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Magnetic resonance electrical impedance tomography (MREIT) measures magnetic flux density signals through the use of a
magnetic resonance imaging (MRI) in order to visualize the internal conductivity and/or current density. Understanding the
reconstruction procedure for the internal current density, we directlymeasure the second derivative of𝐵

𝑧
data from themeasured 𝑘-

space data, from which we can avoid a tedious phase unwrapping to obtain the phase signal of 𝐵
𝑧
. We determine optimal weighting

factors to combine the derivatives of magnetic flux density data, ∇2𝐵
𝑧
, measured using the multi-echo train.The proposed method

reconstructs the internal current density using the relationships between the induced internal current and the measured ∇2𝐵
𝑧
data.

Results from a phantom experiment demonstrate that the proposed method reduces the scanning time and provides the internal
current density, while suppressing the background field inhomogeneity. To implement the real experiment, we use a phantom with
a saline solution including a balloon, which excludes other artifacts by any concentration gradient in the phantom.

1. Introduction

Magnetic resonance electrical impedance tomography
(MREIT) visualizes a cross-sectional conductivity and/or
current density inside the human body. The MREIT tech-
nique injects currents through attached electrodes in order
to probe the imaging subject and then measures the induced
magnetic flux density, inside the subject using an MRI
scanner.TheMRI scanner onlymeasures the 𝑧-component of
the induced magnetic flux density B = (𝐵

𝑥
, 𝐵

𝑦
, 𝐵

𝑧
); therefore

the MREIT techniques have focused on the reconstruction
of the internal conductivity and/or current density by using
the measurable 𝐵

𝑧
data instead of subject rotation [1–18].

The MREIT techniques used to reconstruct the conduc-
tivity and/or the current density have been widely developed
and have reached the stage of imaging experiments for live
animals and the human body [18, 19]. Due to the poor SNR of
measured𝐵

𝑧
data in currentMREIT experiments, it is critical

to reduce the scan time in MREIT, while maintaining the
spatial-resolution and sufficient contrast, for practical in vivo
implementations of MREIT.

In order to increase the quality of measured 𝐵
𝑧
data, a

measurement technique called the injected current nonlinear
encoding (ICNE) method was developed, which extends
the duration of the injection current until the end of the
read-out gradient in order to maximize the signal intensity
of the magnetic flux density [20]. Motivated by the ICNE
pulse sequence method, an ICNE-multiecho technique was
developed and optimized by finding an optimal weighting
factor for the multiple measured 𝐵

𝑧
data [21].

TheMREIT technique typically uses an interleaved acqui-
sition, which scans each phase encoding consecutively by
injecting two currents possessing positive and negative polar-
ities with the same scan duration and amplitude to double the
𝐵
𝑧
signal and cancel out the background field inhomogeneity.

In order to reduce the scan time, for the measurement of 𝐵
𝑧
,

[22] reconstructed the phase signal 𝐵
𝑧
by filling a partial 𝑘-

space region using the interleaved measurement property.
Functional MRI (fMRI) has been applied to a wide range

of neuroscience researches by visualizing neural activities
inside the brain in a fast and directway [23–25]. A fastMREIT
imaging technique has been proposed as a promising imaging
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technique for the continuousmonitoring of internal electrical
property inside the subject [26]. In this paper, we propose
a method to monitor spatial and temporal internal current
density changes in the subject by using a fast gradient multi-
echo pulse sequence to maximize the measured 𝐵

𝑧
signal in

a short scanning time. Moreover, we derive a direct method
to measure ∇

2

𝐵
𝑧
instead of 𝐵

𝑧
data from the measured 𝑘-

space data. The proposed method can also avoid a tedious
unwrapping procedure, which may introduce phase artifact
in the recovered phase signal.

For the recovery of the internal current density, we inves-
tigate the reconstruction procedure for the internal current
density from the measured ∇

2

𝐵
𝑧
data. In the paper [27], a

projected current J𝑃 was provided by the decomposition J =
J𝑃 + J𝑁, where J is the internal current density influenced
by the injected current and J𝑃 is a determined component
of J from the measured 𝐵

𝑧
data. The projected current J𝑃 is

identical to the true current J when the 𝑧-component 𝐽
𝑧
of

J = (𝐽
𝑥
, 𝐽
𝑦
, 𝐽
𝑧
) is the same as 𝐽0

𝑧
where 𝐽0

𝑧
is the 𝑧-component

of the background current J0.
The projected current J𝑃 can be determined in a concrete

form which consists of the background current J0 and
the solution of a two-dimensional harmonic equation with
the Dirichlet condition that matches the external injection
current on the surface of the subject. To recover the internal
current density J𝑃 with the generated 𝐵

𝑧
caused by the

injected current, we only use the second derivatives of 𝐵
𝑧

and ∇
2

𝐵
𝑧
, which are required to solve the two-dimensional

harmonic equation for J𝑃.
To reduce the noise artifact, we apply the ICNE-multi-

echo train based on the fast gradient echo and solve an
optimal weighting factor of ∇2𝐵ℓ

𝑧
, ℓ = 1, . . . , 𝑁

𝐸
, where 𝑁

𝐸

denotes the number of echoes at each RF pulse.
In order to verify how the proposed method works, we

designed a phantomwith a saline solution and fixed a balloon
inside the phantom, inflating the balloon by injecting the
same saline solution. The phantom was designed to provide
a homogeneous magnitude image, but the recovered current
density distinguishes inside the balloon. For the experiment,
the total scan time was 12.36 seconds to obtain the complete
𝑘-space data using the interleaved acquisition in order to
implement the proposed method with a 128 × 128 spacial
matrix size. The phantom experiment demonstrates that the
proposed method reduces the scanning time and recovers
internal current density, while suppressing the measured
noise artifact.

2. Methods

We inject the current 𝐼 through the attached electrodes on
a three-dimensional cylindrical conducting objectΩ with its
conductivity distribution 𝜎. The injection currents 𝐼 produce
the voltage distribution 𝑢 satisfying the following elliptic
partial differential equation:

∇ ⋅ (𝜎∇𝑢) = 0 in Ω,

−𝜎∇𝑢 ⋅ 𝜈 = 𝑔 on 𝜕Ω, ∫

𝜕Ω

𝑢𝑑𝑠 = 0,

(1)

where 𝜈 is the outward unit normal vector and𝑔 is the normal
component of the current density on 𝜕Ω. Clearly, ∫

𝜕Ω
𝑔𝑑𝑠 = 0

due to ∇ ⋅ (𝜎∇𝑢) = 0 in Ω. The current density J = −𝜎∇𝑢

and the magnetic flux density B = (𝐵
𝑥
, 𝐵

𝑦
, 𝐵

𝑧
) in Ω satisfy

the Ampère law J = ∇ × B/𝜇
0
and Biot-Savart law, where

𝜇
0
= 4𝜋10

−7 Tm/A is the magnetic permeability of the free
space. We let 𝐵

𝑧
(𝑥, 𝑦) = 𝐵

𝑧
(𝑥, 𝑦, 𝑧

0
) where 𝑧

0
is the center of

a selected imaging slice.

2.1. Measurement of 𝐵
𝑧
Using Interleaved ICNE Acquisition.

For the interleaved ICNE acquisition method, we inject
the positive and negative currents, 𝐼+ and 𝐼

−, through the
attached electrodes by scanning each phase encoding con-
secutively. For a standard spin echo pulse sequence without
current injection, the 𝑘-space MR signal can be expressed as

𝑆 (𝑛,𝑚) = ∫

R2
𝜌 (𝑥, 𝑦) 𝑒

𝑖𝛿(𝑥,𝑦)

𝑒
−𝑖2𝜋(Δ𝑘

𝑥
𝑛𝑥+Δ𝑘

𝑦
𝑚𝑦)

𝑑𝑥𝑑𝑦, (2)

where 𝜌(𝑥, 𝑦) is the real transverse magnetization, 𝛿 denotes
the phase artifact of background field inhomogeneity, and
Δ𝑘

𝑥
and Δ𝑘

𝑦
are the reciprocals of fields of view for the

𝑥 direction and 𝑦 direction, respectively. During the data
acquisition, we set

Δ𝑘
𝑥
=

𝛾

2𝜋

𝐺
𝑥
Δ𝑡, Δ𝑘

𝑦
=

𝛾

2𝜋

Δ𝐺
𝑦
𝑇
𝑝𝑒
, (3)

and sample the data in (2) finitely for

𝑛 = −

𝑁
𝑥

2

, . . . ,

𝑁
𝑥

2

− 1, 𝑚 = −

𝑁
𝑦

2

, . . . ,

𝑁
𝑦

2

− 1. (4)

The names of the above parameters are

𝛾 = 26.75 × 10
7 rad/T ⋅ s: the gyromagnetic ratio of

the proton,
𝐺
𝑥
: the magnetic reading gradient strength,

Δ𝑡: the sampling interval,
Δ𝐺

𝑦
: the phase encoding step,

𝑇
𝑝𝑒
: the phase encoding time interval,

𝑁
𝑥
: the number of sampling points,

𝑁
𝑦
: the number of phase encoding lines.

For the conventional MREIT case, we inject the current
for the duration of 𝑇0

𝑐
from the end of the 90∘ RF pulse to the

beginning of the reading gradient. In this case, the induced
magnetic flux density𝐵

𝑧
due to the injection current provides

the additional dephasing of spins and consequently the extra
phase is accumulated during 𝑇0

𝑐
. The corresponding 𝑘-space

data for the injection currents 𝐼± can be represented as

𝑆
𝐼
±

(𝑛,𝑚) = ∫

R2
𝜌 (𝑥, 𝑦) 𝑒

𝑖𝛿(𝑥,𝑦)

𝑒
±𝑖𝛾𝑇
0

𝑐
𝐵
𝑧
(𝑥,𝑦)

× 𝑒
−𝑖2𝜋(Δ𝑘

𝑥
𝑛𝑥+Δ𝑘

𝑦
𝑚𝑦)

𝑑𝑥𝑑𝑦.

(5)

Using the notations

𝜌
±

(𝑥, 𝑦) = 𝜌 (𝑥, 𝑦) 𝑒
𝑖𝛿(𝑥,𝑦)

𝑒
±𝑖𝛾𝑇
0

𝑐
𝐵
𝑧
(𝑥,𝑦)

, (6)
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we can compute the magnetic flux density 𝐵
𝑧
as

𝐵
𝑧
(𝑥, 𝑦) =

1

2𝛾𝑇
0

𝑐

tan−1 (
𝛼 (𝑥, 𝑦)

𝛽 (𝑥, 𝑦)

) , (7)

where 𝛼 and 𝛽 are the imaginary and real parts of 𝜌+/𝜌−,
respectively.

In the conventional MREIT case, the noise standard
deviation of the measured 𝐵

𝑧
, 𝑠𝑑

𝐵
𝑧

, is given as a known
quantity, which is inversely proportional to the current
injection time 𝑇

𝑐
and the SNR of the MR magnitude image

Υ as follows [28, 29]:

𝑠𝑑
𝐵
𝑧
(r) = 1

2𝛾𝑇
𝑐
Υ (r)

. (8)

Since the ICNE MR pulse sequence injects the current until
the end of a read gradient, the total current injection time
of the ICNE case is 𝑇𝑇

𝑐
:= 𝑇

0

𝑐
+ 𝑇

𝑠
and the 𝑘-space data is

represented as

𝑆
𝐶
±

(𝑛,𝑚) = ∫

R2
𝜌 (𝑥, 𝑦) 𝑒

𝑖𝛿(𝑥,𝑦)

𝑒
±𝑖𝛾(𝑇

0

𝑐
+𝑇
𝑠
/2)𝐵
𝑧
(𝑥,𝑦)

× 𝑒
−𝑖2𝜋(Δ𝑘

𝑥
𝑛𝑥+Δ𝑘

𝑦
𝑚𝑦)

𝑑𝑥𝑑𝑦,

(9)

where 𝑇
𝑠
= Δ𝑡𝑁

𝑥
is the data acquisition time. In the usual

spin echo, the ICNE current injection method demonstrates
better SNR in the measured magnetic flux density data than
the conventional current injection method. The optimal data
acquisition time 𝑇

∗

𝑠
has been calculated for the usual spin

echo as

𝑇
∗

𝑠
=

2√3

3

𝑇
𝐸
− √3𝜏

𝑟𝑓
, (10)

which optimally reduces the noise in the 𝐵
𝑧
data, where 𝜏

𝑟𝑓
is

the time of RF pulse [30].
In the ICNE MR pulse sequence case, the noise standard

deviation of themeasured𝐵
𝑧
, 𝑠𝑑ICNE

𝐵
𝑧

, is given as follows [30]:

𝑠𝑑
ICNE
𝐵
𝑧

(r) = 1

2𝛾 (𝑇
0

𝑐
+ 𝑇

∗

𝑠
/2) Υ (r)

. (11)

The prolonged data acquisition time, however, may suffer
from undesirable side artifacts such as blurring, chemical
shift, and motion artifacts along the phase encoding direc-
tion. To reduce the undesirable side artifacts, we divide the
prolonged data acquisition time into several short ones in the
ICNE-multi-echo MR pulse sequence.

2.2. Measurement of ∇̃2𝐵
𝑧
Using ICNE-Multiecho Train.

Using the ICNE-multi-echo MR pulse sequence, the mea-
sured 𝑘-space data can be represented as

𝑆
ℓ±

(𝑛,𝑚) = ∫

R2
𝜌
ℓ

(𝑥, 𝑦) 𝑒
𝑖𝛿
ℓ
(𝑥,𝑦)

𝑒
±𝑖𝛾𝑇
ℓ

𝑐
𝐵
𝑧
(𝑥,𝑦)

× 𝑒
−𝑖2𝜋(Δ𝑘

𝑥
𝑛𝑥+Δ𝑘

𝑦
𝑚𝑦)

𝑑𝑥𝑑𝑦, ℓ = 1, . . . , 𝑁
𝐸
,

(12)

RF

Current

Data 
acquisition

Signal

𝐼+
𝐼−

𝛼∘

𝐺𝑥

𝐺𝑦

𝐺𝑧

Figure 1: Diagram of the ICNE-multi-echo MR pulse sequence
based on a gradient echo.

where 𝑁
𝐸
is the echo number, 𝑇ℓ

𝑐
is the ℓth time width of

the injected current, and 𝜌ℓ and 𝛿ℓ denote the ℓth transverse
magnetization and phase artifact, respectively.

Figure 1 presents a schematic diagram for the ICNE-
multi-echo MR pulse sequence based on a gradient echo
pulse sequence. By taking the inverse fast Fourier transform,
the ICNE-multi-echo sequence generates multiple complex
images with different magnitude amplitudes depending on
𝑇
∗

2
decay and different widths of current injection time:

𝜓
ℓ±

(𝑥, 𝑦) := 𝜌
ℓ

(𝑥, 𝑦) 𝑒
𝑖𝛿
ℓ
(𝑥,𝑦)

𝑒
±𝑖𝛾𝑇
ℓ

𝑐
𝐵
𝑧
(𝑥,𝑦)

, ℓ = 1, . . . , 𝑁
𝐸
.

(13)

Using the relation (13), we derive a formula for ∇̃2𝐵ℓ
𝑧
as

∇̃
2

𝐵
ℓ

𝑧
(𝑥, 𝑦) =

1

𝑖𝛾𝑇
ℓ

𝑐

∇̃

⋅ (

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
ℓ+

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

𝜓
ℓ+
(𝑥, 𝑦)

∇̃

𝜓
ℓ+

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
𝜓
ℓ+
(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
ℓ−

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

𝜓
ℓ−
(𝑥, 𝑦)

∇̃

𝜓
ℓ−

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
𝜓
ℓ−
(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

) ,

(14)

where ∇̃𝐵ℓ
𝑧
= (𝜕𝐵

ℓ

𝑧
/𝜕𝑥, 𝜕𝐵

ℓ

𝑧
/𝜕𝑦) denotes the two-dimensional

gradient of 𝐵ℓ
𝑧
. The induced ∇̃

2

𝐵
ℓ

𝑧
in (14) removes the low-

frequency phase artifact 𝛿ℓ by subtracting ∇̃2𝛿ℓ in (14).
The calculated vector (|𝜓

ℓ±

|/𝜓
ℓ±

)∇̃(𝜓
ℓ±

/|𝜓
ℓ±

|) corre-
sponding to 𝑖𝛾𝑇

ℓ

𝑐
∇̃(𝛿

ℓ

± 𝐵
ℓ

𝑧
) includes unavoidable mea-

sured noise. When we consider the decomposed form of
(|𝜓

ℓ

|/𝜓
ℓ

)∇̃(𝜓
ℓ

/|𝜓
ℓ

|) = ∇̃𝑓 + ∇̃ × Ψ, where the curl term
∇̃× Ψ is a part of unavoidablemeasured noise, the divergence
procedure for ∇̃2𝐵ℓ

𝑧
in (14) cancels ∇̃ × Ψ, and therefore the

measured ∇̃
2

𝐵
ℓ

𝑧
includes a denoising procedure by suppress-

ing a part of the measured noise.

2.3. Optimal Combination of Measured ∇̃2𝐵ℓ
𝑧
, ℓ=1, . . . ,𝑁

𝐸
.

The measured ∇̃
2

𝐵
ℓ

𝑧
, ℓ = 1, . . . , 𝑁

𝐸
includes different

amounts of unavoidable noise since the intensity of transverse
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magnetization and the width of injected current are different
at each echo.

The noise standard deviation of ∇̃2𝐵ℓ
𝑧
in (14) is given as

𝑠𝑑
∇̃
2
𝐵
ℓ

𝑧

(𝑥, 𝑦) =

𝐶

𝛾𝑇
ℓ

𝑐
Υ
ℓ
(𝑥, 𝑦)

, (15)

where the constant 𝐶 only relates to the numerical differen-
tiations for ∇̃2𝐵ℓ

𝑧
, and Υ

ℓ denotes the SNR of the ℓth MR
magnitude image.

Since the noise levels of the measured ∇̃
2

𝐵
ℓ

𝑧
, ℓ =

1, . . . , 𝑁
𝐸
in (14) are given as known quantities, we can utilize

the known information 𝑠𝑑
∇̃
2
𝐵
ℓ

𝑧

to determine an optimized
∇̃
2

𝐵
𝑧
which combines the multiple ∇̃2𝐵ℓ

𝑧
:

∇̃
2

𝐵
𝑧
(𝑥, 𝑦) =

𝑁
𝐸

∑

ℓ=1

𝜔
ℓ

(𝑥, 𝑦) ∇̃
2

𝐵
ℓ

𝑧
(𝑥, 𝑦) . (16)

Theproblemof determining theweighting factors𝜔ℓ for ∇̃2𝐵ℓ
𝑧

can be formulated as

min
𝜔
ℓ
(𝑥,𝑦), ℓ=1,...,𝑁𝐸

𝑁
𝐸

∑

ℓ=1

(𝜔
ℓ

(𝑥, 𝑦))

2

Var
∇̃
2
𝐵
ℓ

𝑧

(𝑥, 𝑦)

subject to
𝑁
𝐸

∑

ℓ=1

𝜔
ℓ

(𝑥, 𝑦) = 1, 𝜔
ℓ

(𝑥, 𝑦) > 0,

(17)

where Var
∇̃
2
𝐵
ℓ

𝑧

denotes the noise variance of ∇̃
2

𝐵
ℓ

𝑧
, ℓ =

1, . . . , 𝑁
𝐸
in (14).

Following similar arguments in [21], theweighting factors
𝜔
ℓ can be determined as

𝜔
ℓ

(𝑥, 𝑦) =

(𝑇
ℓ

𝑐
)

2󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
ℓ±

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

2

∑
𝑁
𝐸

𝑚=1
(𝑇

𝑚

𝑐
)
2󵄨
󵄨
󵄨
󵄨
𝜓
𝑚±

(𝑥, 𝑦)
󵄨
󵄨
󵄨
󵄨

2
, ℓ = 1, . . . , 𝑁

𝐸
,

(18)

where 𝜓ℓ± in (13) is the inverse fast Fourier transform of the
measured 𝑘-space data 𝑆ℓ±.

2.4. Recovery of Internal Current Density Using the Optimized
∇̃
2

𝐵
𝑧
. The internal current density J = −𝜎∇𝑢 and the mag-

netic flux density B = (𝐵
𝑥
, 𝐵

𝑦
, 𝐵

𝑧
) in Ω satisfy the Ampère

law J = ∇×B/𝜇
0
where 𝜇

0
is the magnetic permeability of the

free space. The magnetic resonance current density imaging
(MRCDI) technique, which allows the rotation of the object
in the MRI scanner, directly visualizes the internal current
density by measuring the full components of B [31].

The MREIT techniques focus on visualizing the internal
current density using only 𝐵

𝑧
component of B without

rotating the subject. A cylindrical imaging domain Ω can be
represented as

Ω = ⋃

𝑡∈(−𝐻,𝐻)

Ω
𝑡
, where Ω

𝑡
= Ω ∩ {(𝑥, 𝑦, 𝑧) ∈ R

3

| 𝑧 = 𝑡} ,

(19)

whereΩ
0
denotes the middle slice of the imaging subjectΩ.

In the paper [27], the only recoverable current from the
measured 𝐵

𝑧
data can be represented as J𝑃 = J0 + J∗, where

J0 = ∇𝛼 and J∗ = (𝜕𝛽/𝜕𝑦, −𝜕𝛽/𝜕𝑥, 0). Here, 𝛼 is a
homogeneous voltage potential satisfying

∇
2

𝛼 = 0 in Ω,

∇𝛼 ⋅ 𝜈 = J ⋅ 𝜈 on 𝜕Ω, ∫

𝜕Ω

𝛼𝑑𝑠 = 0,

(20)

and 𝛽
𝑡
(𝑥, 𝑦) := 𝛽(𝑥, 𝑦, 𝑡) satisfies the following two-dimen-

sional Laplace equation for each sliceΩ
𝑡
⊂ Ω:

∇̃
2

𝛽
𝑡
=

1

𝜇
0

∇
2

𝐵
𝑧

in Ω
𝑡
,

𝛽
𝑡
= 0 on 𝜕Ω

𝑡
,

(21)

where ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧) and ∇̃ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦). From
the optimized ∇̃

2

𝐵
𝑧
in (16) on each imaging slice Ω

𝑡
, we can

estimate ∇2𝐵
𝑧
in (21).

Equations (20) and (21) show that we can reconstruct the
projected current J𝑃 from the optimized ∇̃

2

𝐵
𝑧
immediately,

instead of 𝐵
𝑧
, by solving two-dimensional Laplace equations

in the region of interest (ROI). The projected current J𝑃
provides an optimal approximation of the true current J and,
moreover, the gap J − J𝑃 depends only on the longitudinal
component 𝐽

𝑧
− 𝐽

0

𝑧
of J − J0.

2.5. Experimental Setup. In order to demonstrate the pro-
posed method, we performed a phantom with a saline
solution including a balloon for the visualization of internal
current density. The internal of the balloon was filled with
the same saline solution and the volume of the balloon was
controlled by injecting the saline solution, which excluded
other artifacts by any concentration gradient in the phantom.
Figure 2(a) illustrates the used balloon for the phantom
experiment, andFigures 2(b) and 2(c) showaphantomdesign
to describe how to setup the balloon phantom.

After positioning the phantom inside a 3.0TMRI scanner
(Achieva, Philips), we collected 𝑘-space data with 8-channel
RF coil using the gradient multi-echo ICNE pulse sequence,
which extends throughout the duration of the injection cur-
rent until the end of a readout gradient [20]. The maximum
amplitude of the injection current was 5mA and the total
imaging time was 12.36 seconds to measure the interleaved
𝑘-space 𝑆

ℓ± data, ℓ = 1, . . . , 𝑁
𝐸
. The slice thickness was

5mm, the number of axial slices was one, the repetition time
𝑇
𝑅
= 60ms, the echo spacing Δ𝑇

𝐸
= 6ms, the flip angle was

40 degree, and the multi-echo time 𝑇
𝐸
ℓ

= 6 + (ℓ − 1) × 6ms
for𝑁

𝐸
= 9. The FOV was 160 × 160mm2 with a matrix size

of 128× 128. The current injection time 𝑇
𝑐
ℓ

for each echo was
almost the same as themulti-echo time𝑇

𝐸
ℓ

= 6+(ℓ−1)×6, ℓ =
1, . . . , 9 because the current was continuously injected until
the end of the readout gradient.

3. Results

Figure 3(a) shows the acquired magnitude images |𝜌ℓ|, ℓ =

1, . . . , 9, where 𝜌ℓ was the ℓthmeasured𝑇∗
2
weighted complex
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Figure 2: (a) Balloon used for the experiment, (b) and (c) balloon phantom design and the electrodes position, respectively.
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Figure 3: (a) Acquired magnitude images |𝜌ℓ|, ℓ = 1, . . . , 9, where 𝜌ℓ was the ℓth measured 𝑇∗
2
weighted complex image, (b) measured ∇̃2𝐵ℓ

𝑧

images using (14) corresponding to the ℓth 𝑘-space data 𝑆ℓ±, ℓ = 1, . . . , 9.

image. Figure 3(b) shows the measured ∇̃
2

𝐵
ℓ

𝑧
images using

(14) corresponding to the ℓth 𝑘-space data 𝑆ℓ±, ℓ = 1, . . . , 9.
Inside and outside of the balloon, the MR magnitude images
are almost the same because of the same saline solution,
but the measured ∇̃

2

𝐵
ℓ

𝑧
images show distinguishable signals

reflecting the conductivity changes inside and outside of the
balloon.

Since both sides, inside and outside of the balloon, are
homogeneous, the ∇̃

2

𝐵
ℓ

𝑧
≈ −𝜇

0
∇𝑢 × ∇𝜎 should be near

zero except the boundary of the balloon without noise effect
because the conductivity value is constant in each region. To
evaluate the noise level of 𝐵ℓ

𝑧
, we calculated the discrete 𝐿2-

norm:

Err
2
:=

󵄩
󵄩
󵄩
󵄩
󵄩
∇̃
2

𝐵
ℓ

𝑧

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
(Ω\𝜕𝐷)

=
√

∑

(𝑥𝑖 ,𝑦𝑗)∈Ω\𝜕𝐷

∇̃
2
𝐵
ℓ

𝑧
(𝑥

𝑖
, 𝑦

𝑗
)

2 󵄨
󵄨
󵄨
󵄨
󵄨
Ω
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

(22)

whereΩ is the imaging ROI region, 𝜕𝐷 denotes the boundary
of balloon, and |Ω

𝑖𝑗
| is the pixel size.

Table 1 shows the 𝐿
2-norm, Err

2
, in which the values

depends on the 𝑇∗
2
decay rate and the width of injected cur-

rent.
The estimated noise levels were reduced up to the 4th

echo, but increased in the following echoes because the inten-
sity of magnitude images follows the exponential 𝑇∗

2
decay,

and the width of the injected current linearly increases.
Figures 4(a) and 4(b) show the measured 𝜕𝐵

ℓ

𝑧
/𝜕𝑥 and

𝜕𝐵
ℓ

𝑧
/𝜕𝑦 images, respectively, where

∇̃𝐵
ℓ

𝑧
(𝑥, 𝑦) =

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
ℓ+

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

𝜓
ℓ+
(𝑥, 𝑦)

∇̃

𝜓
ℓ+

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
𝜓
ℓ+
(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
ℓ−

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

𝜓
ℓ−
(𝑥, 𝑦)

∇̃

𝜓
ℓ−

(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
𝜓
ℓ−
(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

, ℓ = 1, . . . , 9.

(23)

Since the currents were transversally injected, the measured
𝜕𝐵

ℓ

𝑧
/𝜕𝑦 reflected dominant internal current flows.
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Table 1: Noise level estimation of the measured ∇̃2𝐵ℓ
𝑧
, ℓ = 1, . . . , 9, by calculating (22).

1st 2nd 3rd 4th 5th 6th 7th 8th 9th
Err

2
129.1 142.1 115.0 110.4 203.1 161.7 195.6 183.5 166.6

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)
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)

𝐸 − 6

(b)

Figure 4: (a) Measured 𝜕𝐵ℓ
𝑧
/𝜕𝑥 images, (b) measured 𝜕𝐵ℓ

𝑧
/𝜕𝑦 images, ℓ = 1, . . . , 9.

Table 2: Noise level estimation of the recovered ∇̃2𝐵avrg
𝑧

and ∇̃2𝐵opt
𝑧

,
by calculating (22).

∇̃
2

𝐵
avrg
𝑧

= (1/𝑁
𝐸
) ∑

𝑁𝐸

ℓ=1
∇̃
2

𝐵
ℓ

𝑧
∇̃
2

𝐵
opt
𝑧

= ∑
𝑁𝐸

ℓ=1
𝜔
ℓ

∇̃
2

𝐵
ℓ

𝑧

Err
2

145.1 41.5

Figures 5(a) and 5(b) display the reconstructed ∇̃2𝐵avrg
𝑧

=

(1/𝑁
𝐸
) ∑

𝑁
𝐸

ℓ=1
∇̃
2

𝐵
ℓ

𝑧
and ∇̃2𝐵opt

𝑧
= ∑

𝑁
𝐸

ℓ=1
𝜔
ℓ

∇̃
2

𝐵
ℓ

𝑧
images, respec-

tively, where 𝜔ℓ is the weighting factor by solving (17).
Figure 6 shows the recovered current density images,

𝐽
ℓ

𝑥
and 𝐽

ℓ

𝑦
, corresponding to the ℓth echo. To obtain the

current density images, we solved (20) for the background
homogeneous current and the two-dimensional harmonic
equation (21) to reflect the measured ∇̃2𝐵ℓ

𝑧
data.

We recovered the current density Jopt by solving (20) and
(21) using the optimized ∇̃

2

𝐵
opt
𝑧

= ∑
𝑁
𝐸

ℓ=1
𝜔
ℓ

∇̃
2

𝐵
ℓ

𝑧
, where 𝜔ℓ is

the weighting factor by solving (17). The recovered 𝐽
opt
𝑥

and
𝐽
opt
𝑦

are displayed in Figure 7.
Table 2 shows the estimated noise level of the recovered

∇̃
2

𝐵
avrg
𝑧

and ∇̃
2

𝐵
opt
𝑧

, by calculating (22). The estimated noise
levels validate the proposed method because the inside and
outside of the balloon in the phantom should be homoge-
neous.

4. Discussion

Since the MREIT technique conventionally used the inter-
leaved phase encoding acquisition scheme to measure the
magnetic flux density by alternating two currents with
positive and negative polarities, we could obtain the coil

sensitivity information without additional scans by product
of 𝜓𝑐𝑗+ and 𝜓𝑐𝑗−:

Ψ
𝑐
𝑗
(𝑥, 𝑦) := 𝜓

𝑐
𝑗
+

(𝑥, 𝑦) 𝜓
𝑐
𝑗
−

(𝑥, 𝑦)

= (𝜌
𝑐
𝑗
(𝑥, 𝑦))

2

𝑒
2𝑖𝛿
𝑐𝑗
(𝑥,𝑦)

, 𝑗 = 1, . . . , 𝑁
𝐶
,

(24)

where 𝛿
𝑐
𝑖

is the 𝑗th coil sensitivity and 𝑁
𝐶
is the number of

coils. For a fast MRI, using the a priori spatial information
from the multiple receiver coils, the sensitivity encoding
(SENSE) technique enables one to reduce the number of
Fourier encoding stepswhile preserving the spatial resolution
[32]. For a temporal variation of the internal conductivity, if
we estimate the reference coil sensitivity using (24), which
is independent of the injected current, the SENSE technique
can be applicable to the proposed method to visualize the
internal current density combining the multi-echo train.

In this paper, we directly measure ∇̃
2

𝐵
𝑧
, which is suf-

ficient to reconstruct the internal current density using the
injected current information. The proposed method to mea-
sure ∇̃2𝐵

𝑧
in (14) can avoid a tedious unwrapping procedure.

The proposed method may exhibit potential to be applied for
conventional phase imaging techniques.

The optimal combination of multiple echoes by deter-
mining optimal weighting factor in (17) effectively reduces
the noise level of measured ∇̃

2

𝐵
𝑧
. Since the decay rate

of magnitude and the width of injected current can be
determined pixel by pixel, we can determine a pixel-wise
noise level of the optimized ∇̃2𝐵

𝑧
data. Sincemost algorithms

for the MREIT technique visualize the internal conductivity
and/or current density in an entire imaging region due to the
relationships between the external injection current and the
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Figure 5: (a) Reconstructed ∇̃2𝐵avrg
𝑧

= (1/𝑁
𝐸
) ∑

𝑁𝐸

ℓ=1
∇̃
2

𝐵
ℓ

𝑧
images, (b) reconstructed ∇̃2𝐵opt

𝑧
= ∑

𝑁𝐸

ℓ=1
𝜔
ℓ

∇̃
2

𝐵
ℓ

𝑧
images, where 𝜔ℓ is the weighting

factor by solving (17).
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Figure 6: Recovered current density by solving (20) and (21). (a) Recovered 𝐽ℓ
𝑥
images, (b) recovered 𝐽ℓ

𝑦
images, ℓ = 1, . . . , 9.
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Figure 7: Recovered current density by solving (20) and (21). (a) Reconstructed 𝐽opt
𝑥

images, (b) 𝐽opt
𝑦

images by using 𝐵opt
𝑧

.
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internal measured magnetic flux density data, the estimated
noise level of 𝐵

𝑧
can be used to determine the denoising level

of the measured data in defective regions.
To optimize the multiple echoes, we consider only the

uniformly distributed random noise effect, but unavoidable
spike or different nonuniform noise may deteriorate a com-
bined measured data. Thus it is important to develop a
method to discard the non-uniform noises in the optimizing
process in order to enhance the quality of 𝐵

𝑧
.

Our future studies will focus on reducing the imaging
time with a feasible noise level to produce conductivity
images for the application of functional MREIT imaging
to animal brains in order to visualize the rapidly changing
conductivity associated with neural activation.

5. Conclusion

We have visualized the internal current density using a fast
ICNE-multi-echo MR pulse sequence based on a gradient
echo by twomeasurements in the interleaved acquisition.The
interleaved acquisition method in MREIT is a conventional
method to suppress the background field inhomogeneity
phase artifact and to increase the SNR of 𝐵

𝑧
by doubling

the accumulated phase signal. We used the multi-echo pulse
sequence, which acquires multiple sampling points within
each repetition time.The proposedmethod directlymeasures
the Laplacian of 𝐵

𝑧
from the measured 𝑘-space data, which

can avoid a tedious unwrapping procedure and include a
denoising effect by removing a part of the measured noise.
We determined an optimal combination of the magnetic flux
densities from the multi-echo in order to reduce the noise
level. Using the optimization of ∇2𝐵

𝑧
, the proposed method

visualized the internal current density using the relationships
between the induced internal current and themeasured∇2𝐵

𝑧

data, while suppressing the background field inhomogeneity.
A real phantom experiment with a saline solution including
a balloon was carried out to verify that the proposed method
can be feasibly applied in real experiments. The total scan
time in the phantom experiment was less than 13 seconds to
visualize the current density with a 128 × 128 spacial matrix
size.
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