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A model with its conductivity varying highly across a very thin layer will be considered. It is related to a stable phantom model,
which is invented to generate a certain apparent conductivity inside a region surrounded by a thin cylinder with holes. The thin
cylinder is an insulator and both inside and outside the thin cylinderare filled with the same saline. The injected current can enter
only through the holes adopted to the thin cylinder. The model has a high contrast of conductivity discontinuity across the thin
cylinder and the thickness of the layer and the size of holes are very small compared to the domain of the model problem. Numerical
methods for such a model require a very fine mesh near the thin layer to resolve the conductivity discontinuity. In this work, an
efficient numerical method for such a model problem is proposed by employing a uniform mesh, which need not resolve the
conductivity discontinuity. The discrete problem is then solved by an iterative method, where the solution is improved by solving a
simple discrete problem with a uniform conductivity. At each iteration, the right-hand side is updated by integrating the previous
iterate over the thin cylinder. This process results in a certain smoothing effect on microscopic structures and our discrete model
can provide a more practical tool for simulating the apparent conductivity. The convergence of the iterative method is analyzed
regarding the contrast in the conductivity and the relative thickness of the layer. In numerical experiments, solutions of our
method are compared to reference solutions obtained from COMSOL, where very fine meshes are used to resolve the conductivity
discontinuity in the model. Errors of the voltage in L2 norm follow O(h) asymptotically and the current density matches quitewell
those from the reference solution for a sufficiently small mesh size h. The experimental results present a promising feature of our
approach for simulating the apparent conductivity related to changes in microscopic cellular structures.

1. Introduction

Electrical conductivity of a material is a measure of its ability
to allow the movement of electric charge. Based on the
material’s atomic or molecular composition, electric charge
may be either in the form of free electrons or ions. In a
homogeneous saline solution, for example, there is ionic
electric charge and its conductivity is determined by the
total sum of the multiplication of concentration and the
mobility of various ions presents in the solution [1]. The
mobility of ions depends on the structural composition
of the environment in which they are moving. A typical
example is the movement of ions across the membrane of
a cell in biological materials. The membrane itself is an
insulator but it has pores which allow the flow of ions [2].

To better understand this bioelectric phenomenon a simple
yet robust modeling method would be highly beneficial.

When a material is homogeneous, a simple way to
measure its conductivity is to take the ratio of absolute value
of the current density and electric field inside the material
[1]. This is not so simple in biological tissues which are
heterogeneous, consisting of cells, extracellular structures
and fluids. To measure conductivity in a controlled way, we
have to probe the material by injecting current and measure
induced voltage or vice versa [1, 3, 4]. Other measurement
methods include injecting the current or RF/acoustic mag-
netic field and measuring the induced magnetic field/flux
density [5–10]. In this work, we consider the conductivity
measurements using a technique called magnetic resonance
electrical impedance tomography (MREIT). In MREIT, tis-
sues are probed by externally injected currents and induced
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magnetic flux densities are measured using MRI scanner. An
image reconstruction algorithm uses these measurements to
reconstruct conductivity image of tissues [3].

The microscopic cellular structure affects the current
flow pattern in biological tissues. The macroscopic conduc-
tivity measured by a current injection based probing method
can be, therefore, understood as the apparent conductivity
[11]. The apparent conductivity at a fixed macroscopic
scale is determined as a congregation of microscopic effects
within the tissue. Especially at low frequency, the membrane
greatly affects a measured apparent conductivity value of the
tissue at a macroscopic scale since the cellular membrane
can be modeled as an insulating sphere with holes where
ions can migrate [11]. An ability to model the microscopic
effects within the tissue would be highly beneficial to
better understand the nature of conductivity of biological
materials.

Since we are interested in a macroscopic conductivity
value, we need to understand how the microscopic structure
influences the macroscopic conductivity measurement. To
understand the meaning of a measured conductivity in
relation with microscopic changes at the cellular membranes,
we need quantitatively relate the apparent conductivity at
the macroscopic scale with microscopic structural changes.
Due to the scale difference, a numerical study may require a
highly nonuniform mesh with a tremendously large number
of elements resulting in a huge amount of computations and
memory requirement, which may not be practically feasible.

There have been previous studies to address practical
numerical methods for treating such a model heterogeneity
[12–14]. In [13], finite difference methods were developed by
correcting the finite difference stencils according to the con-
ductivity discontinuity. Calculation of the correction term
becomes quite complicated when a model with microscopic
structure is considered. In [12], coarse finite element basis is
built by solving the model problem in each coarse mesh with
an appropriate boundary condition regarding the conduc-
tivity discontinuity. A discrete model is then built by using
the coarse basis functions. This process can be understood as
smoothing on the conductivity discontinuity. This approach
still gives less accurate approximations than the work [13]
and results in a ill-conditioned linear system depending on
the heterogeneity of the conductivity. In [14], a practical
discrete method was developed for simulating fluid-structure
interaction by using two independent variables: Eulerian
variable for the fluid on the background and Lagrangian
variable for the immersed moving elastic body. After the
separation, the interaction between the fluid and the elastic
body is calculated by using a smoothed approximation to
the Dirac delta function, where the Dirac delta function is
used to model the location of the moving elastic body. The
smoothed approximation is the force imposed by the elastic
body on the fluid. After solving fluid equations with the
exerting force, the location of the elastic body is updated by
the fluid velocity. We refer the references therein for many
successful applications of the immersed boundary methods;
it is known to be the most practical discrete model for
simulating a very thin elastic body.

A discrete model with certain smoothing on the micro-
scopic structures will be more appropriate for our purpose
than a very accurate discrete model. In this work, for a more
practical method we propose an iterative method which
employs a uniform mesh rather than a highly nonuniform
mesh. We consider a model with a single cell and propose a
new numerical method based on uniform meshes without
much concern on the microscopic structures in the single
cell. We first solve a simple model with a uniform conductiv-
ity and we then iteratively improve the numerical accuracy by
updating the right-hand side of the simple model. The right-
hand side is calculated by integrating the current solution
over the single cell membrane, which could provide a certain
smoothing effect similarly to that in [14] when a model with
many of them is considered to study macroscopic properties
related to changes in microscopic cellular structures. We
note that at each iteration a simple model with the uniform
conductivity is solved, thus any available fast solvers, that
is, FFT (Fast Fourier Transform) [15] or multigrid methods
[16], can be utilized to speed up the computing time. We
analyze the convergence of the iterative method with respect
to the contrast of the conductivity difference and the relative
thickness of the cell membrane.

Our method is tested for a simple model with a single
cell and then more complex models with many of small
cells. These results are compared to reference solutions
from COMSOL (COMSOL Inc., USA), where very refined
nonuniform meshes are used to address high contrast of
conductivity jump across the thin cellular membrane. The
errors of voltage in L2 norm asymptotically follow the
first-order O(h) accuracy for the given mesh size h and
the current density agrees quite well to that of reference
solutions. To address capability of our method for capturing
anisotropic cellular structures, we test a model with many
cells, where holes are adopted to each cell membrane at
various locations. Those results present a promising feature
of our method for approximating macroscopic properties
related to microscopic structural changes.

This paper is organized as follows. In Section 2, a
model problem with multiscale structures, FE (finite ele-
ment) discretization of the model problem, and an iterative
method for solutions of the discrete model are described. In
Section 2.5, convergence of the iterative method is analyzed
related to the thickness of the cell membrane and the contrast
of conductivity jump across the cell membrane. Numerical
results are presented in Section 3. Discussion and conclusion
are provided in Sections 4 and 5.

2. Methods

2.1. Model Problem. We consider a model elliptic problem
with highly varying conductivity across a thin layer A inside
Ω,

−∇ · (σ(x)∇u(x)) = 0, ∀x ∈ Ω,

u(x) = gD(x), ∀x ∈ ∂ΩD,

∂u

∂n
(x) = gN (x), ∀x ∈ ∂ΩN ,

(1)
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where the conductivity is given by

σ(x) =
{
σ0, x ∈ Ω \ A,

σA, x ∈ A,
(2)

with the two positive constants σ0 and σA, such that σ0 � σA.
Here, ∂ΩD and ∂ΩN denote the parts of the boundary of Ω
with the Dirichlet and the Neumann boundary conditions,
respectively. Figure 2(a) illustrates the model problem at
microscopic scale. In the model, a thin layerAwith four holes
is introduced to simulate a semipermeable membrane of a
single cell lying inside an extracellular spaceΩ. Similar model
appears in the phantom model invented in [17] based on the
experimental phantom adopted by Oh et al.

2.2. Multiscalability of Model Problem. The description of
our model inherits two types of multiscales: the conductivity
difference between the cell membrane and the extracellular
region and the size difference between the thickness of the
cell membrane and the diameter of the extracellular region.
In order to build a discrete model for such a problem,
a very elaborated unstructured mesh is unavoidable to
resolve the conductivity discontinuity; see Figure 3. Finite
element methods on the given unstructured mesh result in
a very ill-conditioned linear system due to highly hetero-
geneous conductivity, aspect ratio of anisotropic element,
and inhomogeneous mesh size [18–21]. In [13], to deal
with conductivity discontinuity finite difference methods
were developed by correcting the finite difference stencils
according to the conductivity discontinuity. Calculation
of the correction term is quite complicated and becomes
even impossible for such a thin anomaly region A with
many adopted holes. Therefore both approaches become
impractical for our model problem. We emphasize that our
purpose is to simulate an apparent conductivity influenced
by microscopic structural changes in the cellular membrane.
For our purpose, a discrete model with a certain smoothing
on the microscopic structures will be more desirable than a
very accurate discrete model. In the following subsection, our
numerical method will be developed to address this respect.

2.3. Model Discretization. We discretize the model problem
in (1) using finite element methods [22] with a uniform
mesh. Let Th be a uniform mesh. We then introduce
a piecewise-linear conforming finite element space Xh

obtained from the uniform mesh. Here we emphasize that
the mesh need not resolve the conductivity discontinuity.

We obtain a weak form of (1) using test functions v ∈
H1

D(Ω),

∫
Ω
σ(x)∇u(x)∇v(x)dx =

∫
∂ΩN

gN (x(s))v(x(s))dx(s), (3)

where H1
D(Ω) is the space of functions which are square

integrable up to first derivatives and have zero values on
∂ΩD, the part of boundary where the Dirichlet boundary

condition is given. We then approximate u(x) with the finite
element basis in Xh,

u(x) �
∑

j∈NI ,N

Ujφj(x) +
∑
j∈ND

Ujφj(x). (4)

Here φj(x) are nodal basis functions to nodes xj , NI ,N

is the set with indices of nodes from the uniform mesh,
which are located interior to Ω and on ∂ΩN , the part
of boundary where the Neumann boundary condition is
provided, and ND is the set with indices of nodes on
∂ΩD, the other part of the boundary where the Dirichlet
boundary condition is imposed. For nodes xj on ∂ΩD,
the corresponding nodal values Uj are determined by the
Dirichlet boundary condition, that is, Uj = gD(xj) for all j
in ND.

By approximating u(x) and using test functions φi(x), for
all i in NI ,N , we obtain finite element discretization of the
model problem in (3),

∫
Ω
σ(x)∇φi(x) · ∇

⎛
⎝ ∑

j∈NI ,N

φj(x)Uj

⎞
⎠dx = gi ∀i ∈ NI ,N ,

(5)

where

gi =
∫
∂ΩN

gN (x(s))φi(x(s))dx(s)

−
∫
Ω
σ(x)∇φi(x) · ∇

⎛
⎝ ∑

j∈ND

gD
(
xj
)
φj(x)

⎞
⎠dx.

(6)

The resulting linear system from the above Galerkin approx-
imation depends on σ(x). The uniform mesh in our
discretization admits the discontinuous conductivity inside
a single grid; hence finite element approximation from such
uniform mesh results in certain smoothing in our discrete
model; see Figure 1. Such a smoothing could provide a
more practical tool for calculating the apparent conductivity
regarding changes in microscopic cellular structures, while
the order of accuracy in our discrete model becomes lower
than that in the discrete model from very refined meshes.
The size of linear system in our case becomes smaller than
the case using a very fine unstructured mesh. However, the
conductivity discontinuity across the thin layer still makes
the resulting linear system ill conditioned. In order to get
faster solutions for the discrete model in (5), we will develop
an iterative method for solving the discrete model.

2.4. Iterative Method. Our iterative method will be based on
a fixed-point iteration. We decompose the conductivity into

σ(x) = σ0 − σ̃A(x), (7)

where σ̃A(x) is defined as

σ̃A(x) =
{

0, x ∈ Ω \A,

σ0 − σA, x ∈ A.
(8)
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Figure 1: An illustration of uniform mesh and anomaly region:
anomaly region A is the ring surrounded by the two circles; the
microscopic structure of A is smoothed out by the nodal basis
functions (to the black dots) of which support intersects the
anomaly region A.

Using (7) we rewrite (5) into

σ0

∫
Ω
∇φi(x) · ∇

⎛
⎝ ∑

j∈NI ,N

φj(x)Uj

⎞
⎠dx

−
∫
Ω
σ̃A(x)∇φi(x) · ∇

⎛
⎝ ∑

j∈NI ,N

φj(x)Uj

⎞
⎠dx = gi,

(9)

and we obtain

σ0KU = g + Kσ̃AU , (10)

where

(K)i j =
∫
Ω
∇φi(x) · ∇φj(x) dx, i, j ∈ NI ,N ,

(
Kσ̃A

)
i j

=
∫
Ω

(σ0 − σA)χA(x)∇φi(x) · ∇φj(x) dx, i, j ∈ NI ,N .

(11)

Here U and g denote the vector of components Ui and gi for i
in NI ,N , respectively, and χA(x) is the characteristic function
regarding the set A, that is,

χA(x) =
{

1, x ∈ A,

0, x ∈ Ω \A. (12)

We now propose an iterative method for (10).

Algorithm 1 (iterative method).

(i) Step 1: let U (0) be an initial.

(ii) Step 2: iterate until U (n) converges.

Given U (n), update U (n+1) from

σ0KU
(n+1) = g + Kσ̃AU

(n). (13)

Before we discuss the convergence of the above iterative
method, we define the following concept. For a m×m matrix
K1, we define a norm by

‖K1‖ := max
v∈Rm , v /= 0

√
(K1v)TK1v

vTv
. (14)

We say a matrix K1 is symmetric when KT
1 = K1. For

symmetric matrices K1 and K2, we define the relation

K1 ≤ K2, (15)

when the two matrices satisfy

vTK1v ≤ vTK2v, ∀v ∈ Rm. (16)

The relation means that all the eigenvalues of K1 are bounded
by the maximum eigenvalue of K2. We say that a symmetric
matrix K1 is positive definite when

vTK1v > 0, ∀v( /= 0) ∈ Rm. (17)

For a symmetric and positive definite matrix K1, the norm
‖K1‖ is identical to the maximum eigenvalue of the matrix
K1. We note that the two matrices K and Kσ̃A in the above
algorithm are symmetric and positive definite. For any given
symmetric and positive definite matrix S, we obtain that

K1 ≤ K2 implies
∥∥S−1K1

∥∥ ≤ ∥∥S−1K2
∥∥. (18)

Since σ0 > σA, the matrix Kσ̃A satisfies that

0 < Kσ̃A < σ0K. (19)

Let E(n+1) = U (n+1) −U (n) and then

E(n+1) = (σ0K)−1Kσ̃AE
(n). (20)

From (19) combined with (18), we obtain that∥∥∥(σ0K)−1Kσ̃A

∥∥∥ < 1, (21)

and ‖E(n+1)‖ then converge to zero; in other words, the
iterates U (n) converge,

U (n+1) = (σ0K)−1g + (σ0K)−1Kσ̃AU
(n). (22)

Therefore, our iterative method is a form of a fixed-point
iteration.

We also observe fast convergence when the area of A is
relatively small part of Ω, which is the case in our model. At
each iteration, we solve the system with the stiffness matrix
σ0K and the right-hand side computed from the previous
iterate U (n). Since K is obtained from the uniform mesh,
we can employ any available fast solver to find the update
U (n+1), such as a multigrid preconditioner or fast Fourier
transform. The conductivity discontinuity is treated in the
term Kσ̃AU

(n), which amounts to evaluate integration over
the anomaly region A. For an accurate integration, we apply
the composite Gaussian quadrature.

Our resulting method becomes similar to the immersed
boundary methods [14] in the respect that the conductivity
discontinuity in the model is treated as the source term of the
simple model problem with a uniform conductivity, of which
problem is well approximated by using a uniform mesh.
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Figure 2: Model geometry with (a) 1, (b) 9, and (c) 25 anomalies with four holes orthogonal to each other. (d) Outer domain dimensions
and (e) anomaly dimensions.

∂u

∂n
= 0

∂u

∂n
= 0

u = 0u = 1

(a) (b) (c)

Figure 3: Numerical modeling of problem in COMSOL. (a) Boundary conditions, (b) mesh, and (c) magnified domain.

2.5. Convergence of Iterative Method. In this subsection,
we will provide a more precise contraction modulus for
(σ0K)−1Kσ̃A depending on the relative ratio of the thickness
of the anomaly to the mesh size and the relative ratio of σA to
σ0. We define

γ := max
τ∈Th

|A⋂ τ|
|τ| , ε := σA

σ0
, (23)

where |τ| is the area of the set τ.
For each triangle τ in Th, such that τ

⋂
A /=∅, we can

extend A to B so that |B⋂ τ| = γ|τ| and then we define σ̃B
by

σ̃B(x) =
{
σ0 − σA, x ∈ B,

0, x ∈ Ω \ B. (24)

Since

σ̃A(x) ≤ σ̃B(x) < σ0, (25)

we obtain that

Kσ̃A ≤ Kσ̃B < σ0K , (26)

where matrices Kσ̃A , Kσ̃B , and σ0K correspond to conductivity
functions σ̃A(x), σ̃B(x), and σ0, respectively.

By using that |B⋂ τ| is the same value γ|τ| for all
triangles τ, which intersect A, and (∇φi(x) · ∇φj(x))|τ are
constant for each τ, we have

Kσ̃B ≤ γ(σ0 − σA)K (27)

and thus

Kσ̃A ≤ γ(σ0 − σA)K. (28)

By applying (σ0K)−1 on both sides of the above inequality,
see (18), we finally obtain that∥∥∥(σ0K)−1Kσ̃A

∥∥∥ ≤ γ(1− ε). (29)
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The error reduction in the iterative method is bounded by γ
and ε. When A intersects only a small number of triangles in
Th, we obtain a better reduction factor since most entries in
Kσ̃A are zero.

Theorem 2. The error reduction factor in the iterative method
is at least determined by

(σ0K)−1Kσ̃A ≤ γ(1− ε), (30)

where γ and ε are parameters defined by

γ := max
τ∈Th

|A⋂ τ|
|τ| , ε := σA

σ0
. (31)

Remark 3. When the thickness of A is δ, γ � (δ/h). Therefore
the error reduction factor is determined by the relative ratio
of the thickness of the anomaly to the mesh size. As the
anomaly region A becomes thinner and occupies a smaller
part of Ω, the error reduction factor becomes smaller for a
given mesh size h and a given relative ratio of conductivity ε.

Remark 4. For a faster convergence of our iterative method,
the suggested mesh size h for a given thickness δ is to satisfy

h >
1
c
δ, (32)

for some positive number c < 1. With such an h, the error
reduction factor is then bounded by the constant c. From the
following numerical experiments, the L2 errors of solutions
in our discrete model are observed to follow O(h). The
mesh size h should be determined considering the required
accuracy as well as the convergence of the iterative method.

3. Numerical Results

We present numerical experiments on the proposed method.
We will consider models in Figure 2. The problem domain
Ω = (−0.1 0.1)2 is a rectangular region and the anomaly
regionA consists of thin circles with small adopted holes. The
thickness δ of the circle is 0.002 and the diameter of the each
circle is 0.02. The diameter of holes introduced in each circle
is 0.005. The conductivity in the anomaly region is given by
0.001 and the conductivity is given by 1 elsewhere, that is,
σA = 0.001 and σ0 = 1. For all the models in the following
experiments, ε = 0.001, δ = 0.002, and γ (= δ/h) will be
determined once the mesh size h is chosen.

We study the behavior of errors by approximating the
model problem with finite element methods on uniform
grids, which do not resolve conductivity discontinuity across
the anomaly region A. We first study the single cell model
shown in Figure 2(a). We then consider more complex
models with multiple cells as shown in Figures 2(b) and 2(c).
In order to compute errors, we obtain a reference solution
from COMSOL by solving the same model problems using
a very refined unstructured mesh which can resolve the
conductivity discontinuity; see Figure 3. We considered the
stationary solver of COMSOL to obtain the reference solu-
tion for various models in this work. The stationary solver

Table 1: The L2 errors for the model (a). Ω: the whole domain, ΩI :
the region inside the circle, ‖u−Uh‖D : errors of voltage (solution)
in the region D, ‖J − Jh‖D : errors of current density (computed
from voltage) in the region D, and Iter.: number of iterations.

N ‖u−Uh‖Ω ‖u−Uh‖ΩI
‖J − Jh‖Ω ‖J − Jh‖ΩI

Iter.

16 0.0081 0.0000 0.0692 0.0157 4

32 0.0046 0.0145 0.0692 0.5800 6

64 0.0033 0.0070 0.0548 0.5347 10

128 0.0017 0.0038 0.0340 0.2208 38

256 0.0007 0.0001 0.0324 0.0061 164

works on linear and nonlinear stationary PDE problems.
Internally, a function called femstatic works as a stationary
solver for both linear and nonlinear problems. The default
value is “auto,” which means that femstatic automatically
selects a solver depending on the problem’s linearity. A linear
solver is selected by femstatic for the model problems in this
work. COMSOL uses either direct or iterative linear system
solvers to solve the system matrix. Various preconditioner
algorithms are used to deal with the ill conditioning of
the system matrix. Those include incomplete LU, geometric
multigrid, incomplete Cholesky, and few others (COMSOL
Inc., USA).

In Table 1, we report relative L2 errors of the solution
(voltage) and the current density for decreasing the mesh size
h. Here N denotes the number of grid in each direction and
ΩI denotes that the error is computed over the region inside
the circle. For example, the relative L2 error for u−Uh in ΩI

is calculated by

‖u−Uh‖ΩI
:=
√√√√∑xi∈ΩI

(u(xi)−Uh(xi))2∑
xi∈ΩI

u2(xi)
, (33)

where u is the reference solution from COMSOL, Uh is the
solution from our method with mesh size h, and xi are grid
points located in ΩI . In the iterative method, the iteration is
stopped when the relative error in two consecutive iterates is
reduced by a factor of 106, that is,∥∥U (n+1) −U (n)

∥∥
Ω∥∥U (n)

∥∥
Ω

≤ 10−6. (34)

and the number of iteration counts is also reported in Table 1
for each grid level.

We observe that the errors in voltage follow O(h) over the
whole domain Ω and the errors inside the circle show better
accuracy. The current density J = ‖(J1, J2)‖ is calculated
at each grid point (xi, yj) by using the voltage solution u.
The current density Jh from our method is calculated as
the same way using Uh. As we can see from the results, the
errors in the current density become much smaller as the
mesh size is getting smaller, since the derivative of voltage
is well approximated using the smaller mesh size. To obtain
more accurate approximation for the current density, we can
formulate a first-order system of (1) by introducing a new
variable, J = σ(x)∇u(x). A similar idea to the current work
can be used for the first-order system. This problem will be
addressed in our forthcoming research.
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Table 2: The L2 errors for the models (b) and (c). ‖u−Uh‖Ω:
errors in the solution (voltage), ‖J − Jh‖Ω: errors in current density
(computed from voltage), and Iter.: number of iterations.

N
Model (b) Model (c)

‖u−Uh‖Ω ‖J − Jh‖Ω Iter. ‖u−Uh‖Ω ‖J − Jh‖Ω Iter.

32 0.0121 0.1828 7 0.0096 0.3220 7

64 0.0120 0.1800 13 0.0091 0.3070 14

128 0.0067 0.1413 47 0.0053 0.2449 50

256 0.0022 0.0462 397 0.0035 0.0640 739

About the iteration counts, the error reduction rate in the
iterative method depends on γ and ε. For a given N , h =
0.4/N and then the ratio between h and δ = 0.002 becomes

γ � δ

h
= 0.005×N. (35)

As we can observe from the numerical experiments when
N < 100, we have faster convergence in the iterative method.

In Table 2, we report errors for models with a more
complicated anomaly A, which consists of many circles with
holes. The behavior of errors is similar to this observed in
Table 1. For the same grid level N , the iteration count gets
larger as more circles are introduced in the anomaly region
A, that is, from model (a) to model (c). When N ≤ 128, even
for a very complicated anomaly case of model (c) we observe
quite good iteration counts. In Figures 4 and 5, we also plot
solutions and current densities obtained from COMSOL and
our method and we can observe good agreement for all the
three models.

In order to show that our method is capable of capturing
macroscopic properties, we apply our method to a model
with anisotropic conductivity. Here we consider a circle with
two horizontally adopted holes; the center of each hole is
located at the left and right end points of the circle. To study
anisotropic models, we inject a current in the horizontal
direction or in the vertical direction, and we also consider
a circle without any adopted hole.

In Figures 6 and 7, the voltage and current density are
presented for models with each anomaly consisting of circles
with two horizontally adopted holes. Here on the boundary
of the domain the current is injected in the horizontal
direction. We compare the results from our method with
N = 256 and from COMSOL with a very fine mesh.
We observe that these two results match well and they are
also in a good agreement with those in the previous two
Figures 4 and 5, when the anomaly consists of circles with
two horizontal and two vertical holes, and the current is
horizontally injected on the boundary.

In Figures 8 and 9, the voltage and current density are
presented for models with each anomaly consisting of circles
with two horizontally adopted holes. Here on the boundary
of the domain the current is injected in the vertical direction.
We compare the results from our model with N = 256
and from COMSOL with a very fine mesh. We observe that
the vertically injected current cannot detect the horizontally
adopted holes in each circle.

In Figures 10 and 11, the voltage and current density are
presented for models with each anomaly consisting of circles
without any adopted holes. We compare the results from our
model with N = 256 and from COMSOL with a very fine
mesh. We observe that the results here are quite similar to
those in Figures 8 and 9.

The numerical study on anisotropic conductivity models
presents that our method is capable of capturing the macro-
scopic conductivity with respect to changes in microscopic
cellular membranes.

4. Discussion

We developed a practical numerical method for simulating
the macroscopic conductivity related to microscopic changes
in cellular membranes. Finite element discretization with a
uniform mesh is applied to the multiscale model without
much concern on the microscopic structures. We refer to
previous studies as those in [12, 14] where similar ideas were
developed for multiscale problems or for multiple structures.

For a more practical method, we used a standard
linear finite element basis of the uniform mesh rather
than using the coarse basis in [12]. Similarly to [14],
smoothed approximation of microscopic cellular structures
is imbedded in the right-hand side of the iterative method,
where a simple discrete model with uniform conductivity
is solved to improve the accuracy. Convergence of the
iterative method was analyzed regarding the contrast in
the conductivity difference and the relative ratio of the cell
membrane to the mesh size.

Since the uniform mesh does not resolve the conductivity
discontinuity, our method results in a less accurate approxi-
mation as in [14]. In the current work, we report numerical
results which present O(h) convergence in L2 errors in the
whole domain Ω. Such property of the approximation was
already reported in [14] when a very thin elastic body is
considered.

From numerical experiments, we can see that our
method is capable of capturing the apparent conductivity
with respect to changes in microscopic cellular structures. To
obtain a more accurate current approximation, our method
can be further applied to the first-order system of two
unknowns, J = σ(x)∇u and u, and this will be addressed
in our forthcoming research.

5. Conclusion

This kind of multiscale approach is needed to properly
interpret reconstructed conductivity images in MREIT in
relation with microscopic structural changes in cellular
membranes. We will use the proposed method to construct
an inhomogeneous tissue model including many cells with
different membrane structures of holes. We will compute
magnetic flux density as well as voltage and current density
for MREIT simulation. Using the computed magnetic flux
density, we will reconstruct images of apparent conductivity.
We will see how apparent conductivity changes as we change
the microscopic cellular membrane structures. We will
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Figure 4: (a)–(c) are reference solutions from the model with 1, 9, and 25 anomalies with 4 holes. (d)–(f) are the corresponding solutions
using the iterative method. The resolution is 256× 256.
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Figure 5: (a)–(c) are reference current densities from the model with 1, 9, and 25 anomalies with 4 holes. (d)–(f) are the corresponding
current densities using the iterative method. The resolution is 256× 256.



Computational and Mathematical Methods in Medicine 9

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(a)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(b)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(c)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(d)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(e)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(f)

Figure 6: Horizontal current injection for horizontally adopted holes: (a)–(c) are reference solutions from the model with 1, 9, and 25
anomalies with 2 holes. (d)–(f) are the corresponding solutions using the iterative method. The resolution is 256× 256.
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Figure 7: Horizontal current injection for horizontally adopted holes: (a)–(c) are reference current densities from the model with 1, 9, and
25 anomalies with 2 holes. (d)–(f) are the corresponding current densities using the iterative method. The resolution is 256× 256.
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Figure 8: Vertical current injection for horizontally adopted holes: (a)–(c) are reference solutions from the model with 1, 9, and 25 anomalies
with 2 holes. (d)–(f) are the corresponding solutions using the iterative method. The resolution is 256× 256.
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Figure 9: Vertical current injection for horizontally adopted holes: (a)–(c) are reference current densities from the model with 1, 9, and 25
anomalies with 2 holes. (d)–(f) are the corresponding current densities using the iterative method. The resolution is 256× 256.
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Figure 10: Horizontal current injection for no adopted holes: (a)–(c) are reference solutions from the model with 1, 9, and 25 anomalies
with no holes. (d)–(f) are the corresponding solutions using the iterative method. The resolution is 256× 256.
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Figure 11: Horizontal current injection for no adopted holes: (a)–(c) are reference current densities from the model with 1, 9, and 25
anomalies with no holes. (d)–(f) are the corresponding current densities using the iterative method. The resolution is 256× 256.
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combine the proposed method with MREIT simulation so
that we can interpret an apparent conductivity reconstructed
by using an MREIT algorithm.
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