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In this study, an MRI-based classification framework was proposed to distinguish the patients with AD and MCI from normal
participants by using multiple features and different classifiers. First, we extracted features (volume and shape) from MRI data by
using a series of image processing steps. Subsequently, we applied principal component analysis (PCA) to convert a set of features
of possibly correlated variables into a smaller set of values of linearly uncorrelated variables, decreasing the dimensions of feature
space. Finally, we developed a novel datamining framework in combinationwith support vectormachine (SVM) andparticle swarm
optimization (PSO) for the AD/MCI classification. In order to compare the hybrid method with traditional classifier, two kinds of
classifiers, that is, SVM and a self-organizingmap (SOM), were trained for patient classification.With the proposed framework, the
classification accuracy is improved up to 82.35% and 77.78% in patients with AD and MCI. The result achieved up to 94.12% and
88.89% in AD and MCI by combining the volumetric features and shape features and using PCA. The present results suggest that
novel multivariate methods of pattern matching reach a clinically relevant accuracy for the a priori prediction of the progression
fromMCI to AD.

1. Introduction

Alzheimer’s disease (AD) [1] is the most common type of
dementia. Clinical signs are characterized by progressive
cognitive deterioration, together with declining activities of
daily living and by neuropsychiatric symptoms or behavioral
changes. The early detection of AD is potentially challenging
because of several reasons. First of all, there existed no known
biomarkers.The disease usually has an insidious onset which
can be a combination of genetic and environmental factors. It
is difficult to differentiate other types of dementia.

Mild cognitive impairment (MCI) is a transitional stage
between normal aging and demented status. The syndrome

is defined by the greater cognitive decline than age and
education matched individuals, but no interference of daily
function [2]. According to the major symptoms, MCI is
characterized with memory loss and cognitive impairment.
Research has reported that MCI has a risk between 10% to
64% developing AD [3, 4]. AD is a progressively neuro-
degenerative disorder and is distinguished from MCI by
the progressive deterioration of daily function. The preva-
lence of AD increases dramatically at age 65 and it affects
approximately 26 million people worldwide, which may
increase fourfolds by the year of 2050. Recent reports in the
treatment or prevention of AD lead to a growing concerns
in the early diagnosis. Therefore, the detection of changes in



2 Computational and Mathematical Methods in Medicine

brain tissues that reflect the pathological processes of MCI
would prevent or postpone the disease progresses either from
normal control to MCI or from MCI to AD. If MCI can be
diagnosed at an early stage and effectively intervened, then it
is possible to reduce the advanced damages.

Since the poor performance in memory and execution
function indicates the high risk of dementia, the probable
AD patients are usually evaluated by standardized neu-
ropsychological tests [5–8]. Additionally, many studies have
been proposed to examine the predictive abilities of nuclear
imaging with respect to AD and other dementia illnesses
[9–13]. However, under the consideration of imaging cost
and noninvasive requirement, magnetic resonance imaging
(MRI) has been widely used for early detection and diagnosis
of MCI and AD [14–17].

Atrophy typically starts in themedial temporal and limbic
areas, subsequently extending to parietal association areas,
and finally to frontal and primary cortices. Early changes in
hippocampus and entorhinal cortex have been demonstrated
with the help of MRI, and these changes are consistent
with the underlying pathology of MCI and AD. Many
studies have used manual or automatic methods to measure
hippocampus and entorhinal cortex [18–20]. Hippocampal
volumes and entorhinal cortex measures have been found to
be equally accurate in distinguishing betweenADandnormal
cognitive elderly subjects [21]. However, the segmentation
and identification of hippocampus or entorhinal cortex are
usually sensitive to the subjective opinion of the operator
and also time consuming. In addition, the enlargement of
ventricles is also a significant characteristic of AD due to
neuronal loss. Ventricles are filled with cerebrospinal fluid
(CSF) and surrounded by graymatter (GM) andwhitematter
(WM). As a result, bymeasuring the ventricular enlargement,
hemispheric atrophy rate shows higher correlation with the
disease progression.

In this study, we have designed an MRI-based classifica-
tion framework to distinguish the patients of MCI and AD
fromnormal individuals usingmultiple features and different
classifiers. Since the features adopted here are volume-related
and shape-related, we also aimed to investigate whether
the combination of both statistical analysis and principal
component analysis (PCA) would improve the accuracies of
classification than using volume-related alone, shape-related
alone, or all features. Our hypothesis was that the combina-
tion of allMRI-based features is helpful for distinguishing the
patients with early Alzheimer’s disease from the subjects with
mild cognitive impairment and healthy controls, respectively.

The remainder of this paper is organized as follows.
Section 2 illustrated the proposed scheme, including features
extraction and used classifiers, that is, self-organizing map
(SOM), support vector machine (SVM), particle swarm
optimization (PSO), and the proposed hybrid PSO-SVM.
Statistical analysis, experimental results, and discussion are
revealed in Section 3. Finally, conclusions are included in
Section 4.

2. The Proposed Schemes
Figure 1 is the flowchart that demonstrated the systemwepro-
posed. In the step of Feature Extraction, spatial normalization

is performed by coregistering the brain MRI data from each
individual to a T1-weighted MRI template such that these
images of the investigated subjects will be in the same scale
space. Next, with the aids of segmentation andmorphological
procedures, all MRI brain images are segmented into GM,
WM, CSF, and ventricle’s tissues and shape descriptors. Here,
volume-related and shape-related features are utilized for
further classification.The step of Feature Reduction is divided
into two parts: (1) Mann-Whitney U test is adopted to
filter out the features with low discriminative power; (2)
principal component analysis (PCA) is applied to reduce the
dimensions of feature space. Route I only uses U test; Route
II is combined with U test and PCA. At last, a classifier, for
example, SOM, SVM, and PSO-SVM, is employed to classify
tested volunteers into three categories: normal individuals,
MCI, and AD patients. The details of the proposed method
are described below.

2.1. Spatial Normalization of MRI Data. Spatial normaliza-
tion of the brain images is useful for determining what
happens generically over individuals. It is a procedure to
register an MRI data set to a standard coordinate system,
also known as Talairach and Tournoux coordinate system
[22]. With the aid of normalization, all images were spatially
normalized to stereotactic space ICBM-152 [23] via a 12-
degrees-of-freedom affine transformation which normalizes
the brain in terms of dimensions, position, and spatial
orientation.

2.2. Volume Features Extraction. Thevolumes of brain tissues
such as GM, WM, and CSF indicate important information,
especially in brain degeneration diseases [24]. A clustering-
based segmentation algorithm provided by SPM8 [25] is
using a modified Gaussian mixture model to extract GM,
WM and CSF probability maps from whole-brain MRI data.
The intensities of voxels belonging to each of these clusters
conform to a normal distribution which can be described by
amean, a variance, and the number of voxels belonging to the
distribution. Here, the volumes of GM,WM, CSF, andwhole-
brain are calculated by

volumetissue ≈ ∑

∀𝑖∈𝐼

(𝑃 (𝐶tissue | 𝑓 (𝑖)) > 0.5) ,

volumeWhole ≈ ∑

∀𝑖∈𝐼

(𝑃 (𝐶GM∨WM | 𝑓 (𝑖)) > 0.5) ,

(1)

where i is any pixel of the MRI data and 𝑓(𝑖) stands for the
gray level of 𝑖. 𝐶means the cluster. tissue stands for the parts
of GM, WM, or CSF. Figure 2 illustrates the segmentation
results of the normal individual and AD patient used in this
study.

Next, we employ region growing and double threshold
algorithm [26] to extract binary ventricle volume data, that
is, 𝑀(𝑥, 𝑦, 𝑧). The morphological operators, for example,
erosion and dilation, are used to obtain the binary ventricle
regions. And the edges of binary images are detected by
applying Sobel operation on a slice-by-slice basis. Then, this
segmented region will construct a binary mask image. In
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Figure 1: Flowchart of the proposed image-aided diagnosis system.
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Figure 2: Segmentation results of a normal individual and an AD
patient used in this study.

this mask image, 1 (white) denotes the ventricle pixel, and
0 (black) denotes the nonventricle pixel. Finally, we can
calculate the volume of cerebral ventricle by

volumeVentricle ≈ ∑

∀𝑖∈𝑀

(𝑃 (𝐶Ventricle | 𝑓 (𝑖)) = 1) , (2)

where 𝑖 is any pixel of the mask data, 𝑀 is the mask image,
and 𝑓(𝑖) denotes the gray level of 𝑖.

2.3. Shape Features Extraction. The volume features, which
are extracted from the whole three dimensional volume,
cannot capture the variation of the anatomical shape. Wang

Figure 3: Sagittal view of segmented ventricle.

et al. [27, 28] proposed a ventricle shape-based method for
improved classification of Alzheimer’s patients. Therefore,
to enhance the accuracy of the classification, in addition
to the volume features, we also added ventricle shape fea-
tures. Figure 3 shows the sagittal view of ventricle that we
segmented. The shape features we analyzed are composed
of two types: three-dimensional shape features and two-
dimensional shape features. The algorithms to obtain these
features are illustrated in the following subsections.

2.3.1. 3𝐷 Shape Features. To obtain the feature of 3D shape,
a leave-one-out method is used to construct training set and
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testing set followingWang’s method.Three sets of probability
map were then built using

𝑃
𝑡
(𝑥, 𝑦, 𝑧) =

1

𝑁

𝑁

∑

𝑖=1

𝐼

𝑖

𝑡
(𝑥, 𝑦, 𝑧) , (3)

where 𝑡 indicates the type of the subjects, inclusive of normal
control, AD, and MCI. 𝑁 is the number of training samples,
and 𝐼 denotes the gray level of the ventricular mask image. In
order to compare the differences of patients (AD and MCI)
and normal controls, we subtracted the normal probability
map from the patient probability map to obtain the discrim-
inate map. At last, a matching coefficient (MC) between a
testing input and the discriminate map is calculated by

MC𝑖Normal or patient = ∑

∀𝑥,𝑦,𝑧

𝐷(𝑥, 𝑦, 𝑧)

× 𝑇

𝑖

Normal or patient (𝑥, 𝑦, 𝑧) ,

(4)

where 𝐷(𝑥, 𝑦, 𝑧) is the discriminate map and 𝑇 denotes the
testing ventricular mask image.

2.3.2. 2D Shape Features. The 2D shape features are extracted
from the segmented ventricles on a slice-by-slice basis. In
2D viewpoint, there are many 2D ventricle slices for each
case. In order to effectively compare the differences in each
case, we selected the slices with maximum areas from 3D
ventricle data sets as the datum plane. These 2D shape
features used herein are referred to the work of Yang et al.
[29] and listed as follows: (1) Area, (2) Perimeter, (3) Com-
pactness, (4) Elongation, (5) Rectangularity, (6) Distances,
(7) Minimum thickness, and (8) Mean signature value.

2.4. Learning Methods for Classification. Machine learning
algorithms can be organized into a taxonomy based on
the desired outcome of the algorithm or the type of input
available during training the machine.They are often divided
into supervised, nonsupervised, and reinforcement learning
(RL). Supervised learning requires the explicit provision of
input-output (I/O) pairs and the task is one of constructing
a mapping from one to the other. Non-supervised learning
has no concept of target data and performs processing only
on the input data. In contrast, RL uses a scalar reward
signal to evaluate I/O pairs and hence discover, through
trial and error, the optimal outputs for each input. In this
sense, RL can be thought of as intermediary to supervised
and non-supervised learning since some form of supervision
is present, albeit in the weaker guise of the reward signal.
As such, the trained algorithm may be treated as a “black
box” encapsulating knowledge gleaned from the training
data whose inputs are useful for producing the expected
outcome. For this reason, machine learning and computer-
aided diagnostics (CADs) have been of growing interest in
the field of medical applications. To evaluate whether the
performance of supervised and non-supervised methods is
good or not, we used three classifiers to produce the outcome.

Inmany researches of pattern recognition, dataset is often
divided into two subsets of training and testing. The former

is used to create the model, and the latter is used to assess
the accuracy of the model to predict the unknown sample.
This method can be called Train-and-Test method. Cross-
validation is the experimental method to effectively estimate
the generalization error. In this study, leave-one-out cross-
validation (LOOCV) is adopted in three classifiers to estimate
dependable generalization error. LOOCV involves using a
single observation from the original sample as the validation
data, and the remaining observations as the training data. In
this section, the classifiers we adopted are illustrated in the
following subsections particularly.

2.4.1. Self-Organizing Map Architecture. A self-organizing
map (SOM) is a type of artificial neural network for the
visualization of high-dimensional data. In general, SOMs are
divided into two parts: training andmapping. Training builds
the map using input examples, called a Kohonen map [30].
An SOM consists of components called nodes or neurons.
Each node has a set of neighbors. When this node wins a
competition, not only its weight is adjusted, but those of the
neighbors are also changed. They are not changed as much
though. The further the neighbor is from the winner, the
smaller its weight change. Furthermore, as training goes on,
the neighborhood gradually shrinks. At the end of training,
the neighborhoods have shrunk to zero size.

When a training example is fed to the network, its
Euclidean distance to all weight vectors is computed by using
(5). Here 𝑛 denotes the dimension of data, and 𝑡 is the index
of the data item in a given sequence,

𝑥 (𝑡) = {𝜁
1 (

𝑡) , 𝜁2 (
𝑡) , . . . , 𝜁𝑛 (

𝑡)} . (5)

Theneuronwithweight vectormost similar to the input is
called the bestmatching unit (BMU).Theweights of the BMU
andneurons close to it in the SOM lattice are adjusted towards
the input vector.Themagnitude of the change decreases with
time and with distance from the BMU. The update formula
for a neuron with weight vector is

𝑚
𝑖 (
𝑡 + 1) = 𝑚

𝑖 (
𝑡) + 𝛼 (𝑡) ℎ𝑐𝑖 (

𝑡) [𝑥 (𝑡) − 𝑚
𝑖 (
𝑡)] , (6)

where 𝛼(𝑡) is a monotonically decreasing learning coefficient
and 𝑥(𝑡) is the input vector. The neighborhood function
ℎ
𝑐𝑖
(𝑡) depends on the lattice distance between the BMU and

neuron. The neighborhood function ℎ
𝑐𝑖
(𝑡) is

ℎ
𝑐𝑖 (

𝑡) =

𝑒

−‖𝑟𝑖−𝑟𝑐‖
2

2𝜎
2
(𝑡)

.
(7)

Figure 4 illustrates the procedure of SOM classifier. In
this study, we use a two-stage method for learning [31]. First,
we adopt less iterative time, higher learning rate, and large
neighborhood distance for learning and make it convergence
speedily. After repeating many times, we can acquire net-
work parameters which have the best convergence. Next,
combining higher iterative time, less learning rate, and small
neighborhood distance with network parameters obtained in
first stage to conduct second learning and adjust network
parameters slowly. At last, we obtain these parameters:
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Figure 4: Basic procedure of SOM classifier.

iterative time is set as 1000 epochs, ordering phase learning
rate = 0.9, tuning phase learning rate = 0.5, and tuning phase
neighborhood distance = 0.5. In order to verify the stability
of SOM to generalize the correct tendency, the classifier was
trained 10 times to get reliable results.Thirty cases are chosen
(AD = 7, Normal = 7, MCI = 8) to be the training set
randomly. Scaling of variables is of special importance in
our model since the SOM algorithm uses Euclidean metric
to measure distances between vectors. In order to solve this
problem, we achieved this by linearly scaling all variables so
that their variances were equal to one.

2.4.2. Support Vector Machine. SVM is a type of artificial
neural networks that is, trained by using supervised learning,
have shown their advantage on reducing training-and-testing
errors, resulting in obtaining higher recognition accuracy
[32]. However, some feature data are linearly nonseparable.
In some situations, features are not perfectly separable,
especially at the border between categories. To allow some
flexibility in separating the categories, SVMs utilize a cost
parameter, denoted as 𝐶, to control the trade-off between
allowing training errors and forcing rigid margins. The cost
function with 𝐶 is defined as (8), where 𝜁

𝑖
is a slack variable,

Cost = 𝐶

𝑁

∑

𝑖=1

(𝜁
𝑖
) . (8)

Mapping the patterns in a high dimension feature space
is generated through combining features to form a kernel
matrix. The kernel matrix is usually constructed by using
a kernel function which takes two patterns as arguments
and outputs a value. In this study, a radial basis function
(RBF) kernel, as shown in (9), is employed. We use one-
against-rest assembles classifiers that distinguish one from all

Table 1: Demographic data and cognitive scores.

Group Normal
control MCI AD

Individuals
(male/female) 17 (10/7) 18 (9/9) 17 (9/8)

Mean age (yrs) 71.43 ± 4.43 72.50 ± 4.00 72.70 ± 3.93
Education time (yrs) 10.17 ± 5.21 8.22 ± 5.25 5.24 ± 5.36
MMSE scores 28.18 ± 1.70 25.06 ± 4.11 13.29 ± 6.69

the other classes. This strategy consists of constructing one
SVM per class, which is trained to distinguish the samples of
one class from the samples of all remaining classes. Usually,
classification of an unknown pattern is done according to the
maximum output among all SVMs,

𝑘 (𝑥
𝑖
, 𝑦
𝑗
) = 𝑒

−𝛾‖𝑥𝑖−𝑦𝑗‖Fit𝑝
, 𝑖 = 𝑗 = 1, 2, . . . , 𝑛, (9)

where 𝑥
𝑖
denotes the input vector, 𝑦

𝑗
denotes the 𝑗th proto-

type vector, and Fit
𝑝
= correctly − classified/total number of

testing data. Finally, the optimal solution can be solved by
using Lagrange method,

𝐿
𝑝
≡

1

2

‖𝑤‖

2
+ 𝐶

𝑚

∑

𝑖=1

𝜁
𝑖
−

𝑚

∑

𝑖=1

𝛼
𝑖
{𝑦
𝑖
(𝑤 ⋅ 𝑥

𝑖
+ 𝑏) − 1 + 𝜁

𝑖
} ,

𝐿
𝐷
≡

𝑚

∑

𝑖=1

𝛼
𝑖
−

1

2

𝑚

∑

𝑖=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦

𝑘

𝑗
(𝑥
𝑖
, 𝑦
𝑗
) ,

(10)

where ‖𝑤‖ is the Euclidean norm of 𝑤, 𝛼
𝑖
that stands for the

Lagrange multipliers, 𝐿
𝑃
is the Lagrange function, and 𝐿

𝐷
is

the dual solution of 𝐿
𝑃
.𝐶 and 𝛾 are used to control the trade-

off between training errors and generalization ability in SVM
with RBF kernel. Therefore, a PSO was utilized to find the
optimal combination of 𝐶 and 𝛾.

2.4.3. Hybrid PSO-SVM. Particle swarm optimization (PSO)
algorithm [33, 34] uses particlesmoving in an𝑚-dimensional
space to search solutions of an optimization problem with
𝑚 variables. In our approach, PSO is initialized and searches
for the optimal particle iteratively. Each particle represents a
candidate solution. SVM classifier is built for each candidate
solution to evaluate its performance. Velocity and position of
particles can be updated by

V
𝑡+1

𝑖𝑗
=𝑤 ⋅ V

𝑡

𝑖𝑗
+ 𝑐
1
rand
1
(pbest𝑡

𝑖𝑗
− 𝑥

𝑡

𝑖𝑗
)+ 𝑐
2
rand
2
(gbest𝑡

𝑖𝑗
− 𝑥

𝑡

𝑖𝑗
)

𝑥

𝑡+1

𝑖𝑗
= 𝑥

𝑡

𝑖𝑗
+ V
𝑡+1

𝑖𝑗
,

(11)

where 𝑡 is evolutionary generation, V
𝑖𝑗
is the velocity of

particle 𝑖 on dimension 𝑗, and 𝑥
𝑖𝑗
stands for the position of

particle 𝑖 on dimension 𝑗. Inertia weight 𝑤 is used to balance
the global exploration and local exploitation, rand

1
and rand

2

are random functions, and 𝑐
1
and 𝑐
2
are personal and social

learning factors. As we know, if the number of particles,
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Table 2: Statistical analysis of features.

Features Mean volume ± SD
Normal MCI AD 𝑃 value (NC versus MCI) 𝑃 value (NC versus AD)

Volume
𝑉GM 862.4 ± 42.7 824.6 ± 57.8 789.7 ± 84.3 0.016 0.007
𝑉WM 637.6 ± 45.8 601.8 ± 21.2 558.1 ± 63.4 0.021 0.019
𝑉CSF 863.1 ± 112.9 909.7 ± 128.5 971.8 ± 132.5 0.038 0.017

Shape
Area 1792.4 ± 278.5 1903.5 ± 426.6 2361.1 ± 802.3 0.029 0.024

Area (PR) 673.5 ± 121.5 874.9 ± 132.5 911.4 ± 183.2 0.024 0.018
Area (PL) 647.1 ± 137.2 872.5 ± 142.5 910.9 ± 183.5 0.031 0.011
Area (FR) 151.9 ± 117.6 231.5 ± 162.4 262.4 ± 167.8 0.020 0.009
Area (FL) 162.7 ± 91.0 258.2 ± 144.3 278.5 ± 189.2 0.022 0.010

Perimeter 226.7 ± 23.1 276.9 ± 20.2 289.8 ± 27.6 0.029 0.019
Circularity 45.6 ± 4.9 39.8 ± 3.6 38.2 ± 2.7 0.039 0.021
Elongation 1.1 ± 0.4 1.4 ± 0.6 1.3 ± 0.2 0.016 0.009
Rectangularity 0.5 ± 0.2 0.6 ± 0.4 0.6 ± 0.1 0.028 0.016
𝑑(A,G) 37.3 ± 2.1 38.4 ± 3.7 40.6 ± 4.2 0.031 0.037
𝑑(B,G) 36.1 ± 1.8 39.2 ± 3.1 43.1 ± 6.1 0.034 0.028
𝑑(C,G) 38.6 ± 4.3 41.4 ± 2.9 42.9 ± 4.6 0.042 0.030
𝑑(D,G) 34.7 ± 2.9 39.7 ± 1.4 42.8 ± 4.1 0.022 0.028
𝑑(A,C) 72.8 ± 4.3 81.7 ± 8.4 83.8 ± 8.4 0.009 0.011
𝑑(B,D) 72.5 ± 4.9 78.2 ± 3.1 81.6 ± 8.2 0.011 0.007
Min thickness 27.4 ± 3.8 29.0 ± 2.6 30.1 ± 3.4 0.020 0.009
Mean Sig. 25.6 ± 3.1 27.9 ± 2.7 29.8 ± 3.1 0.032 0.013

Table 3: PCs and their proportion of total variation.

Features No. of principal component
Proportion (%) C1 C2 C3 C4 C5 C6 C7 C8
Volume features (3) 64.16∗ 31.57∗ 4.27
Shape features (17) 48.79∗ 23.39∗ 9.43∗ 6.45∗ 3.28∗ 2.13∗ 1.01∗ 0.73∗

Volume + shape (20) 49.31∗ 19.98∗ 13.62∗ 6.93∗ 4.47∗ 2.35∗ 0.99 0.72

denoted as 𝑃, is too large, it might cause the optimization
process to be time consuming. On the contrary, if 𝑃 is too
small, then it is hard to find the optimal solution due to the
limited search area. In the literature [35], it is proven that the
optimal solution can be obtained when 𝑃 is between 20 and
40. In this work, the number of the iterations and 𝑃 is set to
200 and 30, respectively. Similarly, the parameters 𝑐

1
, 𝑐
2
, and

𝑤 will affect the convergence of optimization process. If they
are set too large, it causes the particle velocity to be speedy
and thus cannot obtain the optimal solution. On the other
hand, it is time consuming to find the optimal solution [36].
Therefore, we set 𝑐

1
, 𝑐
2
, and 𝑤 to 2, 2, and 0.8, respectively.

More specifically, based on the approach [37], the pro-
posed hybrid PSO-SVM aims at optimizing the accuracy of
SVMclassifier by randomly generating the parameters (𝐶 and
𝛾) and estimating the best values for regularization of kernel
parameters for SVM model. Basic operation of hybrid PSO-
SVM proposed in this paper is given in Figure 5.

This process continues until the performance of SVM
converges. The termination criteria are that the iteration

number reaches the maximum number of iterations (100%)
or the value of global optimal fitness does not improve after
200 consecutive iterations. In this study, 22 cases were chosen
(AD = 7, Normal = 7, MCI = 8) to be the training set.

3. Experimental Results and Discussion

3.1. Materials. According to the research [4], most patients
with Alzheimer’s disease are aged 65 years or older. There-
fore, most of the subjects in the whole data we choose
are over 65 years old. The image data used in this study
were provided by Chang Gung Memorial Hospital, Lin-Kou,
Taiwan. The degree of clinical severity for each participant
was evaluated by experienced clinicians whom conducted
independent semistructured interviews which included a set
of questions regarding the functional status of the participant,
along with a standardized neurologic, psychiatric, and health
examinations. This interview generates an overall Clinical
Dementia Rating (CDR) andMini Mental State Examination
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Table 4: Classification results (SOM).

Proportion Volume
features Volume features + PCA Shape features Shape features + PCA Volume + shape

features
Volume + shape
features + PCA

AD (versus NC)
Accuracy 76.47% 82.35% 64.71% 70.59% 76.47% 88.24%
Sensitivity 81.25% 87.50% 68.75% 70.59% 76.47% 88.24%
Specificity 77.78% 83.33% 66.67% 70.59% 76.47% 88.24%

MCI (versus NC)
Accuracy 61.11% 66.67% 50.00% 50.00% 66.67% 72.22%
Sensitivity 78.57% 85.71% 64.29% 64.29% 75.00% 86.67%
Specificity 66.67% 71.43% 57.14% 57.14% 68.42% 75.00%

Table 5: Confused matrix with SOM (volume + shape/volume +
shape + PCA).

NC MCI AD
NC 13/15 2/2 1/0
MCI 3/2 12/13 3/5
AD 1/0 4/3 13/15

Evaluate particles 
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Evaluate classification 
accuracy
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Select best particles
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Update the best 
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No
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Figure 5: Basic operation of proposed PSO-SVM approach.

(MMSE) score. The whole dataset consists of three groups
comprising normal control, MCI, and AD. Demographic
information is provided in Table 1.

The whole-brain MRI scans were obtained by a 3T
MR scanner (Trio A TIM system, Siemens, Erlangen, Ger-
many). T1-weighted images were acquired by magnetization-
prepared 180 degrees radio-frequency pulses and rapid
gradient-echo (T1-MPRAGE) series. The following imaging
parameters were used: repetition time (TR) = 2000ms, echo
time (TE) = 4.16ms, and flip angle = 9 degrees. The results

were represented as a 224 × 256matrix, and slice thickness =
1mm in 160 slices.
3.2. Statistical Analysis and Classification. Through image
processing techniques, we obtained individual volume and
shape features. In order to confirm whether there is a
significant effect of the classification for these features, we
use statistical MW test to compare differences between three
groups on various features (continuous variables).

The MW test, also called a Mann-Whitney 𝑈 or Mann-
Whitney Wilcoxon test, is a nonparametric rank-based test
for identifying the difference between populations with
respect to their medians or means. The test does not require
sample data to be normal (sample > 30), and it is relatively
insensitive to the nonhomogeneity of the variance of sample
data. The null hypothesis is that the two populations from
which samples have been drawn have equal medians or
means. The alternatives are that the populations do not
have equal medians. The two samples are combined, and all
sample observations are ranked from smallest to largest. It
was performed on each feature to evaluate its discriminative
power, as shown in (12). 𝑈obt is the smaller value taken from
the sum of𝑈

1
and𝑈

2
, where 𝑛

1
and 𝑛
2
are the sizes of the first

and second samples, respectively,

𝑍
𝑈
=

𝑈obt − (𝑛
1
𝑛
2
/2)

√𝑛
1
𝑛
2
(𝑛
1
+ 𝑛
2
+ 1) /12

. (12)

The 𝑃 values obtained from the tests can provide the
probability that a variation would assume a value greater
than or equal to the observed value strictly by chance. It is
known that the 𝑃 value which is less than the predetermined
significance level (0.05) would result in the rejection of the
null hypothesis at the 5% (significance) level. All statistical
results of volume and shape features we adopted (<0.05)
are shown in Table 2, inclusive of three volume features and
seventeen shape features.

3.3. Results. Although the features we adopted have sta-
tistical significance (<0.05) between three groups, some of
the features may be redundant or have high correlation.
Therefore, principal component analysis (PCA) [38] is used
to reduce the dimensionality of a data set consisting of a
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Table 6: Classification results (SVM).

Proportion Volume
features Volume features + PCA Shape features Shape features + PCA Volume + shape

features
Volume + shape
features + PCA

AD (versus NC)
Accuracy 70.59% 70.59% 58.82% 64.71% 76.47% 82.35%
Sensitivity 70.59% 66.67% 66.67% 78.57% 76.47% 87.50%
Specificity 70.59% 68.75% 63.16% 70.00% 76.47% 83.33%

MCI (versus NC)
Accuracy 55.56% 61.11% 44.44% 50.00% 77.78% 83.33%
Sensitivity 66.67% 64.71% 61.54% 75.00% 77.78% 88.24%
Specificity 60.00% 61.11% 54.55% 60.87% 76.47% 83.33%

Table 7: Confused matrix with SVM (volume + shape/volume +
shape + PCA).

NC MCI AD
NC 13/15 0/1 1/0
MCI 3/2 14/15 3/3
AD 1/0 4/2 13/14

large number of interrelated variables, while retaining as
much as possible of the variation present in the data set. On
the other hand, it can also improve the computation time
required for classification.This is achieved by transforming to
a new set of variables, the principal components (PCs), which
are uncorrelated and are ordered so that the first few retain
most of the variation present in all of the original variables.
In order to effectively represent all the data, we used the
PCs that captured 95% total variation in data set. To train
a volume-feature-based classification, the first two principal
components were adopted. To train a shape-feature-based
classification, only the first eight principal components were
adopted.When we integrated volume and shape features into
classification, the first six principal components were used
to stand for all of the features. Table 3 gives the variances
and the coefficients of the PCs, when the analysis is done on
the correlation matrix. The symbol ∗ indicates that this PCA
coefficient is used as a feature for classification. SOM, SVM,
and PSO-SVM were used to train a classifier, and the results
were presented in Tables 4, 5, 6, 7, 8, and 9.

It showed the results of accuracy (proportion of all
subjects correctly classified), sensitivity (proportion of indi-
viduals with a true positive result), and specificity (propor-
tion of individuals with a true negative result) when using
different features.The derivations of accuracy, sensitivity, and
specificity were expressed in (13), where TP = true positive,
TN = true negative, and FP = false positive. Obviously,
incorporating shape features, volume features, and PCA
provided excellent classification ability than using only one
of them,

Accuracy (ACC) = (TP + TN)

(𝑃 + 𝑁)

Sensitivity or true positive rate (TPR)

=

TP
𝑃

=

TP
(TP + FN)

Specificity or True Negative Rate (TNR)

=

TN
𝑁

=

TN
(FP + TN)

.

(13)

3.4. Discussion. In this study, we investigated the feasibility
of using anatomical MR images to extract different types
of features as a predictive marker for AD and MCI. We
employedmultiple features and different classifiers to identify
the patients with AD and MCI from normal participants.
From the results, volumetric analysis, inclusive of gray/white
matter, cerebrospinal fluid, and local shape analysis on ventri-
cle, provides significant atrophy information. Especially, the
properties of gray matter volume, ventricular area, elonga-
tion, mean signature value, and distances show the statistical
significance (<0.01). This implies that using the volume and
shape features have the potential ability to identify normal
control, AD, and MCI.

By combining both the volumetric features and shape
features, the classification accuracy of SOM reached up
to 76.47% and 66.67% in patients with AD and MCI,
respectively. Moreover, with the help of PCA algorithm, the
classification result was improved up to 88.24% and 72.22%
in patients with AD and MCI, respectively. The classification
accuracy of SVM reached up to 76.47% and 77.78% in patients
with AD and MCI, respectively. Moreover, with the help
of PCA algorithm, the classification result was improved
up to 82.35% and 83.33% in patients with AD and MCI,
respectively. With the hybrid classification framework based
on PSO, the result achieved up to 82.35% and 77.78% in AD
and MCI. Moreover, with the help of PCA algorithm, the
classification result was improved up to 94.12% and 88.89%
in patients with AD and MCI, respectively. According to
the results, combining PSO-SVM with statistical analysis
and principal component analysis (PCA) would improve the
accuracy of classification.

It was also noted that the classification ability was sig-
nificant for AD and normal control than the patients with
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Table 8: Classification results (PSO-SVM).

Proportion Volume
features Volume features + PCA Shape features Shape features + PCA Volume + shape

features
Volume + shape
features + PCA

AD (versus NC)
Accuracy 76.47% 76.47% 70.59% 76.47% 82.35% 94.12%
Sensitivity 76.47% 76.47% 70.59% 76.47% 87.50% 94.12%
Specificity 76.47% 76.47% 70.59% 76.47% 83.33% 94.12%

MCI (versus NC)
Accuracy 66.67% 66.67% 55.56% 50.00% 77.78% 88.89%
Sensitivity 75.00% 75.00% 66.67% 69.23% 87.50% 94.12%
Specificity 68.42% 68.42% 60.00% 59.09% 78.95% 88.88%

Table 9: Confusedmatrix with PSO-SVM (volume + shape/volume
+ shape + PCA).

NC MCI AD
NC 15/16 1/1 0/0
MCI 2/1 14/16 3/1
AD 0/0 3/1 14/16

MCI. MCI is a transitional stage between normal cognitive
aging and dementia. Therefore, the characteristics of patients
withMCIwere similar to AD subjects. On the other hand, the
characteristic of patients with MCI was also possibly similar
to normal participants. Combination with other features was
essential to improve the accuracy of classification ability for
patients with MCI in an early stage.

4. Conclusion

In this paper, we compared different methods for the classifi-
cation of patients with AD andMCI based on anatomical T1-
weightedMRI. To evaluate and compare the performances of
eachmethod, two classification experiments were performed:
CN versus AD and CN versus MCI. It is observed that
the volume features and shape features can be integrated to
increase classification accuracy with the low computational
complexity. Classification results also verify our hypothe-
sis that the combination of multimodal features, including
volume and shape features, outperforms a single modality
of features, possibly because different features are mutually
complementary. Furthermore, it is proven that statistical
analysis and PCA can achieve accuracies significantly better
than all the features that are adopted. In the performance of
classifiers used here, it is shown that PSO-SVM can achieve
the best accuracy, sensitivity, and specificity, nomatter for CN
versus AD and CN versus MCI.

For the moment, the classified results are greater for
patients with AD and normal participants than for patients
with MCI. It can provide clinically useful information at the
large-scale population-based screening studies. The results
would be welcomed for prognosticating disease progression
and providing an objective evaluation of cognitive rehabilita-
tion treatments for dementing illness.
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