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The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-
diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base
correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using
MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute
diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the
end of the membrane, HCO3

− concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly
within the first 47 minutes while optimal HCO3

− concentration was achieved within 30 minutes of the therapy. Abnormally
high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the
overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference
between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is
critical for the effective design and operation of high-flux dialyzers.

1. Introduction

High-flux dialyzer is one of the possible treatments to remove
toxic solutes from the blood when the native kidneys loss
their function. Small solutes removal is primarily done by
diffusion while larger solutes removal is obtained by con-
vection. The efficiency of a dialyzer is therefore dependent
on its ability to use these mechanisms (convection and
diffusion) to exchange solutes across the dialyzer membrane
[1–4]. Diffusion is mainly affected by blood and dialysate
flow rates, dialyzer surface area, temperature, and membrane
thickness. If we assume constant values to all other factors,
then the diffusion mechanism depends on the blood and
dialysate concentration gradients [5, 6]. This, however, is
influenced by the blood and dialysate flow distributions
and flow rates. Extensive research has been done on flow
distribution mismatch frequently observed at the blood-
dialysate interface [6–10]. Physically, attempts to correct and
optimize blood and dialysate flow mismatch have been made

by redesigning blood and dialysate headers. Options such
as space yarns and moiré structure have been proposed to
resolve dialysate channeling phenomenon external to the
fiber bundle [11, 12]. The main feature of convection is the
use of high-flux HD characterized by high permeability for
water, electrolytes, and higher clearance of middle and large
molecular weight solutes. The role of convective transport is
discussed extensively in recent articles [13–19].

The investigation of the effect of convection and diffusion
during dialysis session continues to pose a major challenge to
HDF researchers and engineers. Best-known earlier models
were based on clinical data. However, these macroscopic
experimental approaches make it difficult to capture and
explore convective and diffusive transports during dialysis
session. Mathematical models have been used to evaluate,
optimize, and control various forms of dialysis therapy
from clinical routine to investigating new issues in dialysis
therapy [3–6, 8–11, 15, 19, 20]. The underlying mecha-
nism of these mathematical models has been Navier-Stoke
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equation. Numerical methods aimed to quantify both the
convective and diffusive transports of solutes exchange across
membranes have been used [21–28]. Researchers [21–23, 25,
27, 28] used finite difference schemes and control volumes
while analytical solutions were derived by [24, 26]. These
authors, however, neglected the effects of either diffusion or
convection flows, or their choice of techniques not justified in
dialysis therapies, or did not include buffer which is common
in dialysis sessions.

In dialysis, the type of numerical scheme used in
computing solutions of convective-diffusive equations is very
necessary, especially when high flux membrane (i.e., where
convection term dominates) is used. In this case, the dialyzer
membrane is so thin that one is forced to use under resolved
methods that may be unstable. On the other hand, the
use of dispersive schemes may trigger numerical instabilities
which may affect the fully description of the convection
and diffusion phenomena during HD session. To achieve
maximal dialyzer efficiency, the accuracy and reliability of
numerical schemes used to compute convection-diffusion
phenomena is of paramount importance. These numerical
schemes depend on the choice of discretization and the
quality of the underlying mesh.

This paper focused on finite volume method (FVM) for
unsteady-state convection-diffusion equations that arise in
dialysis therapy. The transport equation was described using
a three-compartmental model of blood, membrane, and
dialysate compartments. The model was coupled with buffer-
ing and replenishment. An accurate transient convection-
diffusion model that described solute exchange in a typical
high-flux hollow-fiber dialyzer was performed. The numer-
ical discretization and analysis schemes were then proposed
and tested. We then explored the impact of small molecule
weight solute (carbon dioxide and bicarbonate) transports
in a high-flux dialyzer followed by conclusions.

2. Model Formulation

2.1. Membrane Model. The conservation law for the trans-
port of solute concentrations in an unsteady flow has the
general form

Unsteady Term
︷ ︸︸ ︷

∂ρc

∂t
+

Convection Term
︷ ︸︸ ︷

div
(

ρcu
) =

Diffusion Term
︷ ︸︸ ︷

div
(

D · grad(c)
)

+

Source Term
︷︸︸︷

Sc ,

(1)

where ρ (a constant) is the density of incompressible fluid,
c is the solute concentration, u is the fluid velocity, Sc
is the production of new solute at that point, D is the
diffusion constant, and div() and grad() are the normal
vector operators. Equation (1) basically states that the rate
of increase of the number of molecules of solute (ρc) at any
point equals the (negative of the) rate they are being removed
at that point by convection (div{ρcu}) plus the rate they are
being added by diffusion (div{D grad(c)}) plus the rate at
which solutes are being produced (Sc).

The following simplifying assumptions are made in the
membrane model.

(1) The membrane is small enough that it is assumed to
be in equilibrium (steady state), so the time derivative
term is zero.

(2) The membrane impedes flow in all directions but
radially, so the velocity vector is in the r direction
only.

(3) The membrane volume is small that production of
new solute can be ignored, so Sc = 0.

(4) Since we are interested in the change of concentration
from one side of the membrane to the other, the
rate of change of concentration in the axial direction
is smaller (and it is zero in the φ direction due to
symmetry). Therefore, we ignore the terms in grad(c)
except for the radial direction. Using assumptions 1–
4, (1) becomes

ρ · div(cu) = D · div
(

grad(c)
)

. (2)

Integrating (2) and transforming the resulting equation
using the divergence theorem gives

ρ
∫

CV
div(cu)dV = D

∫

CV
div
(

grad(c)
)

dV ,

ρ
∮

F
(n · cu)dA = D

∮

F

(

n · grad(c)
)

dA,

(3)

where the normal vector to the face is n, and the integrals
indicate either a volume integral over the control volume
(with CV) or a surface integral over the faces (with F).
All components of u in (3) are zero except the radial
direction, so the dot product with n has only the term cur .
Using assumption 4 and assuming that the functions in
the integrands are constant across the faces that the surface
integrals act on, (3) reduces to

ρur

[

c
(

r +
δr

2

)

− c
(

r − δr

2

)]

= D
[

∂c

∂r

(

r +
δr

2

)

− ∂c

∂r

(

r − δr

2

)]

.

(4)

From (4), if the fluid velocity was zero, the LHS would be
zero, the gradient would be a constant, and the concentration
would follow a linear slope through the membrane in the
radial direction. However, with a nonzero velocity, the flux
of solute due to convection, cur , is nonzero. Since the
concentration varies through the membrane in the radial
direction, intuitively, the diffusion term would need to
compensate for the drop in convection so that a constant flow
exists across the membrane from one side to the other. Re-
arrange the terms in (4)

ρurc
(

r +
δr

2

)

−D∂c
∂r

(

r +
δr

2

)

= ρurc
(

r − δr

2

)

−D∂c
∂r

(

r − δr

2

)

.

(5)
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Figure 1: (a) Schematic of a typical hollow-fiber dialyzer module with the computational blood and dialysate domains. (b) Mass transport
of solutes in blood and dialysate compartments through a single hollow fiber membrane.

Since (5) is true for any separation dr and for any value r,
the total solute flux, Js (both convection and diffusion) is
constant across the membrane at any point. Thus, we have

ρurc(r)−D∂c
∂r

(r) = Js. (6)

The exact solution for (6) in terms of the concentration c(r)
is of the form

c(r) = k1e
k2r + k3. (7)

Substituting (7) into (6) and gathering terms

ρurc(r)−D∂c
∂r

(r) = ρurk1e
k2r + ρurk3 −Dk1k2e

k2r

= k1
(

ρur −Dk2
)

ek2r + ρurk3 = Js.

(8)

The coefficient of the exponential must be zero and the
constant term equal Js, thus

k2 = ρur
D

, k3 = Js
ρur

. (9)

The constant k1 is determined by the concentration value at
one end of the membrane. For this paper, the pressure in the
dialysate side (at larger values of r) is normally larger than
that in the blood side, so the velocity ur is negative. Picking
a solute where the concentration is higher in the dialysate
side, gives positive concentration gradient, dc/dr. Therefore,
if both terms of (6) are negative, then Js is negative, that is,
a total flux in the negative direction toward the blood side.
In this case, k3 is positive, k2 is negative, and for dc/dr to be
positive k1 must be negative. So the concentration function
must be of the form

c(r) = α3 − α1e
−α2r , (10)

where the α’s are the positive versions of the k constants.
Therefore, concentration is positive and decreasing for
smaller r (toward the blood side) and the slope is increasing
for smaller r to compensate for the reduced convection.

2.2. Transmembrane Flow. Following [29] and assuming that
reflection coefficient is negligible because of small (10−4)
fiber pore size [30], we describe the flow passing through the
membrane (see Figure 1(b)) by simplified Kedem-Katchalsky
(K-K) equations

Jv ≈ LpΔP,

Js ≈ C∗s Jv + PsΔcs.
(11)

Jv (m/s) is ultrafiltration velocity or volumetric flux across
the membrane; Js (kg/m2s) is solute flux across the mem-
brane; Lp (m/sPa) is the hydraulic permeability of the mem-
brane; Ps (m/s) is solute diffusive permeability coefficient
of a membrane; c∗s (kg/m3) represents the average solute
concentration at each side of the membrane; Δcs (kg/m3)
is solute concentration difference (i.e., transmembrane con-
centration) across the membrane. The parameter ΔP (Pa)
is the membrane surface hydraulic permeability of the
membrane. Thus, the membrane interfacial conditions for
the blood-side model are

uz = 0, ur = Jv, Ds
∂cs
∂r
= Jvcs − Js. (12)

2.3. Blood-Side Flow Model. Consider (r, z) as coordinates
representing a point in the cylindrical coordinate system
where the z-axis is taken along the dialyzer length (i.e.,
0 ≤ z ≤ L) and r is taken along the radial direction. An
axisymmetric domain, where r is chosen to lie in the range
0 < r < rb between z = 0 and z = L for a membrane
length L and radius rb (see Figure 1) depicts the blood
side model. The Navier-Stokes and continuity equations
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Table 1: Reaction and equilibrium constants and equations used in this paper at 297 K.

Constant Value/equation Unit Ref

Forward reaction constant, k+ 2.38× 10−2 s−1 [31, 32]

Reverse reaction constant, k− 1.4× 101 m3 mol−1 s−1 [31, 33]

Forward reaction constant, k2 8.67 m3 mol−1 s−1 [31, 32]

Reverse reaction constant, k−2 2.0× 10−4 s−1 [31, 32]

Equilibrium constant, K1 4.43× 10−4 mol m−3 [32]

Equilibrium constant, K2 4.905× 104 mol−1 m3 [32]

Equilibrium constant, K3 4.64× 10−8 mol m−3 [32]

Equilibrium constant, K4 9.03× 10−9 mol2 m−6 [32]

that govern the flow of an incompressible Newtonian fluid
representing blood with constant density ρ and viscosity μ
can be described as [13]

1
r

∂(rur)
∂r

+
∂uz
∂z

= 0,

ur
∂ur
∂r

+ uz
∂ur
∂z

= −1
ρ

∂p

∂r
+
μ

ρ

[

1
r

∂

∂r

(

r
∂ur
∂r

)

− ur
r2

+
∂2ur
∂z2

]

,

ur
∂uz
∂r

+ uz
∂uz
∂z

= −1
ρ

∂p

∂z
+
μ

ρ

[

1
r

∂

∂r

(

r
∂uz
∂r

)

+
∂2uz
∂z2

]

,

(13)

where ur and uz are the radial and axial velocity components,
respectively, and p the pressure. Using the continuity equa-
tion and the fact that flow is driven by pressure gradient in
the z-direction, a fully developed inlet velocity profile for N
number of fibers at z = 0 and 0 < r < rb are obtained [31, 34]

ur(r) = 0, uz(r) = 2qb
Nπr4

b

(

r2
b − r2

)

. (14)

Here, qb is the inlet blood flow rate in each of the hollow
fibers with a fiber cross-section area πr2

b . Applying no slip
condition at the wall and axisymmetric axis, respectively, at
r = 0

ur = uz = 0, ur = ∂uz
∂r

= 0 at r = 0; 0 ≤ z ≤ L.

(15)

The convection-diffusion equation governing the mass
transport of solutes s coupled to the blood velocity field is
given by

Transient Term
︷︸︸︷

∂cs
∂t

+

Convective Term
︷ ︸︸ ︷

uz
∂cs
∂z

+ ur
∂cs
∂r

=

Diffusive Term
︷ ︸︸ ︷

Ds

(

∂2cs
∂r2

+
1
r

∂cs
∂r

+
∂2cs
∂z2

)

+

Buffer Term
︷︸︸︷

Bs ,

(16)

where cs and Ds are the concentration and the diffusion
coefficient of solute s in the blood, respectively. The inlet and

outlet boundary conditions for the concentration equation
(4) are

cs(z, r, 0) = cs0 , cs(0, r, t) = cs0 ,
∂cs(z, 0, t)

∂r
= 0.

(17)

Bs defines the buffer term that vanishes everywhere except in
the blood membrane domain and denotes the rate of solute
s production or consumption per time. We adapt buffer
reaction rates for s = [CO2, HCO3

−] given by [31, 35]

BCO2 = −k+

⎛

⎝1 + α
2
[

CO3
2−]

[

HCO3
−]

⎞

⎠

⎛

⎝[CO2]− β
[

HCO3
−]

[

CO3
2−]

⎞

⎠,

BHCO3
− = −2BCO2 ,

(18)

where α = k2K4/2k+K3, β = k−K3/k+, and [HCO3
−]/

[CO3
−2] = 20. The rate controlling reactions for the carbon-

ate and bicarbonate ions are given as [31, 35]

CO2 + H2O
k+�
k−

H+ + HCO3
−, CO2 + OH− k2�

k−2

HCO3
−,

(19)

where k+, k−, k2, and k−2 are their reaction constants
with their equilibrium constants defined as K1 and K2,
respectively. The overall reaction is

CO2 + CO3
2− + H2O � 2HCO3

−, (20)

with the following fast reactions assumed to be at equilib-
rium

HCO3
− K3� H+ + CO3

−, H2O +
K4� H+ + OH−, (21)

where K3 and K4 are their equilibrium constants. The
parameters and their values are stated in Table 1.

2.4. Dialysate-Side Flow. Since each fiber was surrounded
by a uniform annulus (shown in Figure 2(a)), we adapted
Krogh cylinder geometry [36, 37] with annulus radius rd
which was far larger than the fiber radius rb. Assuming a fully
developed axial and radial velocities in annulus geometry,
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Figure 2: Geometric configuration near dialysate inlet. (a) The distributors are designed to keep the dialysate entering the hollow-fibers
uniformly. (b) Schematic computational domain at the dialysate compartment.

the generic continuity and momentum equations reduced to
(22) as reported by [38], with specified boundary conditions
of uz = 0 at r = 0 and r = rb

ur(rb) = − qd
2πrbLr

, ∀rb,

uz = 2qd
πr2

dLr

ln(r/rd)−
(

(r/rd)2 − 1
)

/
(

κ2 − 1
)

ln(κ)

(κ2 + 1) ln(κ) + 1− κ2
.

(22)

Here, the parameter qd represented flow rate in the dialysate
inlet, κ the ratio of rb/rd, and Lr the width of the raised

collar used to promote uniform flow in dialyzers. The solute
replenishment term, Rs, was introduced to help maintain
dialysate concentration level and was calculated using [31]

Rs = εcs
(

cs0 − cs
)

, (23)

where ε is the replenishment coefficient.

The transport of solutes in the annulus, shown
in Figure 2(b), involving convection and diffusion with
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ur and uz defined by (22) could be described similarly as
(16) as

Transient
︷︸︸︷

∂cs
∂t

+

Convective
︷ ︸︸ ︷

uz
∂cs
∂z

+ ur
∂cs
∂r

=

Diffusive
︷ ︸︸ ︷

Ds

(

∂2cs
∂r2

+
1
r

∂cs
∂r

+
∂2cs
∂z2

)

+

Replenishment
︷︸︸︷

Rs .

(24)

3. Algorithm and Numerical Techniques

Finite volume method (FVM) was used to transform the
model equations (12)–(24) into dimensionless system. Since
the structure of the convection-diffusion equations (16) and
(24) only differed by the source term, we replaced the source
term by ψ.

3.1. Transformation of Models Using FVM. Integrating both
sides of (16) or (24) over a small control volume CV gave

∂

∂t

∫

CV
csdV +

∫

CV
uz
∂cs
∂z
dV

=
∫

CV
Ds

{

∂2cs
∂r2

+
1
r

∂cs
∂r

+
∂2cs
∂z2

}

dV +
∫

CV
ψdV.

(25)

Thus, (25) means that the rate of increase of concentration
with time in the volume element is equal to the convective
flow into the volume element, plus the diffusive flow, and the
creation of new solute from the source term totaled over the
volume element. Since both convective and diffusive terms
represented divergence of vector fields (i.e., the fluid flow
vector and the concentration gradient, resp.), we applied the
divergence theorem to the integrals of these terms to convert
them to surface integrals.

3.1.1. Convective Term. Since the flow velocity u is only in the
z-direction, the convective flow csu is

csu =
[

0
csuz(r)

]

. (26)

Therefore, the divergence of the convective flow vector csu
using cylindrical coordinate is

div(csu) = 1
r

∂(rcsur)
∂r

+
1
r

∂csuθ
∂θ

+
∂csuz
∂z

= ∂csuz
∂z

= ∂cs
∂z
uz + cs

∂uz
∂z

= ∂cs
∂z
uz,

(27)

where we have used the fact that the flow components in the
r and θ directions are zero and that the z component is a
function of r only, implying ∂uz/∂z = 0. Thus, the second
term on the left-hand side of (25) is

∫

CV
uz
∂cs
∂z
dV =

∫

CV
div(csu)dV =

∮

A
(n · (csu))dA. (28)

Since the vector csu is in the z-direction, it does not cross
the surfaces of the control volume cube on the faces in
r and θ directions. That is, the normal to those faces are
perpendicular to the flow vector and so the dot product is
zero. Therefore, the only nonzero parts of the surface integral
are those over the faces in +z and −z directions of the cube.
The normal to those faces is parallel to the convection vector
(in the +z direction and antiparallel in the −z direction), so
the integral becomes

∮

A
(n · (csu))dA =

∮

+z
cs

(

r, zc +
Δz

2

)

uz(r)r dr dθ

−
∮

−z
cs

(

r, zc − Δz

2

)

uz(r)r dr dθ,

(29)

where Δz is the size of the volume cube in the z-direction
and zc is the z coordinate at the center of the cubic volume.
In the process of discretization, we approximate the values of
cs and uz over the surface area of the cube by their values at
the nearby grid points as csa(r, z) and usa(r), respectively, if
the grid point is sufficiently fine. Thus,

∮

A
(n · (csu))dA

= csa

(

r, zc +
Δz

2

)

uza(r)
∮

+z
r dr dθ

− csa
(

r, zc − Δz

2

)

uza(r)
∮

−z
r dr dθ,

= uza(r)
[

csa

(

r, zc +
Δz

2

)

− csa
(

r, zc − Δz

2

)]

ΔAz.

(30)

3.1.2. Diffusive Term. Since diffusion is driven by concen-
tration gradient, the divergence vector field in cylindrical
coordinates is

div
(

grad(c)
) = 1

r

∂

∂r

(

r
∂c

∂r

)

+
∂

∂z

(

∂c

∂z

)

,

= 1
r

[

1 · ∂c
∂r

+ r · ∂
2c

∂r2

]

+
∂2c

∂z2
,

= 1
r

∂c

∂r
+
∂2c

∂r2
+
∂2c

∂z2
.

(31)

Using the divergence theorem, the diffusion term in (25)
could be written as

Ds

∫

CV
div
(

grad(cs)
)

dV = Ds

∮

A

⎛

⎜

⎜

⎜

⎝

n ·

⎡

⎢

⎢

⎢

⎣

∂cs
∂r

∂cs
∂z

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

dA. (32)

For the surface integral on the +r and −r faces, only the first
element of the gradient vector is applicable (the normal to
those faces picks out that component of the vector) while
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the second element is used on the +z and −z faces only. As a
result, the integral (32) becomes

Ds

∮

A

⎛

⎜

⎜

⎜

⎝

n ·

⎡

⎢

⎢

⎢

⎣

∂cs
∂r

∂cs
∂z

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

dA

= Ds

[{∮

+r

∂cs(rc + Δr/2, z)
∂r

dAr −
∮

−r
∂cs(rc − Δr/2, z)

∂r
dAr

}

+
{∮

+z

∂cs(r, zc + Δz/2)
∂z

dAz

−
∮

−z
∂cs(r, zc − Δz/2)

∂z
dAz

}]

.

(33)

Approximating the values of ∂cs/∂r and ∂cs/∂z over the face
area by indicating their values with subscript “a” and pull
the constant values out of the integral, right-hand side of
(33) becomes

Ds

∮

A

⎛

⎜

⎜

⎜

⎝

n ·

⎡

⎢

⎢

⎢

⎣

∂cs
∂r

∂cs
∂z

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

dA

= Ds

[

ΔAr

{

∂csa(rc + Δr/2, z)
∂r

− ∂csa(rc − Δr/2, z)
∂r

}

+ΔAz

{

∂csa(r, zc + Δz/2)
∂z

− ∂csa(r, zc − Δz/2)
∂z

}]

.

(34)

Thus, the LHS of (25) with cs defining the volume average of
solute concentration is

1
ΔV

∫

CV

∂cs
∂t
dV

+
1
ΔV

∫

CV
uz
∂cs
∂z
dV = ∂

∂t

(

1
ΔV

∫

CV
csdV

)

+
uza(r)ΔAz

ΔV

[

csa

(

r, zc +
Δz

2

)

− csa
(

r, zc − Δz

2

)]

= ∂cs
∂t

+ uza(r)

[

csa(r, zc + Δz/2)− csa(r, zc − Δz/2)
]

Δz
.

(35)

The RHS of (25) becomes

1
ΔV

∫

CV
Ds

{

∂2cs
∂r2

+
1
r

∂cs
∂r

+
∂2cs
∂z2

}

dV +
1
ΔV

∫

CV
ψdV

=
(

Ds

ΔV

)

Table 2: The reference variables with their description.

Symbol Description

L
Reference length: they are the same for both
compartments

U Reference velocity

cs0 Reference solute concentration

×
[

ΔAr

{

∂csa(rc + Δr/2, z)
∂r

− ∂csa(rc − Δr/2, z)
∂r

}

+ ΔAz

{

∂csa(r, zc+Δz/2)
∂z

−∂csa(r, zc−Δz/2)
∂z

}]

+ ψ,

= Ds

[

1
Δr

{

∂csa(rc + Δr/2, z)
∂r

− ∂csa(rc − Δr/2, z)
∂r

}

+
1
Δz

{

∂csa(r, zc+Δz/2)
∂z

−∂csa(r, zc−Δz/2)
∂z

}]

+ ψ,

(36)

where ψ = (1/ΔV)
∫

CV ψdV .

3.2. Scaling to Dimensionless Form. The transformed equa-
tions (35) and (36) and their initial and boundary conditions
(14)-(15) and (17)–(23) were converted into nondimen-
sional forms using the same scale factors for both blood and
dialysate flow regions. The nondimensional variables used in
the transformation are indicated with superscript “∗” below
and the reference variables defined in Table 2

r∗ = r

L
; z∗ = z

L
; u∗r =

ur
U

;

u∗z =
uz
U

; A1 = k+L

U
; Shs = LPs

Ds
;

c∗s =
cs
cs0

; t∗ = tU

L
; φ = rb

L
;

Pe = LU

Ds
; Re = ρUrb

μ
; Es =

LpLΔp

2Ds
;

(37)

where Pe and Sh are Pe’clet and Sherwood numbers,
respectively, and the ratio of momentum diffusivity and mass
diffusivity is donated by E. Pe = LU/Ds = qb/πφrbDs

expressed the relative importance of convection to diffusion
while Re = ρUrb/μ = ρqb/πμrb related inertial effects to
viscous effects. Since dialysis devices employ laminar fluids
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flow with Re � 1 the inertial effects would be irrelevant
[31, 41].

Substituting the dimensionless variables in (37) into
(35) and (36), simplifying notations, and dropping the
superscript “∗” resulted in

∂cs
∂t

+ uza(r)

[

csa(r, zc + Δz/2)− csa(r, zc − Δz/2)
]

Δz

=
(

1
Pe

)[

1
Δr

{

∂csa(rc + Δr/2, z)
∂r

− ∂csa(rc − Δr/2, z)
∂r

}

+
1
Δz

{

∂csa(r, zc + Δz/2)
∂z

− ∂csa(r, zc − Δz/2)
∂z

}]

+

(

L

Ucs0

)

ψ(r, z).

(38)

The dimensionless initial and boundary conditions, buffer
and replenishment, and membrane interfacial conditions
corresponding to (38) were as follows.

Blood-Side Inlet Velocity Conditions.

ur = 0, uz = 2
N

(

1− r2

φ2

)

. (39)

Dialysate-Side Inlet and Outlet Velocities.

ur = − rd
2κLr

∀rb

uz= 2
Lr

⎛

⎝

φ2
(

κ2−1
)

ln(κ) · [ln(κr)−ln
(

φ
)]−

[

(κr)2 − φ2
]

φ2
[

(κ4−1) ln(κ)− (κ2−1)2
]

ln(κ)

⎞

⎠

(40)

No Slip and Axisymmetric Conditions.

ur = uz = 0, ur = ∂uz
∂r

= 0 at r = 0; 0 ≤ z ≤ 1. (41)

Inlet and Outlet Blood and Dialysate Concentrations.

cs(z, r, 0) = 1, cs(0, r, t) = 1,
∂cs(z, 0, t)

∂r
= 0.

(42)

Buffer and Replenishment Terms.

ψCO2
=−A1

cs0

(

[CO2]−20β
)

(1+0.1α), ψHCO3
− =−2ψCO2

,

ψRs =
εcs0L

U
cs(1− cs),

(43)

where ψCO2
and ψHCO3

− represented dimensionless buffer
terms in blood side and ψRs depicted dimensionless replen-
ishment term for solute s = CO2 and HCO3

−.

Blood-Membrane Interfacial Conditions.

uz = 0, ur = Jv
U
= Es

Pes
,

∂cs
∂r
= Es

(

1− C∗s
)− Shs · Δcs,

(44)

where Shs is the Sherwood number and E is the ratio of
momentum and mass diffusivity defined in (37).

3.3. Model Parameters and Numerical Algorithm

3.3.1. Geometric and Transport Parameters. The hollow-
fiber dialyzer chosen for this study was the Fresenius’ F60
model with membrane area was 1.15 m2. The membrane
module has 22 cm effective axial length with 200 μm and
40 μm fiber diameter and thickness, respectively [20]. The
initial inlet bicarbonate concentration values of blood and
dialysate were set to 19 mol·m−3 and 35 mol·m−3, respec-
tively, while the blood-side and dialysate-side flow rates
were, respectively, 400 mL/min (i.e., 6.65 × 10−6 m3 s−1) and
800 mL/min (1.33× 10−5 m3 s−1) [31, 42]. Other parameters
and constant values used in this paper are either listed in
Table 3 or are computed using values in Table 3.

3.3.2. Variables and Grid Definition. Application of FVM
resulted in the creation of grid structured such that the
number of rectangular cells in r and z direction remained
constant throughout the domain of interest. For the spatial
domain, the numerical model used separate subdomain grids
for the blood side and the dialysate side since the two models
and their domain dimensions were different. The spatial grid
had a variable number of intervals in each axis, defined by
the variables Rbmax, Rdmax, and Rmax. Because of the FVM
development, the boundaries of the domain of interest have
to be at the faces of the rectangular control volumes, rather
than at a grid point. Thus, for example, the inlet boundary
condition applied at z = 0, so the first internal grid point is
at 0 + zgrid/2, where zgrid defined the grid spacing. However,
one extra grid row or column outside the boundary was
used to allow easy application of boundary conditions. Thus,
the first grid point in z was outside the inlet at z = −zgrid/2.
Therefore, the grid size in each axis was

zgrid = 1
zmax − 2

, Rb grid = Rb
Ra(Rbmax − 2)

,

Rd grid = Rd
Ra(Rdmax − 2)

,

(45)

since the domain of interest in the model was 0 < z < 1 for
the z-direction and 0 < r < rb/L and 0 < r < rd/L in the
r-direction for blood and dialysate sides, respectively.

The indices of the variables (such as solute concentra-
tion) ran from i = 1 to zmax and j = 1 to Rbmax or
Rdmax. Therefore, the boundaries of the spatial domains were
between indices j = 1 and 2 and between j = Rbmax − 1
and Rbmax (blood side), similarly for the dialysate side, it
was between i = 1 and 2 and between i = zmax − 1 and
i = zmax. Since the boundary conditions define the values of
the variables there, the numerical model only calculated the
values in the range from 2 to zmax − 1 and so on.

For the time coordinate, a time increment of dt was used
to sample the time axis. The real time represented by a sample
is t(k) = (k − 1)dt, k = 1, 2, . . .. Finally, we considered two
types of solutes defined by the subscript s in the models, as
per the Table 4.
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Table 3: Geometric and transport characteristics of the hollow-fiber module used.

Parameter (unit) Notation Value Ref.

Diffusion coefficient of CO2 in blood (m2 s−1) DCO2,b 3.4× 10−10 [31–33, 35]

Diffusion coefficient of HCO3 in blood (m2 s−1) DHCO3,b 1.4× 10−10 [31–33, 35]

CO2 diffusion coefficient in dialysate (m2 s−1) DCO2,d 1.59× 10−9 [31–33, 35]

HCO3
− diffusion coefficient in dialysate (m2 s−1) DHCO3,d 1.18× 10−9 [31–33, 35]

Membrane effective length (m) L 0.20 [31]

Hydraulic permeability (m/s Pa) Lp 1.15× 10−10 [31]

Width of raise collar (m) Lr 0.014 [31]

Fiber diameter (μm) Lf 200 [31, 39]

Fiber thickness (μm) e 40 [40]

Number of fibers N 9000–12000 F60 Model

Membrane permeability of CO2 (m s−1) PCO2 1.72× 10−9 [32, 33]

Membrane permeability of HCO3 (m s−1) PHCO3
− 1.95× 10−9 [32, 33]

Radius of dialysate channel (m) rd 1.25× 10−4 [39, 40]

Radius of blood channel (m) rb 2.0× 10−4 [39, 40]

Initial velocity at blood inlet (m s−1) ub 1.73× 10−2 [31, 39, 40]

Initial velocity at dialysate inlet (m s−1) ud 1.21× 10−2 [31, 39, 40]

Table 4: Solutes indexes for numerical computations.

Value for s index Solute type

1 CO2 (carbon dioxide)

2 HCO3
− (bicarbonate)

Therefore, the variables in the domain of interest could
be represented by a 4-dimensional array x(i, j, k, s) where the
variable x can be r, z, t, c,u,B, and R.

3.3.3. Hybrid Differencing Scheme. The continuous diffu-
sion terms in (38) were numerically discretized using the
hybrid differencing scheme. The scheme switched to the
upwind differencing when the central differencing produced
inaccurate results at high Peclet numbers. Also, since the
partial continuous derivatives were at the faces of the control
volume, we used the values at the center and adjacent grid
points to find the values of ∂cs/∂z and ∂cs/∂r. The convection
terms in (38) used the upstream scheme to estimate the
value of the function at the control volume face. Thus, the
functional values at the faces of our model system were
represented by the following.

Blood Side:

csa

(

r, zc +
Δz

2

)

= cb(r, zc) = cb
(

i, j, k + 1, s
)

,

csa

(

r, zc − Δz

2

)

= cb(r, zc − Δz) = cb
(

i− 1, j, k + 1, s
)

.

(46)

Dialysate Side:

csa

(

r, zc +
Δz

2

)

= cd(r, zc + Δz) = cd
(

i + 1, j, k + 1, s
)

,

csa

(

r, zc − Δz

2

)

= cd(r, zc) = cd
(

i, j, k + 1, s
)

.

(47)

3.3.4. Boundary Conditions and Stability. Since many of the
boundary conditions (BCs) depended on values in adjacent
grid points, and the numerical equations for our model
system only defined the values in the interior of the domain,
the BCs were defined in terms of grid values to the interior
of that boundary. Therefore, the corners were resolved by
simulating the interior points of the model system followed
by the BCs of the blood, dialysate, and the membrane (see
Figure 3).

4. Results and Discussions

The numerical solution presented in the previous sections
allowed us to determine the concentration gradients, con-
vective and diffusive fluxes, total flux, and concentrations of
carbon dioxide and bicarbonate profiles for high-flux mem-
brane. Diffusive solute transport across the membrane was
predominantly driven by concentration gradients, whereas
convection transport was determined by pressure gradients.

4.1. Carbon Dioxide and Bicarbonate Concentration Gradi-
ents. Concentration gradient has been the principal process
for removing end-products of metabolism (urea, creatinine,
uric acid) and for repletion of bicarbonate deficit of
metabolic acidosis associated with end-stage renal disease
patients. Figure 4 showed the results of the concentration
gradient profiles for carbon dioxide and bicarbonate solutes
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Membrane

Shade indicates interior points

Blood side

Dialysate side

Arrows indicate dependencies for calculations

1, Rm

1, Rm

1 < i < Zmax, j = Rmax

1 < i < Zmax, j = Rmax

Zm, Rm

Zm, Rm

i = 1

1 < j <

Rmax

i = 1

1 < j <

Rmax

1, 1

1 < i < Zmax, j = Rmax − 1

1 < i < Zmax, j = Rmax − 1

2 < j < Rmax − 1

i = Zmax

1 < j <
Rmax

i = Zmax

1 < j <
Rmax

1 < i < Zmax, j = 2

1 < i < Zmax, j = 1

1 < i < Zmax,

2 < j < Rmax − 1

1 < i < Zmax,

Zm, 1

1, 1

1 < i < Zmax, j = 2

1 < i < Zmax, j = 1
Zm, 1

Figure 3: Dependencies between the BCs with arrows, which in turn defined the sequence of application required by these dependencies.
The BC at the upstream boundary in each side was a constant and all other BCs depended on values in the current time step [31].

in the membrane for different time periods. The mem-
brane carbon dioxide concentration gradient profiles (see
Figure 4(a)) increased, reaching maxima gradients inside
the membrane, then appeared to diminish from their
maxima along the dialyzer axial length. The maximum
points do shift toward the end of the membrane length
while the maximum magnitude occurred at t = 70
minutes.

Figure 4(b) depicted positive increased bicarbonate con-
centration gradients at different time periods in the mem-
brane as the axial distance increased. The gradients peaked
around the same position at t = 60 and appeared to expe-
rience reduction of the bicarbonate concentration gradients
toward the end of the membrane. Since bicarbonate contain-
ing dialysate was used in our model, it was important to have
adequate concentration gradients to generate bicarbonate
flux into the blood to restore body buffer. The adequacy of
bicarbonate concentration gradient was observed as shown
in Figure 4(b).

4.2. Carbon Dioxide and Bicarbonate Diffusive Fluxes. The
fluxe profiles for carbon dioxide and bicarbonate in the
membrane were presented at the membrane region (z =
20 cm) for different time periods in Figure 5. Both 5(a) and
5(b) showed the unsteady characteristics of solute diffusive
fluxes at various radial positions in the membrane. In all
the chosen radial locations, the rate of mass transfer of
the CO2 and HCO3

− solutes increased at the onset of the
dialysis therapy followed by a small fluctuations and then
became constant during the remaining therapy session. In
Figure 5(a), the sharp increased in CO2 may be caused by
(i) the active hydrogen ion from the blood reacting with
bicarbonate ions to produce more of the CO2 and/or (ii)
the incomplete dissociation of bicarbonate ion into CO2

in the membrane. Similarly, the initial bicarbonate sharp
increase observed may be explained by the incomplete
dissociation of carbonic acid into bicarbonate and hydro-
gen ions. These observations suggested a bicarbonate ion
carryover effect in the membrane during dialysis therapies.
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Figure 4: Bicarbonate and carbon dioxide concentration gradients increased along the membrane axial distance at different time periods. (a)
Depicted carbon dioxide maxima gradients shifting toward the membrane end and decreasing from their maxima. (b) Displayed bicarbonate
gradients peaking at the same position inside the membrane. Maxima concentration gradients were achieved for both carbon dioxide and
bicarbonate under an hour during the dialysis therapy.

In addition, both figures depicted increased diffusive fluxes
toward the membrane end and an abnormally high solute
fluxes near the blood-membrane interface. This abnor-
mality may increase the driving force for diffusion and
eventually enhance the diffusive process during dialysis
session.

4.3. Carbon Dioxide and Bicarbonate Convective Fluxes.
Figure 6 showed the results of carbon dioxide and bicarbon-
ate convective solute fluxes in the dialyzer membrane for
various radial positions in the first hour of dialysis session.
Compared to Figure 5, Figure 6 displayed the dominance of
convective fluxes for small solutes (CO2 and HCO3

−) during
a high-flux hollow-fiber dialysis session. The magnitude of
CO2 and HCO3

− fluxes were determined by the natural
convection (transmembrane pressure gradient) and the
forced convection (mass inflow). Both figures also indicated
that convective fluxes decreased in the membrane with
increased radial distance as one moved toward the end of
the axial length. Thus, in this model there was a continuous
interference between convective and diffusive fluxes (see
Figures 5 and 6). In this case, increasing one type of
transport mechanism would decrease the other and therefore
could be beneficial or detrimental on dialyzer’s efficiency.
In the region near the blood ports, the sagging nature of
the convective profiles may explain the abnormally high

diffusive flux of solutes at the blood-membrane interface
observed in Figure 5. This observation craves the need to
seek minimal interference between convection and diffusion
during dialysis therapy.

4.4. Total Fluxes in Dialysis Membrane. Figure 7 displayed
the dominance of convective flux over diffusion when
a high-flux hollow-fiber dialyzer was used. Both figures
showed that the total flux (convection and diffusion) of
solutes were mediated by convective flux and it decreased
along the axial length. The decreasing profile within the
membrane may be explained by the decreasing nature of the
transmembrane pressure gradient or the solute accumulation
at the membrane surface over time. Thus, in addition
to convection playing a major role in higher molecular
weight solute transports [13], it was also more efficient than
diffusion in small solutes transport when high-flux dialysis
membrane was used.

4.5. Carbon Dioxide Concentration. Carbon dioxide concen-
tration profiles in the membrane at various time periods
and radial distances during high-flux dialysis session were
shown in Figure 8. In Figure 8(a), various CO2 concentration
profiles at different time periods were shown as a function
of membrane axial distance. The result clearly showed
that the CO2 concentration decreased as the axial length
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Figure 5: Bicarbonate and carbon dioxide diffusive fluxes in the membrane at dialyzer axial distance z = 20 cm. Diffusive solute fluxes
increased as the radial distance increased. Also, diffusion for both solutes was stronger near the fiber walls than the center. The carbon
dioxide and bicarbonate ions effect observed before solute stability could enhance the diffusion process during dialysis session.
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Figure 6: Various carbon dioxide and bicarbonate convective fluxes at different radial distances were presented. Contrary to diffusive flux,
convective flux decreased at the fiber wall and increased in the fiber center. Also, the sagging nature of convective fluxes observed at the blood
port for the solutes may explain the high diffusive flux abnormalities observed in Figure 5.
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Figure 7: Total fluxes for both carbon dioxide and bicarbonate solutes were mediated by convective fluxes. Total fluxes decreased along the
dialyzer distance.
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radial distances were presented. Carbon dioxide decreased over time implying carbon dioxide solute desorption in the membrane (a). Also,
carbon dioxide concentration was higher in the fiber center than near the fiber walls (b).
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Bicarbonate concentration profiles in the membrane
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Figure 9: Bicarbonate concentration profiles at various time periods and radial distances in the membrane were presented. At different
time periods, bicarbonate concentration increased rapidly for during the first 30 minutes and then slowly for another 10 minutes, before
becoming stable for the rest of the therapy (a). The maximum concentration reached was within the physiologic range reported by clinical
studies. In (b), the bicarbonate concentration profiles within the first 40 minutes at various radial distances were found to increase until
the membrane becoming nearly saturated with the solute. However, concentration at the fiber walls was much higher than that in the fiber
center.

increased and that most CO2 desorption occurred within 47
minutes of the therapy session. The constant profiles after
47 minutes indicated that the membrane was fully saturated
with CO2 concentration during the therapy. In Figure 8(b),
CO2 concentration profiles as a function of the first 70
minutes of dialysis session was shown at different radial
positions. The result demonstrated that CO2 concentration
increased as one moved toward the end of the membrane.
Also, the CO2 concentration near the wall of the fiber was
much higher than that of the center of the fiber at the same
axial position. At the outlet, the concentration was stable
with respect to radial position, indicating CO2 saturation in
the membrane.

4.6. Bicarbonate Concentration. Similarly, bicarbonate con-
centration profiles in the membrane at various time periods
and radial positions during high-flux dialysis session were
shown in Figure 9. At various time periods, the result indi-
cated a HCO3

− concentration increased as the membrane
axial distance increased (see Figure 9(a)). Also, it was shown
that HCO3

− concentration increased rapidly within the first
30 minutes and then became stable after 40 minutes of the
therapy session. In Figure 9(b), the HCO3

− concentration
profiles at axial distance (z = 0.20 m) against time for various

radial distances was shown. HCO3
− concentration increased

and was nearly saturated in the membrane. The rate of
increased and the degree at which HCO3

− concentration
increased may be determined by the immediate buffer
response through convection and diffusion and the extent to
which organic acid production in the membrane is increased.
In addition, these observations confirmed clinical studies
[31, 42] that dialysis patients achieve stable physiologic
HCO3

− concentration levels during dialysis therapy.

5. Conclusions

A mathematical model that coupled nonlinear unsteady
convection-diffusion mass transfer of small solutes in high-
flux dialyzer with buffer during dialysis session was devel-
oped. Finite volume technique was used to transform the
model equations and numerical discretization and analysis
schemes were then proposed and tested. The solute concen-
tration gradients, diffusive and convective fluxes, and their
effects on overall concentrations were explored. The salient
observations were summarized as follows:

Both carbon dioxide and bicarbonate concentration
gradients increased and reached maxima gradient
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values inside the dialyzer membrane. While CO2 con-
centration gradients appeared to diminish from their
maxima and shift toward the end of the membrane,
HCO3

− concentration gradients peaked at the same
position. In addition, the magnitude of the HCO3

−

concentration gradient was large enough to activate
HCO3

− diffusion in the membrane.

Diffusive fluxes for carbon dioxide and bicarbonate
showed increased profiles at different radial distances
in the membrane. Abnormally high fluxes were
observed near the blood-membrane interface that
could increase diffusion driving force and eventually
enhance the overall diffusive process during dialysis
session.

Convective flux still dominated total flux for small
solute (CO2 and HCO3

−) transfer during high-flux
dialysis therapy. However, the continuous interfer-
ence between convective and diffusive fluxes could
be beneficial or detrimental when accessing high-flux
dialyzer efficiency for small solute transport.

Carbon dioxide concentration decreased rapidly
causing the membrane to become fully saturated
with CO2 within 47 minutes. Further investigation
showed an increased CO2 concentration towards the
end of the membrane which indicated higher CO2

concentration near the walls of the fiber than the fiber
center at the same axial distance.

Similarly, there was an optimal HCO3
− concentra-

tion in the membrane within 30 minutes of dialysis
therapy because of the effects of convection and the
preponderance of diffusion. The rate of increased and
the degree at which bicarbonate increased could be
caused by immediate buffer response and the positive
effect of convection on diffusion or the extent to
which organic acid production in the membrane was
increased.

Therefore, the model presented provided an accurate
quantitative description of both convection and diffusion
through high-flux membrane with buffer. This is critical for
the effective design and efficient operation of dialyzers.
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