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This paper proposes a solid model based on four-dimensional trivariate B-spline for strain and stress analysis of ventricular myo-
cardium. With a series of processing steps in the four-dimensional medical images, the feature points of ventricular inner and outer
wall are obtained. A B-spline surface is then used to build the dynamic deformation model of the myocardial walls. With such a sur-
face model, a hexahedron control mesh can be constructed by sweeping the cloud data, and the ventricular solid model is built by
fitting the trivariate B-spline parameters. Based on these models, a method of isogeometric analysis can be applied to calculate the
stress and strain continuously distributed in the ventricle. The model is represented smoothly in the cylindrical coordinate system
and is easy to measure myocardium dynamics for finding abnormal motion. Experiments are carried out for comparing the stress
and strain distribution. It is found that the solid model can determine ventricular dynamics which can well reflect the deformation
distribution in the heart and imply early clues of cardiac diseases.

1. Introduction

Cardiovascular diseases are currently the leading cause of
death in the world, and the rate of death is increasing
each year in many countries. Therefore, more and more
physiologists and researchers make efforts to understand
how the heart works and how to diagnosis and treat the
heart diseases. Dynamics and kinetics of the left cardiac
ventricle are the primary representation of the cardiac
motion, as a series of systolic and diastolic motions of the left
cardiac ventricle make the heart pump blood to circulate the
whole body. Furthermore, the stress and strain express the
characteristics of elasticity and motion of myocardial walls
[1].

With assist of computer medical imaging technology,
such as magnetic resonance imaging (MRI), computed tom-
ography (CT), positron emission tomography, single photon
emission computed tomography, ultrasound, and X-ray,
these imaging techniques can give different representa-
tion of the heart. In this paper, the endocardium and
epicardium shapes of a ventricle are constructed with a

segmentation technique in MRI images. For constructing
model, finite element (FE) models are the most commonly
used in biomechanics. Especially, hexahedral and tetrahedral
FE models are popular in the representation of cardiac
model, for example, Figure 1 [2, 3]. Comparing with the
FE model, left ventricular CAD (computer-aided design)
model is more representative of the true ventricle in the
shape, such as B-spline surface model. Its continuity and
smoothness are better than the FE model. However, it is
difficult to apply FE analysis directly to the CAD model
[4].

The appearance of isogeometric analysis makes it possi-
ble to carry out mechanical analysis directly by a CAD model.
As a new computational technique, isogeometric analysis im-
proves on and generalizes the standard FE method and has
been proven to be a powerful method exceeding the FE
method [5]. Inspired by isogeometric analysis, this paper
constructs a solid model based on trivariate B-spline and cal-
culates the strain and stress of a ventricle by this model.
Finally, it shows the distribution of the strain and stress on
the solid model.
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Figure 1: Finite element models of left ventricle in the literature [2,
3].

2. Model Representation

2.1. B-Spline Curves and Surfaces. One can get a B-spline
curve of order k. By [6]

C(t) =
n∑

i=0

pi Ni,k (t), tk ≤ t <tk+1, (1)

where p0, p1, . . . , pn are the control points of C(t), the linear
interpolation of control points is called control polygon.
Ni,k(u) is B-spline basis function of degree k, which is deter-
mined by a group of nondecreasing normalized sequence T :
t0 ≤ t1 ≤ · · · ≤ tn+k+1. The sequence can be determined by
Riesenfeld method and Hartley-Judd method [7].

The definition of Ni,k(u) can be expressed as

Ni,0(t) =
⎧
⎨
⎩

1, if ti ≤ t < ti+1,

0, else

Ni,k(t) = t − ti
ti+k − ti

Ni,k−1(t) +
ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k−1(t)

define
0
0
= 0.

, (2)

With a tensor product, given a (n+ 1)× (m+ 1) control mesh
pi, j and knot vector T : t0 ≤ t1 ≤ · · · ≤ tn+k+1, a B-spline
surface of degree k1 in the t direction and degree k2 in the w
direction is defined as

S(t,w) =
n∑

i=0

m∑

j=0

pi, jNi,k1 (t)Nj,k2 (w), (3)

where S is a point on the defined surface, and t and w
are usually representing longitude and latitude; respectively,
Ni,k1 (t) and Ni,k1 (w) are the basis functions in the t and w
directions with a degree of k1 and k2.

2.2. Volumetric B-Splines. A volumetric B-spline can also be
defined by

V(t,w,u) =
n∑

i=0

m∑

j=0

l∑

k

pi, j,lNi,k1 (t)Nj,k2 (w)Nk,k3 (u). (4)

Comparing with the model in Cartesian coordinates, a cylin-
drical coordinate model is better approximate to the shape
of the heart [8]. Volumetric B-spline is the extension of
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Figure 2: Three-dimensional stress and strain components.

B-spline surface, which can be given by the following two
steps in cylindrical coordinates.

(1) Coordinate transform. A (n+1)×(m+1)×(l+1) con-
trol mesh pi, j,l with the points (xi jk, yi jk, zi jk) in Cartesian
coordinate is transformed into cylindrical coordinate by

ri jk =
√
x2
i jk + y2

i jk,

θi jk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π/2 if xi jk = 0, yi jk > 0,

3π/2 if xi jk = 0, yi jk < 0,

a tan

(
yi jk
xi jk

)
if xi jk > 0, yi jk ≥ 0,

π + a tan

(
yi jk
xi jk

)
if xi jk < 0,

2π + a tan

(
yi jk
xi jk

)
if xi jk > 0, yi jk < 0,

zi jk = zi jk.

(5)

(2) The representation of volumetric B-spline in cylindrical
coordinate is

r(t,w,u) =
n∑

i=0

m∑

j=0

l∑

k

ri, j,kNi,k1 (t)Nj,k2 (w)Nk,k3 (u),

θ(t,w,u) =
n∑

i=0

m∑

j=0

l∑

k

θi, j,kNi,k1 (t)Nj,k2 (w)Nk,k3 (u),

z(t,w,u) =
n∑

i=0

m∑

j=0

l∑

k

zi, j,kNi,k1 (t)Nj,k2 (w)Nk,k3 (u).

(6)

3. Determination of Stress and Strain

3.1. Elasticity. Stress and strain actually reflect elasticity of
ventricular myocardial walls [9]. Calculations of the stress
and strain can be inspired from the idea of elasticity theory.
In 3D space, set u, v, w as the displacements in x, y, z
direction. Strain vector and stress vector are σ = [σx, σy , σz,

τxy , τyz, τxz]
T and ε = [εx, εy , εz, γxy , γyz, γxz]

T , respectively, as
shown in Figure 2.
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The relation between strain and displacement is

ε =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx = ∂u

∂x
,

εy = ∂v

∂y
,

εz = ∂w

∂z
,

γxy = ∂u

∂y
+
∂v

∂x
,

γyz = ∂v

∂z
+
∂w

∂y
,

γxz = ∂u

∂z
+
∂w

∂x
.

(7)

Physical relationship or the relation between strain and stress
is

σ = Dε, (8)

where D is the elastic matrix defined as

D = E
(
1− μ

)
(
1 + μ

)(
1− 2μ

)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where E is elasticity modulus, μ is Poisson’s ratio, and H =
(1 − 2μ)/2(1 − μ). With (9), strain and stress can be deter-
mined.

3.2. Isogeometric Analysis. We regard B-spline basis functions
as the displacement function and also the basis function of
the ventricular shape, to calculate the stress and strain. Solid
models at adjacent time points can be reconstructed by (4)
with corresponding control points. The continuous displace-
ments of the solid model correspond the displacements of
control points, that is,

Disp(tc, tl, tr) =
n∑

i=0

m∑

j=0

l∑

k=0

di, j,lNi,k1 (tc)Nj,k2 (tl)Nk,k3 (tr),

(10)

where di, j,l is the displacements of control points of Disp(tc,
tl, tr). n,m, l define the control net, tc, tl, and tr are the
knot vectors in the directions of circumference, long axis and
radius, respectively. For X, Y, Z directions, the displacements

DX, DY, DZ are defined as

DX(tc, tl, tr) =
n∑

i=0

m∑

j=0

l∑

k=0

dxi, j,lNi,k1 (tc)Nj,k2 (tl)Nk,k3 (tr),

DY(tc, tl, tr) =
n∑

i=0

m∑

j=0

l∑

k=0

dy
i, j,lNi,k1 (tc)Nj,k2 (tl)Nk,k3 (tr),

DZ(tc, tl, tr) =
n∑

i=0

m∑

j=0

l∑

k=0

dzi, j,lNi,k1 (tc)Nj,k2 (tl)Nk,k3 (tr),

(11)

where dxi, j,l, dyi, j,l, dzi, j,l are the displacements of control
points in X, Y, Z directions.

By elasticity theory, the strain of one point in the model
can be calculated

εx = ∂u

∂x
= ∂DX

∂x
= ∂N

∂x
dx,

εy = ∂v

∂y
= ∂DY

∂y
= ∂N

∂y
dy ,

εz = ∂w

∂z
= ∂DZ

∂z
= ∂N

∂z
dz,

γxy = ∂u

∂y
+
∂v

∂x
= ∂DX

∂y
+
∂DY

∂x
= ∂N

∂y
dx +

∂N

∂x
dy ,

γyz = ∂v

∂z
+
∂w

∂y
= ∂DY

∂z
+
∂DZ

∂y
= ∂N

∂z
dy +

∂N

∂y
dz,

γxz = ∂u

∂z
+
∂w

∂x
= ∂DX

∂z
+
∂DZ

∂x
= ∂N

∂z
dx +

∂N

∂x
dz,

(12)

where N = Ni,k1 (tc)Nj,k2 (tl)Nk,k3 (tr) is the B-spline basis fun-
ction, and dx, dy, and dz are displacement values of the
corresponding points.

Then the derivatives of B-spline basis functions in X, Y, Z
directions can be derived in each parameter direction

∂N

∂tc
= (k1 − 1)

[
Ni,k1−1(tc)

tc,i+k1−1 − tc,i
− Ni+1,k1−1(tc)

tc,i+k1 − tc,i+1

]

×Nj,k2 (tl)Nk,k3 (tr),

∂N

∂tl
= (k2 − 1)

[
Nj,k2−1(tl)

tl, j+k2−1 − tl, j
− Nj+1,k2−1(tl)

tl, j+k2 − tl, j+1

]

×Ni,k1 (tc)Nk,k3 (tr),

∂N

∂tr
= (k3 − 1)

[
Nk,k3−1(tr)

tr,k+k3−1 − tr,i
− Nk+1,k3−1(tr)

tr,k+k3 − tr,k+1

]

×Nj,k2 (tl)Ni,k1 (tr).

(13)

To get the derivatives of B-spline basis functions in X, Y, Z
directions, the partial derivative transform of isoparametric
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Figure 3: (a) Ventricular point distribution model (b) B-spline surface model.
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Figure 4: (a) Left ventricular inside wall quadrilateral mesh, (b) hexahedral control mesh.

principles [10] is used

⎡
⎢⎢⎢⎢⎢⎢⎣

∂N

∂x
∂N

∂y
∂N

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦
= J−1

⎡
⎢⎢⎢⎢⎢⎢⎣

∂N

∂tc
∂N

∂tl
∂N

∂tr

⎤
⎥⎥⎥⎥⎥⎥⎦

, (14)

where J is Jacobian matrix as follows:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂tc
∂x

∂tl
∂x

∂tr

∂y

∂tc
∂y

∂tl
∂y

∂tr

∂z

∂tc
∂z

∂tl
∂z

∂tr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Here, take ∂x/∂tc as an example. pxi, j,l is the control point co-
ordinate in the X direction.

∂x

∂tc
=

m∑

i=0

l∑

j=0

Nj,k2 (tl)Nk,k3 (tr)
n∑

i=0

Ni,k1−1(tc)
pxi, j,l − pxi−1, j,l

tc,i+k1−1 − tc,i
.

(16)

Therefore, the strain can be calculated in this way. By (8), the
stress condition can also be calculated.

4. Experiments and Results

4.1. Construction of Ventricular Models. Both inside and out-
side data points of ventricular myocardial walls can be ob-
tained from 3D medical images [11, 12]. Figure 3(a) shows
the points obtained by model-based segmentation [13].
Figure 3(b) is the corresponding B-spline surface model.

A sweeping method [14] can be used to obtain the
control hexahedral, for example, the one in Figure 4, where
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Figure 5: Principal strain distribution in X direction: (a) the results by finite element model, (b) result by B-spline solid model.
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Figure 6: Principal stress distribution in X direction: (a) the results by finite element model, (b) result by B-spline solid model.

Figure 4(a) is the quadrilateral mesh of inside wall, and
Figure 4(b) is the hexahedral mesh. While control hex-
ahedral mesh is obtained, the corresponding ventricular
B-spline solid model can be reconstructed by (4) and
(5).

4.2. Stress and Strain. Stress and strain of a ventricle are
calculated based on the steps described in the above sections.
Here, for calculation of the stress results, we set myocardial
elastic modulus 11 Kpa and Poisson’s ratio of 0.49. Figure 5
shows the principal strain distribution in X direction, and
Figure 6 shows the principal stress distribution. In these
figures, the left one shows the result by the finite element
model, and the right shows that by the B-spline solid
model. The color represents the change in stress or strain
distribution, with the specific reference of the color bar. From
the results, it can be seen that the stress and strain of the left
ventricular model show overall nonuniform distribution [15,
16], which is consistent with the results by other researchers
[17].

5. Conclusion

With the situation that traditional finite element methods are
difficult for direct use in mechanics analysis which has con-
tinuous distribution in space, this paper proposes a solid B-
spline model to construct a continuous ventricular mechani-
cal model and applies isogeometric analysis. Stress and strain
calculative formulas are derived. The proposed model fea-
tures continuous, smooth, and inseparable. According to a
set of ventricular hexahedral solid B-spline models sampled
at different times in a cardiac cycle, strain and stress are deter-
mined for medical analysis.
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