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Magnetic resonance imaging (MRI) data is an invaluable tool in brain morphology research. Here, we propose a novel statistical
method for investigating the relationship between clinical characteristics and brain morphology based on three-dimensional MRI
data via radial basis function-sparse partial least squares (RBF-sPLS). Our data consisted of MRI image intensities for multimillion
voxels in a 3D array along with 73 clinical variables. This dataset represents a suitable application of RBF-sPLS because of a
potential correlation among voxels as well as among clinical characteristics. Additionally, this method can simultaneously select
both effective brain regions and clinical characteristics based on sparse modeling. This is in contrast to existing methods, which
consider prespecified brain regions because of the computational difficulties involved in processing high-dimensional data. RBF-
sPLS employs dimensionality reduction in order to overcome this obstacle. We have applied RBF-sPLS to a real dataset composed
of 102 chronic kidney disease patients, while a comparison study used a simulated dataset. RBF-sPLS identified two brain regions
of interest from our patient data: the temporal lobe and the occipital lobe, which are associated with aging and anemia, respectively.
Our simulation study suggested that such brain regions are extracted with excellent accuracy using our method.

1. Introduction

Recently, brain morphometry research has gained consider-
able attention for its proposed utility in the early detection
of dementia and assessment of regional cerebral atrophy.
Furthermore, several authors have reported an association
between brain morphology and clinical characteristics such
as age, chronic disease, and genetics [1–3] using magnetic
resonance imaging (MRI) data. Voxel-based morphometry
(VBM) is a commonly used technique for such analyses [4].
This method is based on general linear models with the
values of each MRI voxel (in units of pixels, preprocessed for
standardization) as a dependent variable and clinical charac-
teristics (including the group indicator variable and covari-
ates) as explanatory variables. However, this approach has
some drawbacks which have been discussed by Davatzikos
[5]. For example, a multiple-comparison correction requires
several assumptions that are difficult to verify. An alternative

to this approach is to use prespecified assemblies of voxels
based on anatomical knowledge, which is known as a region
of interest (ROI) approach. Therefore, the ROI approach
requires the investigator to have precise and accurate knowl-
edge of true anatomical boundaries.Moreover, variables need
to be selected carefully in order to minimize the influence of
irrelevant variables in the statistical model. We have taken a
data-mining approach using an entire brain region and have
used voxel intensity levels for the dependent variables and
clinical characteristics (including patient background and
blood test results) as explanatory variables.

There are two important statistical problems in the regres-
sion model that concern our use of large, complex data. The
first is the selection of a set of relevant variables among a large
number of both dependent and explanatory variables that are
highly correlated. The partial least squares (PLS) regression,
which was introduced byWold [6], is a latent factor approach
that is suitable for data with correlated variables. It has been
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used as an alternative approach to ordinary least squares
(OLS) regression in ill-conditioned linear regression models
that arise in several disciplines such as chemistry, economics,
andmedicine [7, 8]. Tibshirani has used PLS in neuroimaging
[9]. The second problem is a problem in variable selection
that often arises when the sample size 𝑛 is much smaller than
total number of variables (𝑝; the so-called “large 𝑝 small
𝑛 problem”) for both dependent and explanatory variables.
Utilizing the sparsity principle with 𝐿

1
-penalty has been

promoted as an effective solution [9, 10]. This version of
sparse PLS (sPLS) combines the 𝐿

1
-penalty and has been

proposed by Lê Cao et al. [11] and Chun and Keleş [12]. The
number of applications for this approach is steadily increasing
in not only neuroimaging fields but also bioinformatics
and chemometrics. This technique produces sparse, linear
combinations of the explanatory variables and achieves both
dimension reduction and variable selection simultaneously.
The pioneering application of this method to brain imaging
data has been used to investigate genetic polymorphisms and
functional imaging data [3]. However, it is based on PLS
regression in its symmetric (also called canonical) mode.
In this paper, we consider the PLS in its regression mode
based on the singular value decomposition (PLS-SVD). The
difference lies in the fact that factors are orthogonal in
the canonical mode, contrary to PLS-SVD, in which the
loadings are orthogonal. The main concern in this approach
is the restriction of analysis to prespecified brain regions.
Using brain regions that have not been specified a priori
would be more data-driven approach that may yield new and
unexpected results, but such approaches typically introduce
computational difficulties because of the large number of
voxels to be analyzed. For this reason, we decided to combine
this approach with a first step of dimension reduction on
brain images using basis expansion.

In this paper, we propose a sparse PLS approachwith basis
expansion (RBF-sPLS; radial basis function-sparse partial
least squares) and provide an application for real data using
three-dimensional MRI brain scans with about a million
voxels and 73 clinical characteristics from chronic kidney dis-
ease (CKD) patients. In addition, we conducted a simulation
study to compare our proposed method with the original
method. Our proposed, RBF-sPLS, prediction model with
dimension reduction devices offers discriminant functions
with excellent prediction performance in terms of sensitivity
and specificity.

This paper is organized as follows. Section 2 provided a
discussion of three-dimensional MRI data and their prepro-
cessing. Section 3 states the proposed statistical methods. In
Section 4, we report a simulation study for the characteristics
of sPLSwith basis expansion (RBF-sPLS) orwithout it (sPLS).

2. Data

2.1. Subjects. Between 2009 and 2012, we recruited 102
patients (mean age: 61 ± 11 years, 52%male, 48% female)with
chronic kidney disease (CKD) to participate in our study.
We examined brain volume usingMRI scanning, and clinical
parameters were measured on the same day. Patients were

Table 1: The clinical characteristics about CKD patients’ dataset.

Mean ± SD
Number (male/female) 102 (49/53)
Age (years old) 61 ± 11
Diabetes (%) 27 (27)
BMIa (kg/m2) 24.0 ± 3.9
SBPb (mmHg) 124 ± 16
DBPc (mmHg) 70 ± 12
eGFRd (mL/min/1.73m2) 39.8 ± 13.6
Smoker (n [%]) 56 (56)
a
Body mass index. bSystolic blood pressure.

cDiastolic blood pressure. dEstimate glomerular filtration rate.

eligible if they were between 20 and 80 years old and had
no prior history of brain injury such as stroke, traumatic
brain injury, or brain tumor. The participant characteristics
are shown in Table 1. Fifty-five percent of participants had
a history of smoking (47 former and 9 current smokers).
Blood pressure in the brachial artery was measured with the
subjects in a sitting position after a 10min rest. All patients
provided informed consent. Kyushu University Institutional
Review Board approved all procedures.

2.2. Image Data. Brain MRI was acquired from each subject
using a 3.0 tesla MRI scanner of the same model. No major
hardware upgrades occurred during the period. All subjects
were scanned with identical pulse sequences: 124 contiguous,
3.0mm thick axial planes of three-dimensional T1-weighted
images (spoiled gradient recalled acquisition in steady state:
echo time, 7ms; flip angle, 30; voxel size, 1.02× 1.02× 1.5mm).

We used the Statistical Parametric Mapping 8 software
(SPM8,Wellcome Department of Cognitive Neurology, Lon-
don, UK) to preprocess brain images. The segmentation
algorithm from SPM8 was applied to every T1-weighted
MRI scan to extract tissue maps corresponding to gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). The temporary common space of rigidly registered
tissues is necessary as a starting point for the DARTEL
algorithm. Next, the segmented tissues maps were used to
create a custom template and associated warping fields were
generated using the DARTEL template creation tool [4]. This
tool estimates a best set of smooth, nonlinear deformations
from each subject’s tissues to their common average, applies
the deformations to create a new average, and then reiterates
until convergence.

3. Methods

3.1. Basis Expansion-Based Dimension Reduction. Suppose
that we have 𝑛 independent subjects {(x

𝑎
, s
𝑎
); 𝑎 = 1, . . . , 𝑛},

where x
𝑎
∈ R𝑝 are p-dimensional exploratory variable vec-

tors (clinical characteristics) and s
𝑎
= (𝑠
𝑎
(w
1
), . . . , 𝑠

𝑎
(w
𝑁
))
󸀠

are𝑁-dimensional vectors of brain images for the 𝛼th subject
defined at points w

𝑖
∈ Z3 (𝑖 = 1, . . . , 𝑁). We used the radial
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B-spline function 𝜙(⋅) [13] to reduce the dimension, which is
represented as follows. For given ℎ ≥ 0,

𝜙 (𝑢) =

1

4ℎ
2

{
{
{
{

{
{
{
{

{

ℎ
3
+ 3ℎ
2
(ℎ − 𝑢)

+3ℎ(ℎ − 𝑢)
2
− 3(ℎ − 𝑢)

3
, (𝑢 ≤ ℎ) ,

(2ℎ − 𝑢)
3
, (ℎ < 𝑢 ≤ 2ℎ) ,

0, (𝑢 > 2ℎ) ,

(1)

where 𝑢 ≥ 0. We used the distance of these knots to define ℎ
as ℎ = √3 × ℎ2

0
, where ℎ

0
is the distance between adjacent

knots. Then, the 𝑁 × 𝑞 dimension reduction matrix, B, is
defined with the (𝑙, 𝑚)-component being 𝑏

𝑙𝑚
= 𝜙(‖w

𝑙
− k
𝑚
‖),

where k
𝑚
∈ Z3 (𝑚 = 1, . . . , 𝑞) are equally spaced knots. Note

that the value of 𝑏
𝑙𝑚

is proportional to distance of w
𝑙
from

k
𝑚
. Therefore, S = (s

1
, s
2
, . . . s
𝑛
)
󸀠 and the dependent variable

matrix, Y, is constructed as

Y = SB. (2)

Thus, for PLS regression, our response and predictormatrices
are Y = (y

1
, y
2
, . . . , y

𝑛
)
󸀠
∈ R𝑛×𝑞 and X = (x

1
, x
2
, . . . , x

𝑛
)
󸀠
∈

R𝑛×𝑝, respectively.

3.2. Sparse Partial Least Squares. Let Y denote an 𝑛 × 𝑞
dependent variable matrix and let X denote an 𝑛 × 𝑝
explanatory variable matrix. The core assumption of PLS
regression is a latent decomposition of Y and X as follows:

Y = TQ󸀠 + F, X = TP󸀠 + E, (3)

where T is an 𝑛 × 𝑘 score matrix, 𝑘 is the number of
components, P and Q are 𝑝 × 𝑘 and 𝑞 × 𝑘 loading matrices,
and E and F are 𝑛 × 𝑝 and 𝑛 × 𝑞matrices of random errors.

The version of sparse PLS (sPLS) regression proposed
by Lê Cao et al. [11] invokes singular value decomposition
(SVD) of M = X

󸀠

Y to yield the M = UDV󸀠, where U is
a 𝑝 × 𝑘 orthogonal matrix, D = diag(𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑘
) with

𝑑
1
≥ 𝑑
2
≥ ⋅ ⋅ ⋅ ≥ 𝑑

𝑘
, and X is an M × V orthogonal matrix.

Among variations of PLS regression, this is called PLS-SVD.
From these, we can obtain the regression form Y = XC + G
where C is a 𝑝 × 𝑞 regression coefficient matrix given by
C = U(P󸀠U)−1Q󸀠 and G is a residual matrix.

For ease of explanation for estimation, suppose that 𝑘 = 1,
then the objective function with a 𝐿

1
penalization on u and

v, which are column vectors ofU andV, respectively, is given
as follows:

𝐿 (u,v) = −u󸀠X󸀠Yv + 𝜆
𝑋‖

u‖1 + 𝜆𝑌‖v‖1, (4)

where 𝜆
𝑋

and 𝜆
𝑌
are 𝐿

1
penalization parameters for the

weight vectors of matrices X and Y, respectively. This
function is a minimized subject to ‖u‖

2
= ‖v‖

2
= 1.

The amplitudes of 𝜆
𝑋
and 𝜆

𝑦
correspond to the increases

and decreases of the number of X and Y variables, which
contribute to the regression. For example, in the case of X,
if the value of 𝜆

𝑋
is large, then a large number of variables

X would be selected. The same is the case for Y. Therefore,

the sPLS concerns selection and modeling in a one-step
procedure. This optimization problem is performed by the
soft-thresholding function 𝑔

𝜆
(𝑦) = sign(𝑦)(|𝑦| − 𝜆)

+
, where

(𝑎)
+
= max(0, 𝑎) at each iteration of the NIPALS inner loop.

Weight vectors u and v are computed using the following
algorithm.

(1) Initialize u and v using, for instance, the first pair of
singular vectors of thematrixX

󸀠

Y and normalizeu←
u/‖u‖

2
and v ← v/‖v‖

2
.

(2) Until convergence of u and v:

(a) for fixed v, û = 𝑔
𝜆
𝑋

(X
󸀠

Yv) and normalize û as
in step 1;

(b) for fixed u, v̂ = 𝑔
𝜆
𝑌

(Y
󸀠

Xu) and normalize v̂ as
in step 1;

(c) u = û, v = v̂.

(3) t = Xu, p = X󸀠t/t󸀠t, and q = Y󸀠t/t󸀠t, where t, p,
and q correspond to column vector of T, P, and Q,
respectively.

For the general case of 𝑘 > 1, the above algorithm is repeated
for 𝑘 times with the deflation step X← X − tp󸀠 and Y← Y −
tq󸀠 as the fourth step.Thefinal solution can be obtained asT =
(t
1
, t
2
, . . . , t

𝑘
), Q = (q

1
, q
2
, . . . , q

𝑘
), and P = (p

1
, p
2
, . . . , p

𝑘
),

where the elements are obtained at each step among 𝑘 steps.

3.3. Choice of Tuning Parameters. The choice of penalization
parameters 𝜆

𝑋
, 𝜆
𝑌
and number of components 𝑘 is important

in model construction. We use a criteria called 𝑄2 proposed
by Tenenhaus [14], which were used to select the number of
components in the sPLS model in Lê Cao et al. [11] by per-
forming cross-validation. We used 10-fold cross validation.
Thus, our 𝑄2 has a functional form of 𝜆

𝑋
, 𝜆
𝑌
, and 𝑘 and is

defined as

𝑄
2
(𝜆
𝑋
, 𝜆
𝑌
, 𝑘) = 1 −

∑
𝑞

𝑗 = 1
PRESS

𝑗𝑘

∑
𝑞

𝑗 = 1
RSS
𝑗(𝑘−1)

, (5)

where PRESS
𝑗𝑘

is the prediction error sum of squares and
RSS
𝑗𝑘

is the residual sum of squares for the 𝑗th-dependent
variable and the PLS model with 𝑘 components defined as
follows. Let 𝜅: {1, 2, . . . , 𝑛} → {1, 2, . . . , 10} be an indexing
function that indicates the partition to which observation 𝑖 is
allocated to 𝜅(𝑖)th part of the data by the randomization:

PRESS
𝑗𝑘
=

𝑛

∑

𝑖 = 1

(𝑦
𝑖𝑗
− 𝑦
(−𝜅(𝑖))𝑗

(𝜆
𝑋
, 𝜆
𝑌
, 𝑘))

2

,

RSS
𝑗𝑘
=

𝑛

∑

𝑖 = 1

(𝑦
𝑖𝑗
− 𝑦
𝑖𝑗
(𝜆
𝑋
, 𝜆
𝑌
, 𝑘))

2

,

(6)

𝑦
(−𝜅(−𝑖))

𝑗

(𝜆
𝑋
, 𝜆
𝑌
, 𝑘) is the predicted value for the 𝑗th-

dependent variable from the sPLS model with penalization
parameters 𝜆

𝑋
and 𝜆

𝑌
and number of components 𝑘 and esti-

mated weight vectors from 𝜅(𝑖)th part of the data removed.



4 Computational and Mathematical Methods in Medicine

1st component100

100

(a)

2nd component100

100

(b)

Figure 1: True grayscale images.

That is, for any 𝑖 subject, we predict that 𝑦
(−𝜅(𝑖))𝑗

(𝜆
𝑋
, 𝜆
𝑌
, 𝑘) =

x
𝑖
̂
𝑏
(−𝜅(𝑖))𝑗

(𝜆
𝑋
, 𝜆
𝑌
, 𝑘), where ̂𝑏

(−𝜅(𝑖))𝑗
(𝜆
𝑋
, 𝜆
𝑌
, 𝑘) is the 𝑗th col-

umn of estimated regression coefficient matrix B̂ from the
sPLS model with penalization parameters 𝜆

𝑋
and 𝜆

𝑌
and

number of components 𝑘 and 𝜅(𝑖)th part of the data removed.
𝑦
𝜅(𝑖)𝑗
(𝜆
𝑋
, 𝜆
𝑌
, 𝑘) is the predicted value with the same defi-

nition as 𝑦
(−𝜅(𝑖))𝑗

(𝜆
𝑋
, 𝜆
𝑌
, 𝑘) except for the estimated weight

vector from all available 𝑛 subjects. We select the optimal
set (𝜆

𝑋
, 𝜆
𝑌
, 𝑘) based on the maximization of 𝑄2(𝜆

𝑋
, 𝜆
𝑌
, 𝑘)

among given candidates. This is implemented by the grid
search.

4. Simulation Studies

In this section, we will illustrate the proposed methods in a
simulation study.Wedemonstrate the impact of knot distance
in affecting the representation of the results and clarify the
advantage of dimension reduction by RBF by comparison to
the method without basis expansion.

4.1. Data Sets. Consider 𝑛 patients and 𝑝 explanatory vari-
ables. We generated 100 datasets according to the following
sPLS model with two components

X = (x
1
, x
2
, . . . , x

𝑛
)
󸀠

, x
𝑗
∼ MVN (0, Σ) ,

Y = TQ󸀠 + F with T = XP−, F ∼ MVN (0, I) ,
(7)

where MVN(0, Σ) denoted 𝑝-dimensional multidimensional
normal distribution with zero mean and variance covariance
matrix Σ. P = (P

1
,P
2
) is the 𝑝 × 2 matrix with P

1
=

b⨂(1󸀠
𝑝/20
, 0󸀠
3𝑝/20
)

󸀠, P
2
= b⨂(0󸀠

𝑝/20
, 1󸀠
𝑝/20
, 0󸀠
𝑝/10
)

󸀠, and b =
(5, 2, 1, −2, −5)

󸀠, where ⨂ is the Kronecker product, 0
𝑐
is

a 𝑐-dimensional vector with all elements 0, and 1
𝑐
is a 𝑐-

dimensional vector with all elements 1. Q is the 𝑞 × 2 matrix
whose columns are vectorized true images displayed in

Figure 1.The images can be thought of as 2D grayscale images
with pixel intensities on the [0, 1] scale. The black pixels are
set to 1 and the white ones are set to zero.

We performed this step in order to assess how much the
performance of sPLS is influenced by the basis expansion and
by the number of clinical parameters kept by the filter and to
select the best pair of parameters. We provided a comparison
with the original method (sPLS without the basis expansion)
and also analyzed the impact of the distance between adjacent
knots in ourmethod for ℎ = 2, 4, and 8.We tested our pattern
of data set; 𝑛 = 50/𝑝 = 40, 𝑛 = 50/𝑝 = 80, 𝑛 = 100/𝑝 = 40,
and 𝑛 = 100/𝑝 = 80 to replicate the sample size 𝑛 of the CKD
patients data set and the number of covariates 𝑝. The images
Y’s were unfolded to obtain vectors of size 𝑞 = 100 × 100 =
10, 000.

4.2. Results. We estimated P and Q from simulated data by
the method described in Section 3. All results yielded the
correct number of components.We computed the probability
images by averaging up the estimated Q’s from 100 datasets.
The middle and bottom panels of Figure 2 display binary
images converted from probability images with threshold
0.95 for the first and second components, respectively, in
the case of 𝑛 = 50/𝑝 = 40. The top of Figure 2 shows
the combined true image. The result for sPLS without the
basis expansion showed nothing at all because the maximum
probability calculated was 0.7. On the other hand, the sPLS
with the basis expansion with distance between knots ℎ = 2
had a good shape, while for ℎ = 4 and 8, the true image could
not be reconstructed.

To assess how effectively the estimated model predicts
each variable, sensitivity, specificity, and c-index = sensitivity
− (1 − specificity) were computed and averaged over 100
sets. As shown in Table 2, the mean values of the c-index
for the proposed method with ℎ = 2 were relatively smaller
than those for the method without the basis expansion and
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Knots distance 0 2 84

RBF-sPLS

True

Estimated as
1st component

Estimated as
2nd component

Original sPLS

Figure 2: Binary images with threshold 0.95 for probability images from the simulation result of sPLS models with (knots distance = 2, 4, 8)
or without basis expansion (knots distance = 0) for 𝑛 = 50 and p = 40.

Table 2: The result for sPLS without basis expansion and with, respectively, for 100 simulated data sets.

Knots distance 𝑃 𝑛

1st component 2nd component
Sensitivity Specificity C-index Sensitivity Specificity C-index

Original sPLS: without basis expansion

0
40 50 0.26 0.99 0.25 0.30 0.99 0.29

100 0.34 0.99 0.33 0.39 0.99 0.38

80 50 0.37 0.99 0.36 0.43 1.00 0.43
100 0.39 0.99 0.38 0.44 1.00 0.44

RBF-sPLS: with basis expansion

2
40 50 1.00 0.60 0.60 1.00 0.68 0.68

100 1.00 0.86 0.86 1.00 0.87 0.87

80 50 1.00 0.73 0.73 1.00 0.75 0.75
100 1.00 0.84 0.84 1.00 0.88 0.88

4
40 50 1.00 0.29 0.29 1.00 0.13 0.13

100 1.00 0.29 0.29 1.00 0.04 0.04

80 50 1.00 0.27 0.27 1.00 0.13 0.13
100 1.00 0.21 0.21 1.00 0.08 0.08

8
40 50 1.00 0.08 0.08 1.00 0.06 0.06

100 1.00 0.05 0.05 1.00 0.00 0.00

80 50 1.00 0.05 0.05 1.00 0.01 0.01
100 1.00 0.02 0.02 1.00 0.00 0.00
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1st component: temporal lobe

(a)

2nd component: occipital lobe

(b)

Figure 3: The brain region linked groups of each component.

ℎ = 4 and 8 in any cases of 𝑛 and 𝑝. This indicated that the
proposedmethod performed better than the original, and the
distance between knots took on the smallest possible value.

5. Real Data Application

We applied sPLS with basis expansion to our MRI dataset
of the CKD patients described in Section 2. We assessed
additional demographic and health-related variables, as well
as laboratory data obtained on the same day. These data were
used as covariates in our statistical analyses. The number of
covariates is 𝑝 = 73. Among the 2,122,945 (121 × 145 × 121)
voxels for one subject, the voxels that represent brain regions
are extracted, resulting in 839,089 voxels. The dimension of
the basis function is 𝑞 = 13, 047 because of the 4-voxel (ℎ

0
=

4; therefore, ℎ = √3 × 42 = 6.93) equal spacing knots. The
number of components was selected as 𝑘 = 2. The number of
selected variables in the first component of X was 17, and 14
variables were in the second component. For Y, 785 and 947
variables were selected in the same manner. Figure 3 shows
the results by the axial view of brain.The left image shows the
coefficient image estimated as the first component. Similarly,
the right one shows the second component.

Our model revealed a relatively strong association
between the bilateral temporal lobes and clinical markers of
chronic kidney disease. The temporal lobes are one of the
four main regions of the cerebral cortex. Structures of the
limbic system, including the olfactory cortex, amygdala, and
the hippocampus are located within the temporal lobes. The
temporal lobes play an important role in organizing sensory
input, auditory perception, language and speech production,
andmemory association and formation.These regions linked
the 17 factors, in particular, age, sex, underlying disease
(diabetes mellitus), smoking status, weight, serum albumin
level, serum creatinine, total cholesterol, glucose, HDL-
cholesterol, LDL-cholesterol, glycoalbumin, cholinesterase,

number of red blood cell, whole parathyroid hormone, pulse
wave velocity, and coronary artery calcification score.

The occipital lobes were selected by our analysis as the
second component. The occipital lobes are positioned at
the back region of the cerebral cortex and are the main
centers for visual processing, involved in several functions of
the body including visual perception and color recognition.
This region linked the following factors: sex, body height,
body weight, diastolic blood pressure, ratio of toe to brachial
systolic blood pressure, total bilirubin, glucose, chloride,
serum iron levels, number of red blood cells, hemoglobin,
hematocrit, plasminogen activator inhibitor-1, and transfer-
rin saturation.

The variables selected as the first component are con-
sidered to be the factors most closely related to aging and
arterial stiffness, while those associated with the second
region are more closely related to markers of anemia. The
extent of atherosclerosis, calcification, and renal anemia are
important complications in CKD patients. Recently, these
factors have been suggested to be involved in brain atrophy
and depressed cerebral oxygen metabolism [15, 16], but
its mechanism remains to be elucidated. We also found
a significant correlation between regional gray matter vol-
ume and hemoglobin level after adjusting for age, gender,
residual renal function, underlying kidney disease, history
of smoking, diastolic blood pressure, and LDL cholesterol
level using multiple-linear regression methods [17]. In this
analysis, we used only the whole gray matter volume as
an objective variable, because multiple variables cannot be
applied to conventional linear regression models, whereas
the sPLS could select variables and modeling in a one-step
procedure and use many objective variables.

6. Discussion

This paper describes that the radial basis function-sparse
partial least squares (RBF-sPLS) technique was proposed



Computational and Mathematical Methods in Medicine 7

and was applied to high dimensional brain imaging data.
The original sPLS is a useful regression model to analyze
data in which both dependent and explanatory variables
are multivariate and correlated with one another. The most
difficult problem in analyzing real brain data is the high
dimensionality of these datasets. While prespecified regions
were used in previous neuroimaging analyses, our method
successfully handled a whole brain region following the basis
expansion.The basis function has a spherical shape, but it was
able to approximate the cross shape used in the simulation
study.This would be expected because of the narrow spanned
knots location. Thus, we set as close knots each other as
possible in the real-data application, using 4-voxel equal
spacing knots because computation using 2-voxel spacing
was not possible. This method may be applicable to not only
real brain data, but also general imaging datasets, because
actual lesions would cause aggregates in adjacent voxels.
Although the relative advantage of our proposed method
was shown through the comparison between simulations
run with and without the basis function conducted in the
fair setting, further simulation studies with more realistic
constraints are necessary. However, these simulations lie
beyond the scope of the present paper and will be dealt with
in the future. The significance of this study is to clarify the
characteristics of RBF-sPLS presented visually for the analysis
of imaging data.

We obtained clinically relevant findings about the rela-
tionship between aging, anemia, and brainmorphology from
the real-data application in our study. We are currently in the
process of collecting longitudinal data and normal controls
to expand this confirmatory evidence for future work. In
summary, RBF-sPLS can help revealing the relationships
between complex, large datasets, including brain imaging
data.
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