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After a brief survey on the parametric deformable models, we develop an iterative method based on the finite difference schemes
in order to obtain energy-minimizing snakes. We estimate the approximation error, the residue, and the truncature error related
to the corresponding algorithm, then we discuss its convergence, consistency, and stability. Some aspects regarding the prosthetic
sugical methods that implement the above numerical methods are also pointed out.

1. Introduction

The deformable models represent a powerful researched
model-based approach to computer-assisted medical image
analysis, their applications in this framework including ima-
ge segmentation, shape representation and motion tracking.
The theory of deformable models is an interdisciplinary sci-
entific domain, which has appeared and developed in the last
two decades, in strong connection with practical problems of
medicine, image processing, and physics. This theory joins
methods, results, and techniques of various mathematical
fields, physics and mechanics. The mathematical foundation
of this theory represents the confluence of Functional Anal-
ysis, Approximation Theory, Differential Equations, Differ-
ential Geometry, Calculus of Variations, Numerical Analysis,
Linear Algebra, and Probability Theory. The ancestors of the
deformable models, in classical sense, are considered Fischler
and Elschlager, with their spring-loaded templates, [1], to-
gether with Widrow [2], with its rubber mask technique
[2, 3].

The theory of deformable models, in its modern form,
originates from the general theory of continuous multidi-

mensional deformable models in a Lagrangian dynamic of
Terzopoulos (1987) [4]. In fact, the deformable curves (2D
models) and the deformable surfaces (3D models) gained
popularity after their use in computer vision by Kaas et al. [5]
and in computer graphics, by Terzopoulos and Fleischer [6]
in the mid-1980s. Since then, the deformable models, known
also as active contour models or snakes, have been extensively
used for many applications both in 2D and 3D.

Two general types of deformable models have been devel-
oped: firstly, the parametric or variational models, which
originate from the papers of Kaas et al. [5] and are based
on the minimization of the energy-functional associated to
the model, and secondly, the geometric models, which were
introduced independently by Caselles et al. [7] and Malladi
et al. [8], and are based on the front propagation theory [9].

A good survey on deformable models and their applica-
tions can be found in [10, 11]. Recent contributions on pa-
rametric deformable models have appeared in the papers [12,
13]. On the general topic of numerical methods applied in
medical imaging, the recent papers [14, 15] must be men-
tioned.



2 Computational and Mathematical Methods in Medicine

In this paper, we deal with the deformable parametric
models. The basic goal of the theory of parametric defor-
mable models is to determine the energy-minimizing 2D or
3D models, namely, the curves or surfaces which minimize
the corresponding energy functional. Two approaches will
point out in order to obtain the optimal model. The first
approach is based on the Euler-Lagrange-Poisson (ELP) and
Euler-Gauss-Ostrogradski (EGO) equations of Calculus of
Variations in order to minimize the energy-functional. The
second one (the classical approach) consists of using recon-
struction methods, such as the interpolation of the sparse
data extracted from the image, in order to obtain a repre-
sentation of the original data. In what follows we develop
methods and techniques related to the first approach. Gen-
erally, the energy-functional is not convex, so it may have
many local minimum. On the other hand, the analytic solu-
tion of (ELP) equation has a complicated form or it is inac-
cessible explicitly. Therefore, a practical and strong approach
for finding local minimum of the energy functional is to
construct a dynamic system that is governed by the energy
functional and allow the system to evolve to the equilibrium
state. Dynamic models are valuable for medical image anal-
ysis, because most anatomical structures are deformable and
continually undergo nonrigid motion “in vivo.” In fact, the
user is interested to find a good 2D or 3D contour in a given
area. Consequently, a rough prior estimation of the 2D or
3D model is provided, then this initial model undergoes a
deformation until reaching a local minimum of the energy
functional. This deformation process can be achieved in one
of the following ways:

(1) in a Hamiltonian-type approach, by performing a
strictly decreasing energy path, for example, via dy-
namic programming methods [16, 17];

(2) in a Lagrange-type approach, by applying the mech-
anical principles of Lagrange [3, 18];

(3) by using a friction force, in order to constrain the dis-
placement of the snake [5];

(4) by using the (ELP) evolution equation, associated to
the initial (ELP) equation [19].

In this paper, we shall adopt the method of the evolution
equation. So, a prior estimation of the deformable surface is
provided, then it is refined step by step, based on the (EGO)
equation and using discretization methods.

The paper outline is as follows. The next section is de-
voted to present 2D and 3D energy-minimizing models, both
in their static and dynamic forms. The method for reducing
the 3D problem to a 2D modeling is also pointed out, in
order to minimize the computational costs of the numerical
methods. The third section contains the main theoretical
result of the paper. Based on finite difference schemes of ex-
plicit type, we derive an (ELP) algorithm for obtaining an
energy-minimizing snake in its approximated form, then we
estimate its approximation error and we discuss its consis-
tency, convergence, and stability. The last section deals with
the behaviour of prosthetic surgical methods and prosthetic
medical materials, based on Software tools, which implement
the iterative methods developed in the previous sections.

2. Energy-Minimizing Models

2.1. Energy-Minimizing Snakes (2D Models). From mathe-
matical point of view, a 2D parametric deformable model
(usually known as snake) is provided by a family A of
parametrized smooth curves satisfying given boundary con-
ditions and an associated energy-functional. More exactly,
denote by C2([0, 1],R2) the space of all vectorial functions
v = (x, y)T so that the scalar functions x = x(s) and
y = y(s), 0 ≤ s ≤ 1 are continuous together with their
derivatives up to the second-order on the standard interval
[0, 1], that is, x, y ∈ C2[0, 1]; obviously, we can consider an
arbitrary compact interval [a, b] of the real axis instead of
[0, 1]. The family A of admissible deformations consists of all
parametrized curves (snakes):

(
γ
)

: v(s) = (x(s), y(s)
)T ,

0 ≤ s ≤ 1, v ∈ C2([0, 1],R2),
(1)

such that the values v(0), v(1), v′(0), and v′(1) are given; we
adopt the notation |v|2 = |x|2 + |y|2.

In order to find the optimal position of the snake, it is
necessary to characterize its state, by means of an energy-
functional, that is associated to the class A. Let us consider
the following data:

(i) the weight-functions w1(s) and w2(s), which control
the elasticity and the rigidity of (γ), respectively;
generally, these are nonnegative scalar functions of
class C2[0, 1],

(ii) the image intensity function I = I(x, y), which is a
real function of class C2(R2),

(iii) the potential associated to the external forces, rep-
resented by a real function P(v) = P(x, y), of class
C2(R2). The simplest useful choice for the potential
is P(v) = w3I(v), where w3 is a weight-scalar. The
most used choice is P(v) = −λ|∇I(v)|, where λ >
0 is a given scalar and ∇ = (∂/∂x, ∂/∂y)T is the
Hamilton (nabla) operator; this choice will be used
in this paper, too. Note that P can be defined also by
P = Gσ0∗I , that is, the Gaussian (variance σ0) filtered
image of the input image I [10], and

(iv) the vectorial function k(v) = (k1(v), k2(v))T of class
C1(R2,R2) which control the local dilatation or local
contraction of (γ) along its normal; usually, we take
k(v) = cv, with c ∈ R.

The shape of the snake (γ) subject to the image I(v) is
dictated by the energy functional:

E(v) = Eint(v) + Eext(v) + Ebal(v), (2)

where the terms of the right hand of (2) are defined as
follows.

The internal energy

Eint(v) = Eels(v) + Erig(v) (3)
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is obtained by adding the elastic energy

Eels(v) =
∫ 1

0
α(s)

∣∣v′(s)
∣∣2ds, (4)

and the rigid (bending) energy

Erig(v) =
∫ 1

0
β(s)

∣
∣v′′(s)

∣
∣2ds. (5)

The internal energy characterizes the deformation of a
stretchy, flexible snake (contour). The values of w1(s) and
w2(s) show the extent to which the snake can stretch or bend
at an arbitrary point (x(s), y(s)) of the snake.

The external energy, derived from the image, is given by

Eext(v) =
∫ 1

0
P(v(s))ds = −λ

∫ 1

0

∣∣∇I(x, y
)∣∣2ds, (6)

and it allows to find the edges in an image so that the snake
is attracted to contour with large image gradients.

The balloon energy is an energy of constrained-type,
defined as

Ebal(v) = −
∫ 1

0
det(k(v), v′)ds = −

∫ 1

0

(
k1y

′ − k2x
′)ds.

(7)

This energy can be added, optionally, by users, in order to
expand (or contract) the snake.

Denoting by

F(s, v, v′, v′′) = w1(s)
∣∣
∣v

′2(s)
∣∣
∣ + w2(s)

∣
∣v′′2(s)

∣
∣

+ P(v(s))− det(k(v), v′),

P(v) = −λ|∇I(v)|2,

(8)

the following expression of energy-functional E(v) is
obtained from (2)–(8):

E(v) =
∫ 1

0
F(s, v, v′, v′′)ds. (9)

By definition, the triple (A, I ,E) is said to be a deformable
2D model (snake).

The basic goal of a deformable parametric model is to
minimize its energy-functional E(v), which leads to the ener-
gy-minimizing snake. The minimization of the snake energy
gives rise to the following vectorial Euler-Lagrange-Poisson
(ELP) Equation of Calculus of Variations:

∂F

∂v
− d

ds

(
∂F

∂v′

)
+

d2

ds2

(
∂F

∂v′′

)
= 0. (10)

Now, taking into account the relations (8) and (10), we
obtain the vectorial (ELP) equation:

2w2(s)viv(s) + 4w′2(s)v′′′(s) + 2
[
w′′2 (s)−w1(s)

]
v′′(s)

− [2w′1(s)I2 + Tr(∇k)J2
]
v′(s) +∇P(v(s)) = 0,

(11)

where I2 =
(

1 0
0 1

)
, J2 =

(
0 1
−1 0

)
, and Tr(A) is the trace of a

square matrix A.
The scalar (ELP) equations, derived from (11), have the

form:

2w2x
iv + 4w′2x

′′′ + 2
(
w′′2 −w1

)
x′′ − 2w′1x

′

−
(
∂k1

∂x
+
∂k2

∂y

)

y′ +
∂P

∂x
= 0,

2w2y
iv + 4w′2y

′′′ + 2
(
w′′2 −w1

)
y′′ − 2w′1y

′

+

(
∂k1

∂x
+
∂k2

∂y

)

x′ +
∂P

∂y
= 0.

(12)

On the other hand, we infer from(8)

F(s, v, v′, v′′) = w1

(
x
′2 + y

′2
)

+ w2
(
x′′2 + y′′2

)

+ P
(
x, y

)− k1y
′ + k2x

′,
(13)

which leads to

∂2F

∂(v′′)2 = (2w1, 2w2)T . (14)

According to the Legendre conditions and the hypothesis
w2 > 0, the relation (14) proves that any solution of the (ELP)
equations (11) or (12) provides a minimum for the energy-
functional E(v), namely, an energy-minimizing snake.

Example 1. If we choose in (12) w1 = 1,w2 = 0.05, and
the boundary conditions v(0) = v(1) = (0, 5)T , v′(0) =
v′(1) = (0.5, 0.5)T we obtain the general solution of the
(ELP) equation:

x(s) = C1e
3.8042s + C2e

−3.8042s + C3e
2.3511s + C4e

−2.3511s,

y(s) = C5e
3.8042s + C6e

−3.8042s + C7e
2.3511s + C8e

−2.3511s.
(15)

Using boundary conditions, we obtain the graph of the curve
(γ) in Figure 1.

Example 2. If we choose in (12) w1 = 1, w2 = 1, k(v) =
10v, I(v) = I(x, y) = (2

√
2/3)(x3/2 + y3/2), λ = 1, and the

boundary conditions v(0) = (1, 1)T , v′(0) = (3.1,−8.1)T ,
v(π) = (1− π/10,−2− π/10− 3 cosh(2π))T , v′(π) = (2.1−
cosh(2π),−8.1− 2 sinh(2π)), then the (ELP) equations have
the form:

xiv − x′′ − 10y′ − 1 = 0,

yiv − y′′ + 10x′ − 1 = 0,
(16)

with the analytical solutions:

x(s) = sin 2s + cos 2s + sin s cosh 2s + 0.1s,

y(s) = −4 sin 2s + 4 cos 2s + 3 cos s cosh 2s,

− 4 sinh 2s sin s− 0.1s− 6.

(17)

The graph of the curve (γ) is given in Figure 2.
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2.2. Deformable Dynamic 2D Models. Roughly speaking, the
differential fourth-order vectorial equation (11) or the dif-
ferential eight-order system (12) may have many solutions,
which leads to many possible energy-minimizing snakes. As
we have seen in the preceding examples (Section 2.1), these
solutions have a complicated form; moreover, they are often
inaccessible explicitly. In order to eliminate these drawbacks,
we point out in this section, two approaches which lead to a
practical and more simple solution of the (ELP) equation.

2.2.1. The Method of Evolution Equation [19]. Denote by

(
γ
)

: v = v0(s), 0 ≤ s ≤ 1, (18)

an initial estimate of the optimal snake and let consider a
family of curves (contours)

(
γt
)

: v = v(t, s), v ∈ C2(R+ × [0, 1],R2), (19)

where the parameter t ≥ 0 describes the evolution in time
of the snake and s ∈ [0, 1] is the standard parameter of
the curve. The evolution equation associated to the dynamic
model is

∂v

∂t
+

∂2

∂s2

(

w2(s)
∂2v

∂s2

)

− ∂

∂s

(
w1(s)

∂v

∂s

)

− J2(∇k)
∂v

∂s
+∇P(v)− (∇k)(J2v′) = 0,

(20)

together with the initial condition:

v(0, s) = v0(s), 0 ≤ s ≤ 1, (21)

and the boundary conditions

v(t, 0) = v0(0), v(t, 1) = v0(1),

∂v

∂s
(t, 0) = v′0(0),

∂v

∂s
(t, 1) = v′0(1),

t ≥ 0. (22)

A solution of the static problem described by (ELP) equation
(11) is achieved when the solution v(t, s) becomes stable with
respect to the time parameter, that is, limt→∞(∂v/∂t)(t, s) =
0, uniformly with respect to the parameter s ∈ [0, 1]; in
this case, the evolution equation (20) provides a solution
of the static problem (11). According to [20], we note that
this approach of making the time derivative term vanish is
equivalent to applying a gradient descent algorithm to find
the local minimum of the energy functional E(v).

2.2.2. The Method of the Lagrange Dynamics [3, 18]. A
dynamic snake is represented by introducing a time-varying
contour

v(t, s) = (x(t, s), y(t, s)
)T , (23)

see (19), with a mass density μ(s) and a damping density
ω(s). The Lagrange equation for a snake defined in Section
2.1 is

μ
∂2v

∂t2
+ ω

∂v

∂t
+

∂2

∂s2

(

w2(s)
∂2v

∂s2

)

− ∂

∂s

(
w1(s)

∂v

∂s

)

+∇P(v)− J2(∇k)
∂v

∂s
− (∇k)(J2v′) = 0.

(24)

The first two terms in the left hand side of (24) represent
the inertial and damping forces, while the remaining terms,
see also (11), represent the internal stretching force (the
term containing ∂v/∂s), the bending (rigidity) force (the
term containing ∂2v/∂s2), the external force (∇P(v)) and
the balloon-type force (the last two terms). Equilibrium is
achieved when these forces balance and the contour comes
to rest, that is,

∂v

∂t
= ∂2v

∂t2
= 0, (25)

which leads to the equilibrium condition (11).
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2.3. Deformable Surfaces (3D Models). In this section we de-
fine briefly the notion of deformable 3D model (defor-mable
surface), both in the static and dynamic forms, and we
describe a method for reducing the problem of its optimi-
zation to a 2D modelling problem.

2.3.1. Energy-Minimizing Surfaces. From mathematical
point of view, a 3D variational deformable model is empha-
sized by a family A of parameterized smooth surfaces with
given boundary conditions, named admissible surfaces, and
an associated energy functional.

Denoting by D = [0, 1]× [0, 1] the unit square of R2, let
us consider a surface of vectorial equation:

(S) : v = v(s, r), (s, r) ∈ D, (26)

where v ∈ C2(D,R3), v = (x, y, z)T ; in this subsection we set
|v|2 = x2 + y2 + z2, vs = ∂v/∂s, vss = ∂2v/∂s2, vsr = ∂2v/∂s∂r,
vrr = ∂2v/∂r2. Given the functions g ∈ C2(∂D,R3) and
h ∈ C1(∂D,R3), where ∂D is the boundary of D, let A be the
set of admissible deformations, which consists of all functions
v ∈ C2(D,R3) satisfying the boundary conditions v(s, r) =
g(s, r) and (∂v/∂n)(s, r) = h(s, r) on ∂D, where n is the
normal vector with respect to the surface (S) defined by (26).
Further, let us consider the following functions: the image
intensity function I ∈ C2(R3); the potential function associated
to the external forces P(v) = −λ|∇I(v)|2, λ > 0; the control
functions corresponding to the internal forces acting on the
shape of the surface, namely, the elasticity functions w10(s; r)
and w01(s; r); the rigidity functions w20(s; r) and w02(s; r), and
the twist resistance function w11(s; r). The energy functional
E : A → R, associated to these data, is defined as follows:

E(v) =
∫∫

D
F(v, vs, vr , vss, vsr , vrr)ds dr, (27)

where

F(v, vs, vr , vss, vsr , vrr) = w10|vs|2 + w01|vr|2
+ w20|vss|2 + 2w11|vsr|2
+ w02|vrr|2 + f (v, vs, vr),

f (v, vs, vr) = P(v) + det(c0v, vs, vr).

(28)

We notice that E(v) represents the sum of the internal energy
(the terms of (27) excepting f (v, vs, vr)), the external energy
(defined by the term containing P(v)) and the balloon energy,
which is added, optionally, by the users (the term including
det(c0v, vs, vr)).

The triple (A, I ,E) is said to be a 3D deformable model,
sometimes a deformable surface. The basic problem of the
deformable model is to minimize its energy functional,
namely, to obtain the optimal deformable surface. To this
purpose, the Euler-Gauss-Ostrogradski (EGO) equation of
Calculus of Variations, that is,

∂F

∂v
− ∂

∂s

(
∂F

∂vs

)
− ∂

∂r

(
∂F

∂vr

)
+

∂2

∂s2

(
∂F

∂vss

)

+
∂2

∂v∂r

(
∂F

∂vsr

)
+

∂2

∂r2

(
∂F

∂vrr

)
= 0

(29)

is used.

By simple calculation, we obtain from (28) and (29):

∂2

∂s2
(w20vss) +

∂2

∂r2
(w02vrr) + 2

∂2

∂s∂r
(w11vsr)

− ∂

∂s
(w10vs)− ∂

∂r
(w01vr)

+
1
2

(

∇ f − ∂

∂s

(
∂ f

∂vs

)

− ∂

∂r

(
∂ f

∂vr

))

= 0.

(30)

2.3.2. Deformable Dynamic 3D Models. Similarly to the 2D
model, we can suppose that a rough prior estimate of surface
is accessible, namely,

(
S0) : v = v0(s, r), (s, r) ∈ D. (31)

Further, this surface is refined step by step, according to
(EGO) equation; so, a sequence of surfaces, which leads to
the energy-minimizing surface, is provided. More exactly, let

(
St
)

: v = v(t, s, r), t ≥ 0, (s, r) ∈ D, (32)

be a family of surfaces, where the parameter t describes the
evolution in time of the model. We associate to the previous
static model (A, I ,E) the evolution equation

∂v

∂t
+ G(v, vs, vr , vss, vsr , vrr) = 0, (33)

where G(v, vs, vr , vss, vsr , vrr) is the left hand member of (30),
together with the initial estimate (condition)

v(0, s, r) = v0(s, r), (s, r) ∈ D, (34)

and the boundary dynamic conditions

v(t, s, r) = v0(s, r), (s, r) ∈ ∂D, t ≥ 0,

∂v(t, s, r)
∂n

= ∂v0(s, r)
∂n

, (s, r) ∈ ∂D, t ≥ 0.
(35)

A solution of the “static” problem described by (30) is
achieved, when the solution v(t, s, r) becomes stable with
respect to the time parameter, that is, limt→∞(∂v/∂t)(t, s, r)=
0, uniformly, with respect to (s, r) ∈ D; in this case, the evol-
ution equation (33) provides a solution of the static problem
(30).

2.3.3. The Simplified 2D Model. The problem of finding
directly energy-minimizing surfaces, that is, solutions of the
p.d.e. (30), is not practically possible because these solutions
contain long and complicated expressions or their explicit
form is inaccessible. On the other hand, by using discretized
schemes for solving (33), we get a system of algebraic equa-
tions with a high computational level. These drawbacks are
eliminated by passing to a 2D modeling problem, [19]. More
exactly, the third component z of (S) is constrained to depend
only on r, by setting z(s, r) = r. So, the surface that we seek
is given as a sequence of plane curves, named slices, and the
parameter r of (26) becomes the index of the corresponding
slice. In this approach, the surface that we seek is viewed
as a sequence of the planar curves (slices), indexed by
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the parameter r, so that each fixed value of r provides a closed
curve, lying in a slice of the 3D-image. Consequently, let

(
γr
)

: v(s) = (x(s), y(s)
)
, s ∈ [0, 1], (36)

be the 2D curve obtained by applying this reconstruction
method, for a given r.

Under the hypothesis that wij are positive constants, the
(EGO) equation (29), which corresponds to (γr), is

2w20
d4v

ds4
− 2w10

d2v

ds2
− c0J2

dv

ds
+∇P = 0, (37)

where J2 =
[

0 1
−1 0

]
.

If we consider in (37) c0 = −0.02, w10 = 2.5, w20 = 0.4, P
= r(x2 + y2) and r = 0.1, 0.2, . . . , 1 with boundary conditions
x(0) = x(1) = 1 + (r2(1− r)2)/25, x′(0) = x′(1) = r(1− r)/20,
y(0) = y(1) = 0 + r2(1− r)/25, y′(0) = y′(1) = 2r(1− r)/5,
we obtain the graphs of the slices and a 3D reconstruction of
the surface, as we can see in Figures 3(a) and 3(b).

In what follows we shall restrict to the study of 2D de-
formable models.

3. An ELP-Algorithm for Obtaining
Energy-Minimizing Snakes

In this section we suppose that the following hypotheses
are satisfied: the control functions w1 and w2 are positive
constants, the curves of the family (γt) given by (18) and (19)
are closed for every t ≥ 0 and k(v) = c0v, c0 ∈ R+. Thus, the
(ELP) evolution equation (20) becomes

2
∂v

∂t
+ 2w2

∂4v

∂s4
− 2w1

∂2v

∂s2
− 2c0J2

∂v

∂s
+∇P = 0, v = v(t, s).

(38)

In order to solve numerically the partial differential equation
(38), we focus on the method of finite differences, which is
widely used in image processing [21]. Let δ and h be the time
and the space discretization steps, respectively, and denote by
R = {(tk, si), k ≥ 0, 0 ≤ i ≤ N} the plane net of discretiza-
tion, with N ∈ N∗, Nh = 1, tk = kδ, and si = ih. The follow-
ing notations will be used, too: vki = v(tk, si), vk = (xk, yk)T ,

k ≥ 0; gk = (gk1 , gk2 )
T

, with gk1 = (−1/2)((∂P/∂x)(vk)),
gk2 = (−1/2)((∂P/∂y)(vk)); obviously, vki = vki+N , i ∈ Z,
because (γt), t ≥ 0, is a closed curve. Also, we set

α = w1

h2
, β = w2

h4
, γ = c0

h
. (39)

3.1. Explicit Finite Difference Scheme. We approximate the
partial derivatives involved in the (ELP) evolution equation
(38) as follows:

∂v

∂t
(tk, si) ≈ 1

δ

(
vk+1
i − vki

)
;

∂v

∂s
(tk, si) ≈ 1

h

(
vki+1 − vki

)
,

∂2v

∂s2
(tk, si) ≈ 1

h2

(
vki+1 − 2vki + vki−1

)
,

∂4v

∂s4
(tk, si) ≈ 1

h4

(
vki+2 − 4vki+1 + 6vki − 4vki−1 + vki−2

)
.

(40)

By replacing the relations (40) in the partial differential equa-
tion (38), it result a system of algebraic equations; denoting

by Vk = (Xk,Yk)
T

the solutions of this system (which ap-
proximate the exact values vki of (38) at the nodes of R), we
get the vectorial formula:

Vk+1
i −Vk

i

δ
+ β

(
Vk
i+2 − 4Vk

i+1 + 6Vk
i − 4Vk

i−1 + Vk
i−2

)

− α
(
Vk
i+1 − 2Vk

i + Vk
i−1

)

− γJ2
(
Vk
i+1 −Vk

i

)
+

1
2
∇P = 0, 0 ≤ i ≤ N ; k ≥ 0,

(41)

where

Vk
i =

(
Xk
i ,Yk

i

)
(42)

and α,β, γ are given by (39). The scalar equations corre-
sponding to (41) are the following:

Xk+1
i − Xk

i

δ
+ β

(
Xk
i+2 − 4Xk

i+1 + 6Xk
i − 4Xk

i−1 + Xk
i−2

)

− α
(
Xk
i+1 − 2Xk

i + Xk
i−1

)

− γ
(
Yk
i+1 − Yk

i

)

+
1
2
∂P

∂x

(
Xk
i ,Yk

i

)
= 0, 0 ≤ i ≤ N − 1; k ≥ 0.

Yk+1
i − Yk

i

δ
+ β

(
Yk
i+2 − 4Yk

i+1 + 6Yk
i − 4Yk

i−1 + Yk
i−2

)

− α
(
Yk
i+1 − 2Yk

i + Yk
i−1

)

+ γ
(
Xk
i+1 − Xk

i

)

+
1
2
∂P

∂y

(
Xk
i ,Yk

i

)
= 0, 0 ≤ i ≤ N − 1; k ≥ 0.

(43)

Now, let K be the stiffness matrix associated to the explicit
finite difference scheme, defined as the circular matrix of
order N , whose first row is

(a1, a2, a3, 0, . . . , 0, a3, a2), (44)

where

a1 = 2α + 6β, a2 = −α− 4β, a3 = β. (45)

Denote by L the circular (square) matrix of order N defined
by the first row (1,−1, 0, 0, . . . , 0) and let IN be the identity
matrix of order N . The relations (41) and (43) can be written
in a matricial form as:

Vk+1 = (IN − δK)Vk − γδL
(
J2V

k
)

+ δgk, k ≥ 0, (46)

Xk+1 = (IN − δK)Xk − γδLYk + δgk1 ,

Yk+1 = (IN − δK)Yk + γδLXk + δgk2 ,
k ≥ 0 (47)

respectively.
In what follows, the formulas (41)–(47) will be referred

as (ELP) algorithm for obtaining an energy minimizing snake
(in its approximating form).
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Surface
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Figure 3

3.2. The Residue of (ELP) algorithm. Taking into account the
relation (41), the residue associated to the (ELP) algorithm is

Rvi = vk+1
i − vki

δ
+ β

(
vki+2 − 4vki+1 + 6vki − 4vki−1 + vki−2

)

− α
(
vki+1 − 2vki + vki−1

)
− γJ2

(
vki+1 − vki

)

+
1
2
∇P

(
vki
)

, 0 ≤ i ≤ N , k ≥ 0.

(48)

By using Taylor expansions at the point (tk, si) ∈R we obtain

vk+1
i = vki + δ

∂v

∂t
+
δ2

2!
∂2v

∂t2
+
δ3

3!
∂3v

∂t3
+ · · · ,

vki±1 = vki ± h
∂v

∂s
+
h2

2!
∂2v

∂s2
± h3

3!
∂3v

∂s3
+ · · · ,

vki±2 = vki ± 2h
∂v

∂s
+

(2h)2

2!
∂2v

∂s2
± (2h)3

3!
∂3v

∂s3
+ · · · ,

(49)

where the partial derivatives ∂v/∂t and ∂lv/∂sl, l ≥ 1 are
computed at the point (tk, si) = (kδ, ih) ∈R.

By replacing the expansions (49) in the residue’s formula
(48) and using the relations (39), we derive

Rvi = δ

(
1
2
∂2v

∂t2
+
δ

6
∂3v

∂t3
+ · · ·

)

(tk, si)

+ h2w2

(
1
6
∂6v

∂s6
+

127
5040

h2 ∂
8v

∂s8
+ · · ·

)

(tk, si)

−w1h
2

(
1

12
∂4v

∂s4
+
h2

60
∂6v

∂s6
+ · · ·

)

(tk, si)

− c0J2h

(
1
2
∂2v

∂v2
+
h2

24
∂4v

∂v4
+ · · ·

)

(tk, si),

0 ≤ i ≤ N − 1, k ≥ 0.

(50)

If the partial derivatives of the vectorial function v are uni-
formly bounded on D, the relations (50) give the following
estimate concerning the residue of (ELP) algorithm:

Rvi =
⎧
⎨

⎩

O(δ) + O(h), if c0 > 0,

O(δ) + O
(
h2
)
, if c0 = 0.

(51)

Notice that the condition c0 = 0 means that there are not
existing constrains defined by the users.

3.3. The Consistency of the ELP algorithm. Let Tr(vi) = δRvi
be the truncature error of (ELP) algorithm at the kth iteration.
Under the assumption of uniform boundedness of the partial
derivatives of the vectorial function v, it follows from (51):

Tr(vi) =
{
O
(
δ2
)

+ O(δh), if c0 > 0

O
(
δ2
)

+ O
(
δh2

)
, if c0 = 0.

(52)

The relations (52) characterize the accuracy of the discretized
scheme providing the (ELP)-Algorithm.

On the other hand, the equality

lim
δ→ 0
h→ 0

Tr(vi)
δ

= lim
δ→ 0
h→ 0

Rvi = 0, (53)

which results from (52), shows that this discretized scheme is
consistent.

3.4. Approximation Error and the Convergence. Let us con-
sider the approximation-error εki at the point (tk, si) ∈ R,
namely

εki = vki −Vk
i , 0 ≤ i ≤ N − 1, k ≥ 0. (54)
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By replacing Vk
i = vki −εki from (54) into (41) and taking into

account the expressions (49) and the definition (48) of Rvi,
we get

εk+1
i = δRvi − βδεki+2 + δ

((
4α + β

)
I2 + γJ2

)
εki+1

+
((

1− 6βδ − 2αδ
)
I2 − γJ2

)
εki

+ δ
(
4β + α

)
εki−1 − βδεi−2.

(55)

Let

Ek = max
{∣∣
∣εki−2

∣∣
∣,
∣∣
∣εki−1

∣∣
∣,
∣∣
∣εki

∣∣
∣,
∣∣
∣εki+1

∣∣
∣,
∣∣
∣εki+2

∣∣
∣
}

, k ≥ 0,

(56)

be the approximation error of (ELP) algorithm at kth itera-
tion.

The relations (55) and (56) yield:

Ek+1 ≤ δ|Rvi|
+
(
βδ + δ

√(
4β + α

)2 + γ2

+
√(

1− 6βδ − 2αδ
)2 + γ2δ2 + 4βδ + αδ + βδ

)
Ek.

(57)

On the other hand, it follows from (50):

|Rvi| ≤M1δ + |2w2 −w1|M2h
2 + c0M3h, 0 ≤ i ≤ N − 1,

(58)

where Mj , j ≥ 1 are positive constants, which do not depend
on δ and h.

Now, the relations (57) and (58), combined with the clas-
sic inequality

√
x2 + y2 ≤ |x| +

∣∣y
∣∣, (59)

provide the estimate:

Ek+1 ≤ (10βδ + 2αδ + 2γδ +
∣
∣1− 6βδ − 2αδ

∣
∣)Ek + A(h, δ),

(60)

with

A(h, δ) =M1δ
2 + M2|2w2 −w1|δh2 + M3c0δh. (61)

Denote by

ε = δ

h4
(62)

and let us assume that the inequality

6εw2(k + 1) ≤ 1 (63)

holds. It is a simple exercise to show that the relation (63)
entails the inequality

6βδ + 2αδ ≤ 1 (64)

for N sufficiently large. Now, the relations (60) and (64) lead
to:

Ek+1 ≤ qEk + A(h, δ), k ≥ 0, (65)

where

E0 = 0, q = 1 + 4βδ + 2γδ. (66)

Writing (65) successively for k, k − 1, . . . , 1, we get

Ek+1 ≤ qk+1 − 1
q − 1

A(h, δ), k ≥ 0. (67)

Taking into account that γ ≤ β (for N sufficiently large), the
relations (66) and (39) imply 1+4w2ε ≤ q ≤ 1+6w2ε, so that
the relations (67) and (63), combined with the inequality
(1 + x)1/x ≤ e, x > 0, yield

Ek+1 ≤ e − 1
4w2ε

A(h, δ). (68)

Finally, we derive from (61), (62), and (68):

Ek+1 =
{
O
(
δh4

)
+ O

(
h5
)
, if c0 > 0,

O
(
δh4

)
+ O

(
h6
)
, if c0 = 0.

(69)

It follows from (69) that Ek+1 → 0 if h → 0; it is easily seen
that, according to the relations (62) and (63), the hypothesis
h → 0 implies δ → 0; consequently the following result
holds.

If the inequality (63) fulfills, then the (ELP) algorithm (46)
is convergent and its approximation error at the (k+ 1)th itera-
tion is given by the relation (69).

3.5. The Stability. The intuitive idea regarding the stability
is that small errors in the initial conditions of a partial dif-
ferential equation should cause small errors in its solution. In
fact, the study of the stability is useful in connection with the
theorem of Lax concerning the convergence of the discretized
schemes, [21].

The aim of this subsection is to examine the stability of
the (ELP) algorithm (46), with c0 = 0. By omitting the small
terms δRvi of (55), we get the relation:

εk+1
i = (1− 6βδ − 2αδ

)
εki +

(
αδ + 4βδ

)(
εki+1 + εki−1

)

− βδ
(
εki+2 + εki−2

)
, k ≥ 0.

(70)

To apply the stability criterion of von Neumann, [22] we set

r1 = αδ, r2 = βδ,

η1 = ω1h, η2 = ω2h,
(71)

εki = exp(νkl) exp
(
jωh

)

=
(
μke jω1ih,μke jω2ih

)T
,

μ = exp(νl),

(72)

where j and ν = ν(ω) are complex numbers, j2 = −1 and
ω = (ω1,ω2)T denotes the frequency.
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(a) (b) (c)

Figure 4: Preliminary experiments made in 3DS Max7.

(a) (b)

(c) (d)

Figure 5: Results obtained with the 3D reconstruction component of MoDef 3D Visual environment: (a) initial 3D representation of the
deformable surface of the surgical mesh, (b) curve representing a section of the surgical mesh acquired by the transducer, extracted from the
context of the US image based on specific-image processing method, (c) the surface of the prosthetic mesh after the deformations produced
in time due to the anatomic assimilation process, and (d) the basic set of generating curves, used to obtain the solid-view representations of
the prosthetic mesh.

Now, we obtain from (70), (71), and (72):

μ = (1− 2r1 − 6r2) + (r1 + 4r2)
(
e jη1 + e− jη1

)

− r2

(
e2 jη1 + e−2 jη1

)
,

μ = (1− 2r1 − 6r2) + (r1 + 4r2)
(
e jη2 + e− jη2

)

− r2

(
e2 jη2 + e−2 jη2

)
.

(73)

We choose ω1 = ω2 and let η = η1/2 = η2/2. The
trigonometric formulas e jα + e− jα = 2 cosα, 1 − cosα =

2sin2α/2, and 1− cos 2α = 8 sin2α/2 cos2α/2, α ∈ R together
with (73) give:

μ = 1− 4r1sin2η − 16r2sin4η. (74)

On the other hand, according to the relation | exp( jωit)| = 1,
it is easy to see that the error εki of (72) does not increase in
time if |μ| ≤ 1, so that we infer from (74):

2r1 + 8r2 ≤ 1, (75)

which represent precisely the stability criterion of von Neu-
mann for the (ELP) algorithm (46).
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A combination of the relations (39), (62), (71), and
(75) provides the following equivalent form of the stability
condition of von Neumann:

2ε
(
4w2 + w1h

2) ≤ 1. (76)

4. Monitoring the Behavior of Prosthetic
Surgical Methods and Prosthetic Medical
Materials Based on Software Implementation

In order to apply the results of the theoretical researches
detailed above in the medical imaging domain, a 3D visual
software environment—named MoDef—was implemented,
aiming to visualize and follow up the deformation behavior
of the surgical (abdominal, maxilla-facial, and orthodontic)
prosthetic materials. That is performed on three distinct, but
convergent, levels, as follows:

(a) 3D reconstruction visual software component, aimed
to tracks the evolution of the prosthetic materials,
based on processing the US images of the anatomic
context of a lot of surgical patients;

(b) deformable prosthetic material’s behavior forecasting
software component, based on software tools which
implements the above described mathematical meth-
ods;

(c) quad comparative parallel tracking software compo-
nent, aimed to simultaneous supervise in time both
(a) and (b) levels, in comparison with the results
provided by the stochastic analysis component of the
3D visual software environment MoDef.

Concerning the 3D visualizing of the prosthetic meshes
by means of the MoDef software environment components,
two levels of reconstruction are performed, namely

(1) on the first level, a polynomial interpolation method
is applied on each slice of the US image of the pros-
thetic mesh, acquired based on succeeding positions
of the transducer, obtained by rotating them with a
constant angle in a same preestablished direction;
more exactly, the curves representing the sections
of the surgical mesh acquired by the transducer are
extracted from the context of the US image, based on
specific image processing methods, namely, contour
detection methods, that are implemented at the level
of the image processing operators of the MoDef en-
vironment’s image processing library. Starting with
this set of basic mesh surface definition curves, ex-
tracted from the US images acquired at pre-estab-
lished moments in time, a complete and consistent
collection of 3D generator curve sets is obtained, by
means of 3D polynomial interpolation methods,
based on Lagrange, Hermite or Birkhoff operators;

(2) on the second level, the complete collection of the
3D generator curves obtained at the first level is pro-
cessed based on Blended Interpolating Methods
(BIM), as well as with 3D continuous representation
techniques, in order to obtain “solid-view,” respect-

ively, “wired-view” representations of the prosthetic
mesh.

In what follows, some preliminary experiments made in
3DS Max7, followed by some relevant results obtained with
the 3D reconstruction component of MoDef 3D Visual en-
vironment are presented in Figures 4 and 5.

5. Conclusions

In this paper we considered parametric (variational) deform-
able models and we developed an iterative method based on
finite difference schemes in order to solve numerically the
(ELP) equation of Calculus of Variations, which provides the
energy minimizing snake. We derived estimates concerning
the approximation error related to the corresponding (ELP)
algorithm and we established conditions for its convergence
and stability. Some considerations about the implementation
of the above numerical methods where presented, too. As
future targets, we intend to consider probabilistic models
which offer an alternative approach by using the Bayes tech-
nique, as well as geometric deformable models which pro-
vide an efficient alternative to address some limitation of par-
ametric deformable models.
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