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As a category A agent in the Center for Disease Control bioterrorism list, Rift Valley fever (RVF) is considered a major threat
to the United States (USA). Should the pathogen be intentionally or unintentionally introduced to the continental USA, there
is tremendous potential for economic damages due to loss of livestock, trade restrictions, and subsequent food supply chain
disruptions. We have incorporated the effects of space into a mathematical model of RVF in order to study the dynamics of the
pathogen spread as affected by the movement of humans, livestock, and mosquitoes. The model accounts for the horizontal
transmission of Rift Valley fever virus (RVFV) between two mosquito and one livestock species, and mother-to-offspring
transmission of virus in one of the mosquito species. Space effects are introduced by dividing geographic space into smaller
patches and considering the patch-to-patch movement of species. For each patch, a system of ordinary differential equations
models fractions of populations susceptible to, incubating, infectious with, or immune to RVFV. The main contribution of this
work is a methodology for analyzing the likelihood of pathogen establishment should an introduction occur into an area devoid
of RVF. Examples are provided for general and specific cases to illustrate the methodology.

1. Introduction

Rift Valley fever virus (RVFV; family: Bunyaviridae, genus
Phlebovirus) is transmitted by mosquitoes and infects do-
mestic livestock and humans in Africa and the Middle
East [1]. The pathogen was first described in peer-reviewed
research in [2] and was originally considered local to sub-
Saharan and southern Africa regions [3]. However, the
pathogen moved outside the sub-Saharan region with doc-
umented outbreaks in Egypt [4], Saudi Arabia, and Yemen
[5]. Loss of human life during RVF outbreaks has been low,
primarily affecting individuals in direct contact with animals.
This changed in the 1973 epidemic that occurred in South
Africa during which human deaths were documented [6].
Outbreaks in Egypt caused 958 human deaths in 1977 and
200 human deaths in 1987. The outbreaks in Kenya and
Somalia in 1997 caused 478 human deaths [7]. In Yemen,
estimates for human infections of the RVFV were estimated

at over 1000 during August and November of 2000, with 121
recorded deaths. Unlike spread among humans that remains
relatively low, RVFV spread among animals reaches epidemic
proportions. In 1951 epizootics occurring in regions of high
altitude in South Africa resulted in the death of an estimated
100,000 sheep [8]. The recent outbreak of RVF in South
Africa caused a total of 92 human cases with 6 deaths, and
over 50,000 animals are estimated to have been infected with
over 1,500 reported to have died from RVF as at 6 April, 2010
[9]. In animals, infection can produce high rates of abortion
and significant morbidity and mortality. Animal loss can lead
to food shortages and economic impacts in outbreak periods.

Introduction of the pathogen to the continental US
could have catastrophic results, in particular, because of the
economic sensitivity of the US agriculture to any RVFV
occurrence that would invariably lead to recalls, animal
culling, and trade restrictions. The potential impact of
RVF upon human and agricultural health highlights the



2 Computational and Mathematical Methods in Medicine

importance of containment to endemic regions. Thus, it is
important to develop analytic tools to understand the effect
of transport to the dynamics of spatial spread and persistence
of RVFV. In particular, quantitative methodologies for assess-
ing how an importation of the virus into immunologically
naive populations might propagate in both time and space
are limited. Métras et al. have reviewed the modeling tools
used to measure or model RVF risks in animals and discussed
their contributions to increase the understanding of RVF
occurrence or informed RVF surveillance and control strate-
gies [10]. In order to obtain quantitative insights into the
dynamics of RVFV, Mpeshe et al. formulated a deterministic
model with mosquito, livestock, and human host as a system
of nonlinear ordinary differential equations and provided
numerical simulations to support the analytical results [11].
Gaff and her collaborators also applied compartmentalized
multispecies deterministic model of RVF to study efficacy of
countermeasures to disease transmission parameters [12].

In this work we describe the foundations of a mathema-
tical approach to access spatial spread of an introduced
RVFV. Our approach is based on a previous model of RVF
transmission in a small local population, and multispecies
epidemic models incorporating spatial structure more gen-
erally. A single Aedes mosquito is used to represent initial
infection. We believe that a single infected Aedes mosquito
is a reasonable approximation of initial introduction for
studying the dynamics of RVFV spread. The RVF model of
[3] considered Aedes mosquitoes, livestock (e.g., cattle, sheep,
and goats), and Culex mosquitoes on a single patch, and
identified the need to include spatial variation. This can
be accomplished within the framework of [13] which
models the epidemiological dynamics of arbitrary numbers
of species occupying an arbitrary number of patches. Their
approach includes patch-specific contact rates, incubation
periods, and other biological factors. They also describe a
method for computing the stability of the disease-free
equilibrium in terms of the basic reproduction ratio. The
work described here builds upon these two related efforts
by constructing and analyzing a mathematical model of
RVFV that includes both pathogen propagation within and
spreading across different regions via the movement of
humans, livestock, and mosquitoes. The model is analyzed
to determine the stability and sensitivity of disease-free equi-
librium and examples are provided to demonstrate the use of
this approach in specific initial conditions.

2. Materials and Methods

The model described in [3] was constructed to describe
the transmission of RVFV between three prototypes: two
mosquito populations and one livestock population. The
model considered both individual-to-individual transmis-
sion of virus between species (so-called “horizontal trans-
mission”) and mother-to-offspring transmission of virus
(vertical transmission) in one mosquito species. Let us term
mosquitoes that can transmit RVFV both horizontally to
livestock and vertically to their progeny “floodwater Aedes”
mosquitoes and label this “species 1”. Livestock will be
labeled “species 2”, and let us call mosquitoes that can

transmit RVFV only horizontally to livestock “Culex” and
label this “species 3”.

Consider populations of these species distributed
throughout a large but finite two dimensional region. We
can divide this large region into a lattice of distinct patches.
Each patch may support subpopulations of each species. The
general model allows for travel among any pair of patches
in the simulated region. Travel between adjacent patches
captures species moving across patch boundaries. Travel
between disconnected patches captures situations in which
species are transported across several patch boundaries
without any likelihood of interaction with the environment
except at the source and destination patch. An example of
this movement is livestock that is transported from a farm
to a different farm or auction house. Such travel need not
be between adjacent patches; transportation may move
individuals between one patch and a geographically dis-
connected patch. Species living on a given patch may have
patch-specific epidemiologic and demographic chara-
cteristics.

We applied the methods of Arino et al. to the RVF
model described in [3]. The resulting model is a system
of ODEs describing the transmission of RVFV between the
three generic species traveling between patches on a P × P
rectangular lattice of patches. Figure 1 is a schematic of the
spatial and epidemiologic structure of our model.

Consider the pth patch in the lattice. On that patch
infectious Aedes mosquitoes (species 1) transmit RVFV to
susceptible livestock or they can become infected by taking a
blood meal from infectious livestock hosts. They can also be
infected vertically from infected mothers. Culex mosquitoes,
species 3, can only transfer RVFV horizontally to livestock.
Once infectious, mosquitoes remain so for the remainder of
their lifespan. We assume that infection does not significantly
affect mosquito behavior and longevity. Livestock (species 2)
can become infected once bitten by infectious mosquitoes
and they may die from RVFV infection or recover with
life long immunity to RVFV infection. For each patch, the
three populations have migrations from and to other patches,
where they interact with similar populations in similar ways.

For patch p, the population of Aedes mosquitoes consists
of uninfected (P1p) and infected (Q1p) eggs, and susceptible
(S1p), incubating (infected, but not yet infectious) (E1p), and
infectious (I1p) adult individuals. Culex mosquitoes consist
of uninfected (P3p) eggs and susceptible (S3p), incubating
(E3p) and infectious (I3p) adults. The size of each adult
mosquito population is Nip = Sip + Eip + Iip (i = 1, 3). The
livestock population consists of susceptible (S2p), incubating
(E2p), infectious (I2p), and immune (R2p) individuals. The
total livestock population size is N2p = S2p + E2p + I2p + R2p.
The livestock population is logistic in nature with a carrying
capacity K2p.

The resulting system of ODEs capturing the above epi-
demiological dynamics is shown below for Aedes mosquito
vectors (see (1)–(6)), the livestock hosts (see (7)–(11)), and
the Culex mosquito vectors (see (12)–(16)), respectively. The
biological meaning of all model parameters is summarized in
Table 1.
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Figure 1: Flow diagram of the Rift Valley fever model with spatial dynamics.

Consider the following:

dP1p

dt
= b1p

(
N1p − q1pI1p

)
− θ1pP1p, (1)

dQ1p

dt
= b1pq1pI1p − θ1pQ1p, (2)

dS1p

dt
= θ1pP1p − d1pS1p −

β21pS1pI2p

N2p

+
P∑

q=1

m1qpS1q −
P∑

q=1

m1pqS1p,

(3)

dE1p

dt
= β21pS1pI2p

N2p
−
(
d1p + ε1p

)
E1p

+
P∑

q=1

m1qpE1q −
P∑

q=1

m1pqE1p,

(4)

dI1p

dt
= θ1pQ1p − d1pI1p + ε1pE1p

+
P∑

q=1

m1qpI1q −
P∑

q=1

m1pqI1p,

(5)
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Table 1: Biological meaning of model parameters.

Parameter Description Unit

β12p Adequate contact rate from Aedes to livestock on patch p 1/day

β21p Adequate contact rate from livestock to Aedes on patch p 1/day

β23p Adequate contact rate from livestock to Culex on patch p 1/day

β32p Adequate contact rate from Culex to livestock on patch p 1/day

1/d1p Lifespan of Aedes mosquitoes on patch p Day

1/d2p Lifespan of livestock on patch p Day

1/d3p Lifespan of Culex mosquitoes on patch p Day

b1p Number of Aedes eggs laid per day on patch p 1/day

b2p Daily birthrate of livestock on patch p 1/day

b3p Number of Culex eggs laid per day on patch p 1/day

K2p Carrying capacity of livestock on patch p Heads

1/ε1p Incubation period in Aedes mosquitoes on patch p Day

1/ε2p Incubation period in livestock on patch p Day

1/ε3p Incubation period in Culex mosquitoes on patch p Day

1/γ2p Infectiousness period in livestock on patch p Day

1/μ2p RVF mortality rate in livestock on patch p 1/day

q1p Transovarial transmission fraction in Aedes on patch p Proportion

1/θ1p Development time of Aedes on patch p Day

1/θ3p Development time of Culex on patch p Day

m1pq Travel rate of Aedes mosquitoes from patch p to patch q 1/day

m2pq Travel rate of livestock from patch p to patch q 1/day

m3pq Travel rate of Culex mosquitoes from patch p to patch q 1/day

dN1p

dt
= θ1p

(
P1p + Q1p

)
− d1pN1p

+
P∑

q=1

m1qpN1q −
P∑

q=1

m1pqN1p,

(6)

dS2p

dt
= b2pN2p −

d2pS2pN2p

K2p
− β12pS2pI1p

N1p
− β32pS2pI3p

N3p

+
P∑

q=1

m2qpS2q −
P∑

q=1

m2pqS2p,

(7)

dE2p

dt
= −d2pE2pN2p

K2p
+
β12pS2pI1p

N1p
+
β32pS2pI3p

N3p
− ε2pE2p

+
P∑

q=1

m2qpE2q −
P∑

q=1

m2pqE2p,

(8)

dI2p

dt
= −d2pI2pN2p

K2p
+ ε2pE2p − γ2pI2p − μ2pI2p

+
P∑

q=1

m2qpI2q −
P∑

q=1

m2pqI2p,

(9)

dR2p

dt
=− d2pR2pN2p

K2p
+ γ2pI2p

+
P∑

q=1

m2qpR2q −
P∑

q=1

m2pqR2p,

(10)

dN2p

dt
= N2p

(
b2p −

d2pN2p

K2p

)
− μ2pI2p

+
P∑

q=1

m2qpN2q −
P∑

q=1

m2pqN2p,

(11)

dP3p

dt
= b3pN3p − θ3pP3p, (12)

dS3p

dt
= θ3pP3p − d3pS3p −

β23pS3pI2p

N2p

+
P∑

q=1

m3qpS3q −
P∑

q=1

m3pqS3p,

(13)

dE3p

dt
= β23pS3pI2p

N2p
−
(
d3p + ε3p

)
E3p

+
P∑

q=1

m3qpE3q −
P∑

q=1

m3pqE3p,

(14)
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dI3p

dt
= − d3pI3p + ε3pE3p

+
P∑

q=1

m3qpI3q −
P∑

q=1

m3pqI3p,

(15)

dN3p

dt
=
(
b3p − d3p

)
N3p

+
P∑

q=1

m3qpN3q −
P∑

q=1

m3pqN3p.

(16)

2.1. Stability Analysis. There is an important quantity R0

that expresses the stability of the disease free equilibrium
(DFE) for epidemic models. The basic reproduction ratio
R0 is constructed in such a way as to express the number of
secondary cases arising from a single primary infectious case
in an entirely susceptible population [14, 15]. If R0 < 1, it
indicates that the infection cannot successfully transmit, on
average, to one or more new host. The DFE is globally asymp-
totically stable as shown in Theorem 3.4 of reference [13].
If R0 > 1, then the DFE is unstable and the pathogen may
invade a susceptible population and persist [16]. The greater
R0 is above 1, the lower the likelihood of a newly-introduced
pathogen fading out, although in the deterministic model
presented in this study stochastic fadeout is not possible.
Since the model of RVF has both vertical and horizontal
transmission, R0 for this system of ODEs is the sum of the
R0 values for each mode of transmission [17]: R0 = R0,V +
R0,H . The first term R0,V represents the direct transmission,
which is the vertical transfer of RVFV from infectious Aedes
mosquito mothers to their offspring, whereas the second
term R0,H is the indirect (vector borne) transmission, which
is the transmission between vectors mediated by livestock
hosts. By Theorem 3.4 in [13], we have the formula of R0,H

for our model (formulas (17)–(25)) as R0,H = ρ(TH), where
the next generation matrix TH = GB−1CA−1, ρ(T) represents
the spectral radius of T , ρ(T) = max j{|λj|} and λj is the j
eigenvalue of the matrix T . The matrices G, B, C, and A are
defined as in [13].

The mobility matrix for the i species is shown in (17).
For the i species (i = 1, 2, 3), the right null vector of the
mobility matrix Mi under the constraint of total population
N0

i is shown in (18). The matrix G is a diagonal block matrix
defined in (19). The matrix A is a block matrix and each
block is a diagonal matrix as shown in Equations (20) and
(21). Matrix B is same as matrix A but with the incubation
period replaced with the infection period. Matrix C is a
diagonal block matrix defined in (22). Following [3] we
calculate R0 for vertical transmission by constructing the
next generation matrix TV : R0,V = ρ(TV ), where TV =
FV−1. Matrix F is a diagonal block matrix and each block is
a sparse matrix as shown in (24). Matrix V is also a diagonal
block matrix, as shown in (25). Thus, R0 = ρ(GB−1CA−1) +
ρ(FV−1). This reduces to the expression for R0 in Section 3
of [3] in the case of a single patch and no transportation.
For arbitrary patch numbers P > 1, it must be evaluated
numerically.

Consider,
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(19)

A =

⎡
⎢⎢⎢⎣
A11 A12 . . . A1P2

A21 A22 . . . A2P2

. . . . . . . . . . . .
AP21 AP22 . . . AP2P2

⎤
⎥⎥⎥⎦ =

(
Ajk

)
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, (20)

Ajk =
(
a
jk
ii

)
3×3

,

a
jk
ii =

⎧⎪⎪⎨
⎪⎪⎩
dik + εik +

P2∑
l=1

mikl j = k,

−mik j j /= k,

(21)

C =

⎡
⎢⎢⎢⎢⎣
C1 0 · · · 0
0 C2 · · · 0
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...
. . .

...
0 0 · · · CP2

⎤
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ii
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(22)

F =

⎡
⎢⎢⎢⎢⎣
F1 0 · · · 0
0 F2 · · · 0
...
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. . .

...
0 0 · · · FP2

⎤
⎥⎥⎥⎥⎦ =

P2⊕
p=1

Fp, (23)

Fp =
(
f
p
i j

)
3×3

, f
p
i j =

{
θ1p i = 3, j = 1,

0 others,
(24)

V =

⎡
⎢⎢⎢⎢⎣
V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · VP2

⎤
⎥⎥⎥⎥⎦ =

P2⊕
p=1

Vp,

Vp =
⎡
⎢⎣θ1p 0 −b1pq1p

0 d1p + ε1p 0
0 −ε1p d1p

⎤
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(25)
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Table 2: Parameters with estimated ranges for numerical simula-
tions.

Parameter (Range) Reference

β12p (0.0021, 0.2762) [24–30]

β21p (0.0021, 0.2429) [24–28, 31, 32]

β23p (0.0000, 0.3200) [25–28, 31–33]

β32p (0.0000, 0.0960) [25–28, 33]

1/d1p (3, 60) [28, 34, 35]

1/d2p (360, 3600) [36]

1/d3p (3, 60) [28, 34, 35]

b1p d1p

b2p d2p

b3p d3p

1/ε1p (4, 8) [37]

1/ε2p (1, 6) [6]

1/ε3p (4, 8) [37]

1/γ2p (1, 5) [38]

μ2p (0.025, 0.1) [6, 38]

q1p (0.0, 0.1) [39]

1/θ1p (5, 15) [28]

1/θ3p (5, 15) [28]

m1pq (0, 1) [16]

m2pq (0, 1) [16]

m2pq (0, 1) [16]

2.2. Model Sensitivity Analysis. Many of the parameters in
this model, although they have biological interpretations,
are either known imprecisely or vary significantly from
region to region. Thus, it is of interest to investigate the
sensitivity of the model to variation in parameter values.
Here, we employed stochastic sampling from bounds placed
on parameter estimates to assess the sensitivity of R0 to
model parameters. Specifically, we applied Latin hypercube
sampling to get a large number of parameter sets based on
the ranges of the parameters listed in Table 2. This approach
has been used effectively in several other disease models [18–
20]. Following [3], we assumed a uniform distribution for
each parameter across its range in Table 2.

We calculated R0 using N sets of sampled parameters for
a 4-patch model as an example. Because our model includes
V = 63 uncertain variables, N = 700 sets of sampled para-
meter values were generated by Latin hypercube sampling
according to the suggestion of [21] that an N such that
N/V > 10 should suffice for the number of stochastic samples
of complete parameter sets. In this example, we used Latin
hypercube sampling to generate the travel rates for 3 species
(m1pq, m2pq, m3pq) and assumed that the travel rates from
patch p to patch q are same as that from patch q to patch
p (mipq = miqp) for all p /= q and i = 1, 2, 3. Figure 2
is the histogram showing the resulting distribution of R0.
Averaging R0 over all parameter sets gives a mean of 1.19
and a median of 1.18. R0 ranged from 0.5 to 2.1.

We used the partial rank correlation coefficient (PRCC)
to assess the significance of each parameter with respect
to R0. Partial rank correlation characterizes the linear
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Figure 2: Distribution of R0 values pooling a total of 700 sets of
model parameters.

relationship between rank-transformed inputs Xranked(i) and
output Yranked after the linear effects on the output Yranked of
the remaining inputs are discounted [22]. The results for the
example above are shown in Table 3. The migration rates for
all three populations appear to be significant with increasing
migration decreasing R0. This relationship is a result that the
initial infection is only in one patch and could be diluted
with increased mixing. Each of the four patches has same
significant parameters, which are β12p, β21p, β23p, β32p, 1/γ2p,
1/d1p and 1/d3p, (p = 1, . . . , 4). These PRCCs are all positive
indicating an increase in R0 with an increase in the adequate
contact rate, mosquito lifespan, and the length of infection
in livestock. The adequate contact rates of species 1 have a
greater impact on R0 than those of species 1 as a reflection
of the biologically feasible range of each set of rates.

3. Numerical Simulation Results

Here, we consider a coupled lattice-based model by assuming
a space consists of P × P patches, where each grid represents
a subpopulation including Aedes mosquitoes, livestock, and
Culex mosquitoes. In order to explore the transfer of RVFV
on the space, we make the following simplifying assump-
tions. First, every patch has identical demographic and
epidemiological parameter values. Second, only neighbored
patches have nonzero travel rates, which are also balanced,
mipq = miqp (i = 1, 2, 3 and p, q = 1, . . . ,P × P). The third
assumption is that the initial population on each patch is of
equal size [16].

3.1. Example 1: A 2× 2 Space. We solved the model shown
in (1)–(16) using a fourth-order Runge-Kutta scheme by
choosing the time step to be 1 day. (We compared the RVFV
prevalence in livestock on this space with different time step
sizes (h = 1 day, 0.1 days, and 0.01 days), and found that our
model is not sensitive to the step sizes.) The initial conditions
are listed in Table 4. With the initial livestock population
of 1000 animals, the patch size could be considered to be
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Table 3: Significance test of parameters using PRCC.

Parameter PRCC P values

m1pq −0.2283 <0.0001

m2pq −0.1547 <0.0001

m3pq −0.1376 0.0005

p = 1 p = 2 p = 3 p = 4

β12p 0.3965 0.3235 0.3125 0.3594 <0.0001

β21p 0.3259 0.3271 0.3752 0.3103 <0.0001

β23p 0.1972 0.1973 0.2058 0.2083 <0.0001

β32p 0.2149 0.2170 0.1706 0.1590 <0.0001

1/γ2p 0.3491 0.2777 0.3216 0.3276 <0.0001

1/d1p 0.4474 0.4320 0.3983 0.1590 <0.0001

1/d3p 0.2345 0.1679 0.1779 0.2809 <0.0001

Table 4: Initial conditions of the 4-patch RVF model.

Patch 1 Patch 2, 3, and 4

P1(0) 5000 5000

Q1(0) 0 0

S1(0) 4999 5000

E1(0) 0 0

I1(0) 1 0

N1(0) 5000 5000

S2(0) 1000 1000

E2(0) 0 0

I2(0) 0 0

R2(0) 0 0

N2(0) 1000 1000

P3(0) 5000 5000

S3(0) 5000 5000

E3(0) 0 0

I3(0) 0 0

N3(0) 5000 5000

4 square kilometers or 2 km by 2 km. Only the first patch
has an infectious Aedes adult mosquito, all the other patches
are free of RVFV at the beginning of time. In the horizontal
transmission, the βi j p have significant influence as shown in
the significant test of parameters. Therefore, after reference
[3], we used two sets of values for the adequate contact rates,
βi j p, a relatively higher set and a lower set. There are also two
types of livestock, one has higher RVF-associated mortality,
like sheep, and one has lower RVF-associated mortality,
like cattle. The time range was chosen to be 10 years, and
we chose the lifespan of livestock to be 10 years, 5 years,
and 2 years. The values of the parameters used in the four
simulations are shown in Table 5.

Figure 3 depicts the percent of livestock infected through
time on the whole space. For the simulations with relatively
higher contact rates the initial outbreaks were large, so
we need to break the y-axis to show subsequent outbreaks
clearly. For each case, the corresponding R0 is shown in
Table 6. Figure 3(a) shows that with lower estimates of
adequate contact rates βi j p and the higher RVF-associated

Table 5: Parameter values used in the simulations.

Parameter Higher set Lower set

β12p 0.480 0.150

β21p 0.395 0.150

β23p 0.560 0.150

β32p 0.130 0.050

μ2p 0.0312 0.0176

1/d1p 10

1/d2p 10× 365, 5× 365, 2× 365

1/d3p 10

b1p d1p

b2p d2p

b3p d3p

1/ε1p 6

1/ε2p 4

1/ε3p 6

1/γ2p 4

q1p 0.05

θ1p 0.1

θ3p 0.1

K2p 1000

m1pq 0.001

m2pq 0.0025

m3pq 0.001

death rate (μ2p), after an initial epidemic reaching the
maximum of 11.4%, RVFV is dying out for the rest of the
time. We used lower estimates of contact rates and the lower
RVF-associated death rate to generate Figure 3(b) and it is
similar to that of Figure 3(a) with a slightly higher maximum
prevalence of 12.4%. Figure 3(c) shows that with higher βi j p
values and higher fatality estimates (μ2p), after an initial
epidemic reaching 23.9% infected, there are subsequent
epidemics with the final endemic level of between 0.1%
and 1.5%. Figure 3(d) shows that with higher βi j p values
and lower fatality estimates (μ2p) after an initial epidemic
reaching 25.0% of the livestock infected, there are subsequent
epidemics with the final endemic level between 0.1% and
1.5%. From Figures 3(c) and 3(d), it is obvious that with
higher contact rates, more livestock could be infected and
the RVF gains a foothold in the population. With shorter
lifespan of livestock, less subsequent epidemics happen and
the percent of infections of livestock turns to be stable faster.
The expression for R0 was confirmed numerically, that is,
that for R0 < 1, infections of RVFV dies out and for R0 > 1,
endemic states exist.

Figure 4 shows the simulations with (a) a larger set of
travel rates (m1 = m3 = 0.001/day,m2 = 0.0025/day) and
(b) a smaller set (m1 = m3 = 0.00001/day,m2 = 0.000025/
day). The four curves show the numbers of infective Aedes
mosquitoes on the four patches, plotted on a logarithmic
scale. Both simulations have same initial conditions. At the
beginning, there are antiphase oscillations and after a certain
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Table 6: R0 for the four simulations.

Simulation cases
R0

1/d2p = 10 years 1/d2p = 5 years 1/d2p = 2 years

Lower βi j p & higher fatality rate 0.8005 0.7998 0.7976

Lower βi j p & lower fatality rate 0.8405 0.8397 0.8372

Higher βi j p & higher fatality rate 2.2930 2.2908 2.2842

Higher βi j p & lower fatality rate 2.4112 2.4087 2.4015
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Figure 3: Results of numerical simulations for sheet and cattle with lower and higher set of contact rates. (a) Low contact rates and high
RVFV related mortality rate. (b) Low contact rates and low RVFV-related mortality rate. (c) High contact rates and high RVFV related
mortality rate. (d) High contact rates and low RVFV related mortality rate. Livestock lifespan is indicated for 10 years (solid line), 5 years
(dashed line), and 2 years (dotted line).

time, they are in phase. Comparing Figures 4(a) and 4(b), we
can see that longer time taken for synchronization with the
smaller travel rates. This is due to the high degree of mixing
that occurs as time increases.

3.2. Example 1: A 20× 20 Space. On a space of 400 patches,
we solved the model similarly as for the 4-patch model
except that we only focused on one simulation, which is
with the higher set of βi j p, higher RVF-associated mortality
and the 10-year lifespan of livestock. The first case is for the

initial infection existing on the first patch, which is located
at the left bottom corner of the space. Figure 5 shows nine
snapshots of the 400-grid space at different time points with
darker shades illustrating a higher level of infection. It has a
very clear fan-shaped wavelike spread of invading infections.
The second case is the initial infection existing on the center
patch of the space. Figure 6 shows a circular wavelike spread
of infection. Given the nearest neighbor only mobility, and
the homogeneous populations on each patch, we expect the
symmetric spread observed in Figures 5 and 6.
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Figure 4: Simulations of a four-patch model with travel rates equal
to (a) relatively larger travel rates: m1 = m3 = 0.001/day, m2 =
0.0025/day and (b) relatively smaller travel rates: m1 = m3 =
0.00001/day, m2 = 0.000025/day.

4. Spatial Heterogeneity

At different geographical locations, there are differences
between populations of both vectors and hosts because of the
environmental differences, which is referred as spatial het-
erogeneity [16]. For example, mosquito populations in dif-
ferent locations may experience differing habitat conditions
that may affect their oviposition, blood meal choices, and
other biological behaviors, which are connected with their
birth rates, contact rates with hosts and so on; or different
livestock populations may have different movement patterns
leading to variation in spatial transmission rates. Spatial
heterogeneity can affect the dynamics of the disease systems
in many ways, therefore, in this section, we would like to
consider the roles of the spatial heterogeneity playing in the
persistence and transmission of the RVFV globally.

4.1. Effect of Space on Disease Persistence. The basic repro-
duction number R0 is a key quantity in epidemiology, which

Figure 5: Snapshots of the space of 400 patches with initial infec-
tion on the 1st patch.

Figure 6: Snapshots of the space of 400 patches with initial infec-
tion on the center patch.

essentially measures the average reproductive potential for an
infectious disease [16]. Therefore, a threshold condition R0

can tell us whether the pathogen will persist to the endemic
state or die out in the long term.

For a space with p × p patches, we divide it into two
regions: one with R0 � 1 and the other one with R0 � 1. In
this case, HOT zones are placed on the lower left corner of the
space. In order to explore the RVFV persistence on the whole
space, R0 was calculated for the whole space as the number
of patches in the HOT zone increasing, which is represented
by a radius concept with two variables rx and ry representing
the dimension of the HOT zone rectangle on the lower left
corner of the modeled environment. Here, we applied Latin
hypercube sampling method to generate parameter values
randomly for each patch in the HOT zone and the COOL
zone based on the ranges of the parameter values in Table 2.

We first considered a simple case with the radius of the
HOT zone being rx = ry = r, which is a square HOT zone.
A space of 20 × 20 patches was taken as an example, and
the results are shown in Figure 7. From the figure, it is clear
that as the number of patches in HOT zone increasing, R0

for the whole space is increasing from below 1 to meet R0

of the HOT zone finally, since at last HOT zone occupies



10 Computational and Mathematical Methods in Medicine

4.5

4

3.5

3

2.5

2

1

1.5

0.5

0

1 4 9 16 25 36 49 64 81 10
0

12
1

14
4

16
9

19
6

22
5

25
6

28
9

32
4

36
1

Number of patches in HOT zone

COOL zone
HOT zone
Whole space

R
0

Figure 7: R0 of the square HOT zone (dashed dot line), the COOL
zone (dashed line) and the whole space (black line) on a 20 × 20-
patch space as the number of patches in HOT zone increasing.

3

2.5

2

1.5

1
0.5

0 0
2 2

4 4
6

6
8

8
10

10
12

12

14
14

16
16

18
18

20
20

ry rx

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

R
0

Figure 8: R0 of the whole space on a 20 × 20-patch space as the
number of patches in HOT zone increasing

almost the whole space. The influences of the HOT zone on
the whole space is dramatic.

Furthermore, a more general case with rx /= ry was simu-
lated with the same 20× 20 patch space. Results are depicted
in Figure 8. R0 of the whole space has similar pattern as
shown in Figure 7, increasing as the HOT zone becoming
larger.

With the existence of spatial heterogeneity, even if the
RVFV dies out locally, asynchrony between populations on
different patches may allow global persistence [23]. For a
20 × 20 patch space R0 = 2.0 with a 100-patch HOT zone
(R0 = 2.3) and a 300-patch COOL zone (R0 = 0.5), whose
parameter values are generated by Latin hypercube sampling,
Figure 9 shows that the disease dies out on the COOL zone,
but persists when considering the space as a whole.

4.2. Effect of Space on Disease Spread. In the previous sec-
tions, nearest neighbor movements of hosts and vectors
between patches are considered. When long-distance trav-
eling is not applicable, some natural barriers, like rivers or
mountains, can play a very significant role on the spatial
spread of infection. Therefore, in the following discussions,
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Figure 9: A prevalence figure of Rift Valley fever on a 20×20-patch
space with a 100-patch HOT zone and a 300-patch COOL zone,
whose parameter values are generated randomly by Latin hypercube
sampling.

three rivers were introduced in the simulated space with 20×
20 patches as arbitrary illustration of ecological barriers of
directed migration. The initial condition consists of infection
on the first patch located at the lower left corner of the
modeled world. Two different scenarios about movements of
hosts and vectors are considered. In the first scenario there
are no rivers, hence, livestock and vectors travel is possible
between adjacent patches. In the second scenario, three rivers
located on the boundaries of patches prevent livestock and
vectors from moving across these boundaries.

Figure 10(a) depicts the number of infected patches as
a function of time from the initial infection. When rivers
exist, the spread speed of infection become lower and at the
same time point, smaller number of patches got infected. By
plotting the days of each patch taking to reach its outbreak
peak, with darker colors representing earlier time in Figures
10(b) and 10(c), rivers clearly have a significant impact on
the spatial spread of infection. When the impact of rivers is
ignored (left map), the speed of spatial spread is far more
rapid.

5. Conclusion

In this study, we built up an epidemiological model for Rift
Valley fever on an arbitrary number of patches. Besides the
transmission of RVFV between three prototypical species,
our model considers the movements of hosts and vectors
between patches, which cause the geographical transfer of
the RVFV. Based on previous work, a formula to compute the
basic reproduction ratio R0 for the model was generated and
used to analyze the sensitivity of the model and the stability
of the disease free equilibrium. With example numerical
simulations of the model, we illustrated the dynamics of the
prevalence of RVFV on a space with grids and the spatial
spread of RVF infections in some sample cases.
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Figure 10: The effect of natural barriers (three rivers as an example here) on the spatial spread of Rift Valley fever on a 20× 20 patch space.

The model is a framework for simulating the spread of
RVF or other similar disease transmitted by vectors and
hosts on a multipatch geographic space connected by trans-
portation. The simplifying assumptions adapted for the
numerical simulations in this study would not necessarily
be retained for simulations meant to model the real world.
For example, in the case of RVF livestock may be transported
via highway or rail to distant locations, which is inconsonant
with the nearest-neighbor mobility assumption. Similarly,
each patch may have patch-specific epidemiologic model
parameters, reflecting population heterogeneities and envi-
ronmental variation. In such cases, the symmetric disease
waves observed in Figures 5 and 6 will become distorted.

As in reference [3], this model represents considerable
simplification of the complex epidemiology of RVF. How-
ever, in this study we have removed one of simplifications in
the prior work, namely, the assumption that spatial effects do
not matter. Two outstanding issues remain to be addressed:
inclusion of age structure and inclusion of public health
control measures. Gaff et al. have constructed a single-
patch mathematical model of RVF to access the efficacy of
countermeasures on livestock population and emphasized
the need to include spatial heterogeneous settings [12]. We

hope this study will be of help to researchers who wish to
address such needs.

Acknowledgments

The authors (David M. Hartley, Tianchan Niu) are grateful
to the Research and Policy for Infectious Disease Dynamics
(RAPIDD) program of the Science & Technology Direc-
torate, Department of Homeland Security and Fogarty Inter-
national Center, National Institutes of Health for support
of this work. David M. Hartley, Tianchan Niu, Holly D.
Gaff also acknowledge support of this work by the National
Center for Foreign Animal and Zoonotic Disease Defense.

References

[1] S. Abdo-Salem, G. Gerbier, P. Bonnet et al., “Descriptive and
spatial epidemiology of Rift Valley fever outbreak in Yemen
2000-2001,” Annals of the New York Academy of Sciences, vol.
1081, pp. 240–242, 2006.

[2] R. Daubney, J. R. Hudson, and P. C. Garnham, “Enzootic
hepatitis or Rift Valley fever: an undescribed virus disease of
sheep, cattle and man from East Africa,” Journal of Pathology
& Bacteriology, vol. 34, pp. 345–579, 1931.



12 Computational and Mathematical Methods in Medicine

[3] H. D. Gaff, D. M. Hartley, and N. P. Leahy, “An epidemiological
model of rift valley fever,” Electronic Journal of Differential
Equations, vol. 2007, no. 115, pp. 1–12, 2007.

[4] G. H. Gerdes, “Rift Valley fever,” OIE Revue Scientifique et
Technique, vol. 23, no. 2, pp. 613–623, 2004.

[5] P. G. Jupp, A. Kemp, A. Grobbelaar et al., “The 2000 epidemic
of Rift Valley fever in Saudi Arabia: mosquito vector studies,”
Medical and Veterinary Entomology, vol. 16, no. 3, pp. 245–252,
2002.

[6] C. J. Peters and K. J. Linthicum, Handbook of Zoonoses, CRC
Press, 2nd edition, 1994.

[7] Center for Disease Control and Prevention (CDC), “Prevent-
ing emerging infectious diseases: a strat311 egy for the 21st
century,” Recommendations and Reports: Morbidity and Mor-
tality Weekly Report, 1998.

[8] World Health Organization (WHO), Rift Valley Fever, 2007.
[9] International Federation of Red Cross and Red Crescent

Societies, “DREF operation South Africa: Rift Valley fever,”
DREF MDRZA003. EP-2010-000080-ZA, 2010, http://www
.ifrc.org/docs/appeals/10/MDRZA003.pdf.
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