20 £ 20.
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Figure 7. An in silico cell culture with parameters r ¼ 0:55, g ¼ 0:75 and h ¼ 300 observed after
time t ¼ 3 days post-initial seeding. The effect of measurement error is quantified by the cellular
dispersion factor s. The four plots are for (a) s ¼ 5, (b) s ¼ 10, (c) s ¼ 15 and (d) s ¼ 20, and the
blue, red and green regions in each case represent the three largest clones in decreasing sizes.

Figure 8. Effects of measurement error. For each dispersion factor of s ¼ 5, 10, 15 and 20 (rows),
1000 independent in silico experiments of a cell culture with parameters r ¼ 0:55 (net cell
proliferation rate), g ¼ 0:75 (extinction coefficient) and h ¼ 300 (initial population size)
(solid black lines) are simulated, obtaining an estimate after t ¼ 3 days. For each parameter, the
mean of the 1000 estimates and its 95% CI are plotted versus the spatial partitions for n £ n ¼ 2 £ 2;
3 £ 3; . . . ; 20 £ 20.
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inflating their number. Hence more clones are being analyzed via the Luria–Delbrück

assumption than what are actually observed (measurement error).

For the extinction coefficient (g), the measurement error increases the bias of the

estimators as the dispersion factor (s) increases. A similar behaviour is observed (not

shown) as the time of observation is increased for fixed s. Furthermore, the confidence

interval does not seem to be affected by the change in dispersion factors, suggesting that

the variance of the estimators is independent of the measurement error. The bias due to

measurement error seems to have a greater effect on g and h than it does on r, indicating

that the estimators for the net cell proliferation rate may be more robust under

measurement error than those of the other two parameters.

For in silico cell cultures of this type, the optimal estimates for each parameter exist

and may come from different partitions. We demonstrate next how these optimal estimates

may be identified in an in vitro cell culture using data from a cell culture experiment.

5. Experimental results

We demonstrate the methodology using data collected from the Barrett’s Esophagus EPC-

2 cell line. A field with 5772 cells was observed 21.167 h following an initial seeding of

<12,000 cells. The field was spatially partitioned into sizes ranging from 2 £ 2, 3 £ 3, . . . ,

20 £ 20, where the coordinates of the cell positions were obtained via the ImageJq

software [2,23]. For each n £ n partition, we obtained n2 total subfields (observations),

which were used in the likelihood analysis to produce one estimate. We used the

Luria–Delbrück form of the likelihood (Equation (15)) for analysis, since the number of

clones and their sizes in the field were unknown.

As Figure 9 shows, the estimates for r and h display a similar behaviour as the mean of

the estimates for the in silico cell culture scenario (iii) in Section 4.3 and appear stationary

over a narrow range of partitions. In contrast, the estimates for g do not exhibit a clear

plateau or shoulder as seen in Figure 8, but with increasing cellular dispersion factor (s),

the estimates for g are increasingly biased downward as the partition size increases,

overwhelming the small sample bias on the left. Thus, we conclude that the true value of g

is larger than the observed maximum value of 0.96. On the other hand, the estimates using

partitions less than 5 appear to suffer from small sample biases and tend to be unreliable.

The lack of a stationarity in the estimates for g further indicates that the observation time

was not long enough and that cell death immediately after seeding (,24 h) is more

extensive before reaching a constant rate in the surviving cell population. It is also possible

that due to dense seeding of the progenitor cells, the resulting clones can no longer

Figure 9. A single cell culture field from Barrett’s Esophagus EPC-2 cell line data. The cell culture
images were reproduced in silico after cellular coordinates were obtained via ImageJq, and
partitioned from 2 £ 2, 3 £ 3, up to 20 £ 20. The number and sizes of individual clones were
unknown, hence our methodology was used to estimate the cell kinetics parameters r, g and h. For
each parameter, one estimate was obtained for each partition.
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be considered as growing independently, which violates a basic assumption of our model.

However, the qualitative agreement between experimental and in silico results suggests

that our method is applicable, especially for cell counts from single wells at a single time

point. Multiple experiments and multiple time points will likely improve the estimates.

6. Summary

We introduced a multiscale image processing technique in conjunction with a

Luria–Delbrück distribution for estimating cell kinetics parameters in the absence of

information on the number and sizes of individual clones. We find that it is possible to

estimate cell kinetics parameters via optimal spatial partitioning of the field of

observation. More specifically, the estimated net cell proliferation rate, extinction

coefficient and initial population size are given by optimal spatial partitions, which may

differ from parameter to parameter. We show that for in silico cell cultures, there exists a

trade-off between estimation accuracy versus bias introduced by measurement errors due

to the inability to assign clones uniquely to a particular subfield of a partition. For later

observation times and for increasing measurement error due to cellular migration, the bias

increases due to a higher occurrence of partitioned clones, thereby decreasing the accuracy

of the estimates, i.e. increasing the bias of the estimators.

Several aspects of the methodology presented can be improved. Properties of the

estimators should also be explored when observations from multiple time points are

available. This may lead to more accurate estimates since each time point provides a

snapshot of a growing random population undergoing size fluctuations that are determined

by the cell kinetics. Furthermore, spatial clustering algorithms might be helpful in improving

the estimates and in identifying spatial inhomogeneities in the initial distribution of seeded

cells that violate the underlying homogeneous Poisson assumption. It would also be useful to

validate estimates by independent measurements of cell kinetics using experimental

techniques, such as BrdU for the measurement of the cell replication rates. The methodology

described here for analysis of in vitro data may also be applied to cross-sectional images of a

neoplastic population in vivo, although stereological methods [6,10,25] may need to be

invoked to transform the cross-sectional data into three dimensions.

The net cell proliferation rate, extinction coefficient and initial (viable) population size

are key parameters in understanding the evolutionary biology in neoplastic progression.

We have shown that by exploring different scales of cellular fluctuations from the entire

population down to those of individual clones, this approach can be useful for estimating

these parameters in a clonally expanding population. Ultimately, measuring proliferation

and death rates in directly competing cell lines simultaneously could further our

understanding of their relative fitness and could potentially provide quantitative

information that better characterizes the clonal evolution of neoplastic populations.
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Appendix

A.1 Derivation of Equation (7)

The probability generating function for a single clone with cell count Yðt; sÞ initiated at time s is
given by Luebeck et al. [14] to be

fðz; t; sÞ ¼ E½zYðt;sÞ� ¼ 1 2
z2 1

ðz2 1ÞGðt; sÞ2 gðt; sÞ
; ð16Þ

where under constant birth and death rates, i.e. aðt; sÞ ¼ a and bðt; sÞ ¼ b,

gðt; sÞ ¼ exp 2

ðt
s

ðaðu; sÞ2 bðu; sÞÞ du

� �
¼ e2ða2bÞðt2sÞ; ð17Þ

Gðt; sÞ ¼

ðt
s

aðu; sÞgðu; sÞ du ¼

ðt
s

a e2ða2bÞðu2sÞ du ¼
a

a2 b
½1 2 e2ða2bÞðt2sÞ�: ð18Þ

By assuming r ¼ a2 b, g ¼ b =a and nðtÞXðtÞ ¼ hdðtÞ, the probability generating function
(PGF) for YðtÞ can be shown to be

Cðz; tÞ ¼ E½zYðtÞ� ¼ exp

ðt
0

nðsÞXðsÞ½fðz; t; sÞ2 1� ds

� �

¼ exp

ðt
0

hdðsÞ½fðz; t; sÞ2 1� ds

� �
¼ exp {h½fðz; t; 0Þ2 1�}

¼ exp 2h
z2 1

ðz2 1Þð1=ð1 2 gÞÞ ð1 2 e2rtÞ2 e2rt

� �

¼ exp
ðg2 1Þhðz2 1Þ

ðg2 zÞ e2rt þ ðz2 1Þ

� �
: ð19Þ

A.2 Derivation of Equations (8)–(10)

According to Luebeck et al. [14], MðtÞ is a Poisson process with rate

LðtÞ ¼

ðt
0

nðsÞXðsÞ

Gðt; sÞ þ gðt; sÞ
ds ¼

h

ð1=ð1 2 gÞÞ ð1 2 e2rtÞ þ e2rt
¼

ð1 2 gÞh

1 2 g e2rt
: ð20Þ

Equation (8) is therefore derived as

P0ðtÞ ¼ exp

ðt
0

nðsÞXðsÞ½fð0; t; sÞ2 1� ds

� �
¼ exp 2

ðt
0

nðsÞXðsÞ

Gðt; sÞ þ gðt; sÞ
ds

� �
¼ e2LðtÞ ð21Þ
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and Equation (9) follows immediately from the PGF Cðz; tÞ,

P1ðtÞ ¼
›Cðz; tÞ

›z

����
z¼0

¼ Cð0; tÞ�
hð1 2 gÞ{ðz2 1Þð1 2 e2rtÞ2 ½ðg2 zÞ e2rt þ ðz2 1Þ�}

½ðg2 zÞ e2rt þ ðz2 1Þ�2

����
z¼0

¼ e2LðtÞ·
hð1 2 gÞ2 e2rt

ð1 2 g e2rtÞ2
: ð22Þ

A.3 Derivation of Equation (13)

According to Luebeck et al. [14],

PðSÞ
k ðt; sÞ ¼ Prob{Yðt; sÞ ¼ k} ¼

1

k!

d k

dzk
E½zYðt;sÞ�

����
z¼0

¼
gðt; sÞ

Gðt; sÞ

Gðt; sÞ

Gðt; sÞ þ gðt; sÞ

� �k

¼
e2rðt2sÞ

ð1=ð1 2 gÞÞ ½1 2 e2rðt2sÞ�

ð1=ð1 2 gÞÞ ½1 2 e2rðt2sÞ�

ð1=ð1 2 gÞÞ½1 2 e2rðt2sÞ� þ e2rðt2sÞ

� �k

¼
e2rðt2sÞ

ð1=ð1 2 gÞÞ ½1 2 e2rðt2sÞ� þ e2rðt2sÞ

1 2 e2rðt2sÞ

1 2 e2rðt2sÞ þ ð1 2 gÞ e2rðt2sÞ

� �k21

¼
ð1 2 gÞ e2rðt2sÞ

1 2 g e2rðt2sÞ

1 2 e2rðt2sÞ

1 2 g e2rðt2sÞ

� �k21

: ð23Þ
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