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The dependence on the overexpression of a single oncogene constitutes an exploitable weakness for molecular targeted therapy.
These drugs can produce dramatic tumor regression by targeting the driving oncogene, but relapse often follows. Understanding
the complex interactions of the tumor’s multifaceted response to oncogene inactivation is key to tumor regression. It has become
clear that a collection of cellular responses lead to regression and that immune-mediated steps are vital to preventing relapse. Our
integrative mathematical model includes a variety of cellular response mechanisms of tumors to oncogene inactivation. It allows for
correct predictions of the time course of events following oncogene inactivation and their impact on tumor burden. A number of
aspects of our mathematical model have proven to be necessary for recapitulating our experimental results. These include a number
of heterogeneous tumor cell states since cells following different cellular programs have vastly different fates. Stochastic transitions
between these states are necessary to capture the effect of escape from oncogene addiction (i.e., resistance). Finally, delay differential
equations were used to accurately model the tumor growth kinetics that we have observed. We use this to model oncogene addiction

in MYC-induced lymphoma, osteosarcoma, and hepatocellular carcinoma.

1. Introduction

Bernard Weinstein first proposed in 1997 that “oncogene
addiction” is the phenomenon whereby the inactivation
of a single oncogene, even if brief, may lead to sustained
tumor regression, providing a weakness for a molecularly
targeted therapy to exploit [1]. For example, imatinib causes
dramatic tumor regression in gastrointestinal stromal tumors
(GIST) [2, 3] and chronic myelogenous leukemia (CML)
[3-5] by inhibiting the Bcr-Abl oncogene; erlotinib and
gefitinib cause dramatic tumor regression in nonsmall cell
lung cancer (NSCLC) [6-9], pancreatic cancer, and other
tumors by inhibiting EGFR; a number of other examples of
targeted therapies exist. These drugs induce dramatic tumor
regression without the side effect profile of nonspecific
chemotherapies.

Inactivation of the oncogene by targeted therapy pro-
duces a complex array of responses at the cellular level includ-
ing apoptosis, cell cycle arrest, differentiation, senescence,
and inhibition of angiogenesis. In preclinical models, the
oncogene may be inactivated using conditional expression in
transgenic animals (e.g., Cre/LoxP, tamoxifen, or tetracycline
systems). Some of these resultant cellular programs are cell
intrinsic (i.e., not involving other cells) while others are cell
extrinsic, involving complex host interactions with effector
cells in the immune system. While these different response
mechanisms have been studied and modeled individually,
there has been far less investigation into integrating the
overall sequence and interactions of tumor responses into a
unified mathematical model that can inform the design and
optimization of therapeutic strategies. Understanding how
and why some tumors relapse while others do not, as well as



how and why the specific cellular program responses depend
on the tissue-specific and host immune background, is of
crucial importance for designing the most effective therapies.

Previously, we have built and validated a model of tumor
growth and regression kinetics in response to oncogene
inactivation [10]. This model was based primarily upon
microCT imaging and immunohistochemistry (IHC) and
explicitly incorporated apoptosis and proliferation result-
ing from the stochastic balance between prosurvival and
prodeath signals but included no other cellular programs.
In other work, we have empirically shown the importance
of cellular senescence, immune surveillance, differentiation,
and angiogenesis. Here, we have created a mathematical
model that now captures the tumor growth kinetics as a
function of all of the aforementioned cellular programs
informed primarily by bioluminescence imaging (BLI) and
IHC. We are building on this to develop and calibrate a novel
integrative mathematical model of the tumor responses to
oncogene inactivation (cell intrinsic and cell extrinsic) that is
designed to eventually predict, optimize, and validate various
therapeutic strategies.

We will use the model to study the major cellular pro-
cesses involved in MYC-induced lymphoma, osteosarcoma,
and hepatocellular carcinoma, which involve difference com-
binations and sequences of these programs and to test
different therapeutic strategies.

Much work has been done in characterizing tumor
growth kinetics in vivo and in mathematically modeling
the cell intrinsic mechanisms involved in the response to
oncogene inactivation. In vivo observations of cell extrinsic
mechanisms in response to oncogene inactivation have been
published recently, but little if any mathematical or computa-
tional modeling has been done to complement these theories.
Our work is among the first to simultaneously model all of
the complex immune-mediated responses that are critical in
determining the factors involved in tumor relapse thereby
providing understanding of how to prevent it.

2. Materials and Methods

2.1. Biological Data. We utilize the tetracycline (Tet) system
to conditionally and reversibly control the expression of
the MYC oncogene in mouse models [11, 12]. Even in the
absence of a putative drug, this models the effect of a targeted
therapeutic that would downregulate the aberrant overex-
pression of MYC as a treatment for the tumor. In the Tet-
Off system, doxycycline (dox) is added to the drinking water
to inhibit binding of the tet-transactivating promoter (tTA)
to the Tet-O promoter and thus inactivates transcription of
MYC. Alternatively, in the Tet-On system, dox allows binding
of reverse tTA (rtTA) and thus activates transcription of MYC
[13]. MYC expression can even be titrated with a threshold
on tumor regression occurring at <0.05 ug/mL of dox (in
<0.2ng/mL plasma concentration) in a Tet-On system [14].
We have collected data from various conditional mouse
models of MYC and concentrated on the tumor type specific
responses to MYC inactivation seen in various tumor types
including lymphoma (apoptosis, proliferative arrest, differ-
entiation, senescence, antiangiogenesis, and tumor relapse)
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[15-17], osteosarcoma (proliferative arrest, differentiation,
and senescence) [18,19], and hepatocellular carcinoma (apop-
tosis, differentiation, senescence, and dormancy) [20].

In tumor dormancy, cells can restore their neoplastic
properties upon MYC reactivation. In order to improve
therapy, it is important to distinguish when MYC inactivation
leads to complete tumor regression characterized by perma-
nent loss of malignant phenotype and when it simply results
in a reversible state of tumor dormancy [21, 22].

MYC inactivation in MYC-induced lymphoma leads to
differentiation, apoptosis, and complete tumor regression.
Therefore, a permanent loss of a neoplastic phenotype occurs
upon MYC inactivation. In osteogenic sarcoma, MYC inac-
tivation induces differentiation and proliferative arrest but
does not induce significant apoptosis. MYC reactivation in
these apparently differentiated cells either has no conse-
quences or leads to apoptosis. Only in very rare cells is
there restoration of neoplastic properties. In hepatocellular
carcinoma, MYC inactivation leads to differentiation and
then eventually to gradual apoptosis of most of the tumor
cells. Upon reactivation of MYC, these differentiated cells
quickly become tumorigenic [23].

Senescence is the growth-arrest process by which normal
cells are restrained from malignant transformation. Onco-
gene inactivation-induced senescence (OIIS) is the irreversi-
ble cell cycle arrest of normal cells in response to inactivating
an oncogene. We have recently shown cellular senescence
resulting from MYC inactivation to depend on the host
immune system [24]. Tumor regression upon inactivation of
the MYC oncogene is associated with cellular senescence.
Cellular senescence is an essential factor in bringing about
sustained tumor regression upon MYC inactivation.

The p53 gene has been shown to suppress tumor angio-
genesis and regulate thrombospondin-1 (TSP-I), a potent
antiangiogenic protein, expression [25]. The loss of p53 upon
MYC inactivation leads to a deficit of TSP-1 and this inhibits
angiogenesis thus impeding tumor regression. Restoration
of p53 leads to sustained tumor regression upon MYC
inactivation. Therefore, either p53 or TSP-1 is required upon
MYC inactivation to shut down angiogenesis and induce
sustained tumor regression [26].

Tumors undergo regression initially regardless of the
status of the host immune system. But in hosts that are
immune compromised, tumor elimination is incomplete and
the tumors eventually relapse. An intact immune system is
required for oncogene inactivation-induced senescence, inhi-
bition of angiogenesis, and chemokine expression, which
lead to sustained tumor regression. CD4+ (but not CD8+)
T-cell deficiency was enough to impede sustained tumor
regression. The secretion of TSP-1 is markedly decreased in
immune compromised versus wildtype hosts. TSP-1 expres-
sion requires host immune cells particularly CD4+ T cells.
Reconstitution of immune compromised mouse with CD8+
T cells still showed significant minimum residual disease,
whereas reconstitution with CD4+ T cells showed no mini-
mum residual disease, the same result found in wildtype hosts
upon MYC inactivation. Hence, simply restoring CD4+ T
cells was sufficient to eliminate minimum residual disease
and to lead to sustained tumor regression. CD4+ T cells
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FIGURE 1: Mathematical model of cellular states. Former model shown in gold with additions shown in blue. The arrows with slashes
corresponding to +dox indicate that this is an independent variable controlled experimentally. The arrows representing proliferative loops
have an implicit state during proliferation representing the mitotic phase of the cell cycle.

are the crucial host effector population necessary for tumor
regression upon MYC inactivation. TSP-1 is important in
immune effectors for sustained regression upon MYC inacti-
vation, and overexpression of TSP-1in immune compromised
hosts is sufficient to increase the duration of sustained tumor
regression upon MYC inactivation [27, 28].

2.2. Mathematical Model. Our mathematical model uses var-
ious modeling techniques that were each shown to be neces-
sary to accurately recapitulate the experimental observations.

2.2.1. Multiple Tumor Cell States. We created a new mathe-
matical model (Figure 1) of tumor growth/regression kinetics
incorporating cell intrinsic mechanisms (apoptosis, prolifera-
tive arrest, differentiation/dormancy) and immune-mediated
cell extrinsic mechanisms (senescence). The stochastic model
consists of 6 cellular states (“MYC on,” “MYC off,” apopto-
sis, proliferating, differentiated, senescent) with probabilistic
transitions and the ability to control the expression of trans-
genic MYC using the tetracycline system. In our state transi-
tion model, discrete numbers of tumor cells move from one
state to another, unlike other models where single classes of
cells (e.g., tumor, immune, or normal) are modeled by single
homogeneous states with no transitions between them. The
core of the model consists of the “MYC on” and “MYC oft”
states, controlled in the conditional transgenic mouse model
through doxycycline (dox) in the drinking water. This is

central to the model since we are specifically investigating the
effect of targeted therapeutics. “MYC oft” tumor cells have
been shown to be able to develop mechanisms to turn MYC
back on without doxycycline through tTA, Notch, MAPK,
or Wnt pathways and are represented by the “Escaped” node
in the model [17]. Tumor cells may undergo proliferation
or apoptosis, and “MYC oft” tumor cells may alternatively
undergo differentiation or oncogene inactivation-induced
senescence.

The structure and topology of our mathematical model is
based on in vivo observations from numerous studies [10, 17,
23, 24,27]. We added an explicit transition in the model from
“MYC oft” to “Differentiated” to represent differentiation
due to oncogene inactivation. We tested parameters over a
number of values and chose values that most closely matched
experimental data. Additionally, we added a transition from
“Differentiated” back to “MYC on” to indicate that some
tumor cells (e.g., hepatocellular carcinoma) that have differ-
entiated to an apparently normal state may be dormant but
possess the ability to regain neoplastic properties [23, 29].
The transition from “MYC oft” to “Oncogene Inactivation
Induced Senescence” is dependent on both p53 and CD4+ T
cells and represents immune-mediated effects.

Tumor cells can exist in one of six different states; the
number of cells in each state is represented as follows. M,
the number of cells in which MYC is “on”; N, cells in the
MYC “oft” state and still under the control of the tetra-
cycline system; A, cells which have irreversibly committed



to apoptosis; D, cells that have differentiated back into a
quasinormal state, although in some tumor types they retain
their neoplastic capability if MYC is reactivated; S, cells
that have irreversibly committed to oncogene inactivation-
induced senescence (OIIS); and E, cells that have escaped
their addiction to MYC (e.g., through mutations in the
tetracycline control elements or by activating expression of
genes downstream of MYC). Note that due to pharmacoki-
netics and a number of other factors, the transitions between
M and N are noninstantaneous and tetracycline dependent
where the path is only open (nonzero) in one direction at
a time. Note that because our current biological data uses
mice that are either immunocompetent or immunodeficient
(with no intermediate states and no direct measurements of
immune effector cell populations), we do not explicitly model
the immune cell numbers but rather have immune status
dependent state transitions.

2.2.2. Stochastic Transitions between Tumor Cell States. The
experimental data shows the variability in relapse kinetics,
which a deterministic model cannot capture. Hence, stochas-
ticity was added to the model. We use random sampling from
a multinomial distribution (well approximated by binomial
due to very low pertime step probabilities) to represent a
stochasticity in the number of cells transitioning from one
state to another, enabling us to recapitulate the variability in
tumor relapse (Figure 2).

Some parameters of the model are immune system
dependent, some are MYC expression dependent, and others
are tumor type dependent (Table 1).

Figure 3 shows the governing equations for each of the 6
states. We integrated the equations using Euler’s method with
a time step (At) of 0.02 days per iteration, which was much
faster than any of the kinetic parameters. Model parameters
are explained in Table 1.

2.2.3. Delay Differential Equations. In biological processes,
there are often “physical” delays making it vital to incor-
porate delays into the model in order to make the math-
ematical model closer to the real phenomenon. Examples
of delay mathematical models in biology are population
dynamics (e.g., Hutchinsons equation), ecology (e.g., the
Lotka-Volterra predator prey), and immunology (e.g., delay
in immune system response). We have implemented delay
differential equations (on top of our stochastic framework)
for the apoptosis state. There is a delay between when a cell
commits to apoptosis and when cell death actually occurs.
This is important since these cells that have committed to
apoptosis (in state A) are still producing BLI signals, which
are being measured. There is also a delay between when a
cell commences mitosis and when daughter cells are actually
produced, but we chose not to explicitly include this since
at this time, the comparison to biological results is not
significantly affected by whether or not we explicitly model
the mitotic phase.

Although our modeling philosophy has been to create
the simplest possible model that could explain the salient
features of our experimental data, we found multiple tumor
states and stochastic transitions without explicit delays to be
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FIGURE 2: Tumor regression and relapse kinetics as measured by
bioluminescence imaging. Wildtype (WT) are immunocompetent
mice while SCID and RAG2™/"cyc™/™ are immunodeficient mice.
Excerpted from [27].

insufficient to model some of our observations from biolumi-
nescent imaging and immunohistochemistry. In particular,
we found that proliferative arrest occurs almost immediately
after oncogene inactivation but apoptosis was delayed for
approximately 4-5 days.

Figure 4 shows the tumor growth kinetics in the absence
of delay. This captures the necessity of adding delay to accu-
rately represent the biology.

3. Results and Discussion

By running simulations, our model recapitulates features
such as the different rates and delays in the tumor kinet-
ics measured from in vivo experimental data from mouse
models. Several emergent behaviors of the model have come
to light. Empirically, proliferative arrest immediately follows
oncogene inactivation but there is a 4-5 day delay in apop-
tosis. This was modeled by incorporating a delay between
irreversible commitment to apoptosis and actual cell death.
Furthermore, the rate of mutations leading to tumor
relapse (which is captured in the term K j,p.) had almost
no bearing on the kinetics of the relapse. Instead, Kg ;o
dominates tumor relapse kinetics. We performed a basic
simulation of regressing tumors followed by increasing the
rate of tumor cells from “MYC oft” to “Escaped” (increas-
ing the term Kij,p.) that would have otherwise gone to
“Oncogene Inactivation Induced Senescence” The rate gov-
erning mutations leading to the transition from “MYC oft”
to “Escaped” had little effect on deterministic simulations,
which were dominated by the growth rate of the escaped cells,
but a significant effect on our stochastic model. The relapse
of tumors due to absence of immune-mediated senescence
is demonstrated in Figure 6. This indicates that the immune
system plays a significant role in sustained tumor regression.
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TABLE 1: Model parameters and values governing the response to oncogene inactivation.

Estimated value L
Parameter 71v . Description
(day™)
K 0l Transition coefficient from the “MYC off” state to
N-prolif ’ proliferating
K 0.02 Transition coefficient between “MYC off” state and
diff ’ differentiation state
K 5 Transition coefficient between “MYC oft” and apoptosis
N-apop state
K 0.001 Transition coefficient between “MYC off” state and
senese ' Oncogene inactivation induced senescence state
0/3 x 10°° Transition coeflicient between “MYC off” state and
relapse escaped state (immunocompetent/immunodeficient)
K ol Transition coefficient between differentiated state and
wake : “MYC on” state
K 05 Transition coefficient from the escaped state to
E-prolif ’ proliferating
K 0.05 Transition coefficient between “MYC on” and apoptosis
M-apop : state
Transition coefficient from the “MYC on” state to
KM,prolif 0.5 lif ;
proliferating
K 0.0l Transition coefficient between escaped state and
E-apop ’ apoptosis state
Transition coefficient between differentiated state and
Kp apop 0.05/0.002/0.01 apoptosis state (tumor dependent: lymphoma,
osteosarcoma, and hepatocellular carcinoma)
Transition from “MYC on” to “MYC off” (depending
Kinactivation 0/2 on if MYC is on/off)
K 2/0 Transition from “MYC off” to “MYC on” (depending
Activation on if MYC is on/off)
dM = B(M, Ky . % dt) + B(D, Kyyqe * dt) = BIM, Ky, - di) = B(M, Kipaciivation * d1) + BN, Kciivation * 1)
dN = B(N, KNpmm- * dt) — BN, Ky * dt) - B(N, I<Na},op # dt) = B(N, Kgepese * dt) — B(N, Krzlupse * dt) + B(M, Kipactivation * 41) = BIN, Kyctivation * d1)

dA = B(M, Ky, *dt)+ B(N,Ky, % df) + BE,Kg, *dt)+ BID,Kp,  *dt) = BIA(t = 7), K * dt)

dE = BN, Kyetapse * dt) + BE,Kp % dt) = B(E,Kg,_ * dt)

rolif

dD = B(N, Ky * dt) — B(D, Ky * dt)
dS = B(N, Kyepese * dt)

FIGURE 3: Set of equations represented by the model shown in Figure 1. B(n,p) is a binomial random variable of n the Bernoilli trials with
probability of success p. K are rate constants independent of the time step size. Note that all the main variables are a function of ¢ shortened

for the sake of clarity. For example, M is M(t).

From Figure 5, we see that in a WT mouse (which has an
intact immune system), there is sustained tumor regression.

Empirically, the regression kinetics had little variability
(in Figure 2, the curves all overlap) while the relapse growth
kinetics showed greater variability (timing of the curves
varies). Only adding stochasticity to our deterministic model
can capture this variability in relapse in the different mouse
models. The result from a run of 20 simulations is displayed
in Figure 7.

4. Conclusions

While our model has yielded numerous hypotheses and
insights about oncogene addiction, the model has various

limitations. There are other important host-dependent fac-
tors that have yet to be added, namely, the inhibition of
angiogenesis upon oncogene inactivation. Angiogenesis has
a number of potential effects on portions of our model
including growth rates, hypoxia-related resistance, and lym-
phocyte access to the tumor. Another limitation is that we
do not currently model tumor stem cell properties. Many
models have been developed that model the spectrum of
stemness in tumor cells but we do not know how much effect
this will have on our results. Similarly, other effects such as
DNA methylation and transcription factor networks have not
been included [30, 31]. Finally, our modeling of immune-
dependent effects is done implicitly although we plan to add
explicit model variables for immune effector cell populations
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FIGURE 5: Simulated tumor growth kinetics with no escape of tumor
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system. Note the correctly modeled delay in tumor cell death as is
observed in Figure 2.

that model tumor-immune interactions similar to predator-
prey dynamics.

The initial results from our new model are helping to
quantitatively hypothesize about the sequence of cellular
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mechanisms involved in tumor response to oncogene inac-
tivation such as might be encountered using targeted thera-
peutics, and the interactions among them. These hypotheses
will be tested experimentally using the same conditional
control mouse models and in vivo bioluminescence imaging
(and immunohistochemistry). We aim to eventually use this
model to help to optimize multipronged treatment regimens
for patients so as to defer or even eliminate tumor relapse.
Avoiding immune destruction is a crucial hallmark because it
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has been shown that immune cells, CD4+ T cells in particular,
are a required component for senescence, shutdown of angio-
genesis and chemokine expression that result in sustained
tumor regression [26, 27, 32-34].

This finding is captured in our model. If residual disease
reaches a low enough level, relapse can be prevented. Large
tumors have a great number of cells that can transition
through an extremely low-likelihood event to the “Escaped”
state. If the tumor is small enough, not enough cells
remain to make it likely that any one will achieve the very
low-likelihood “Escaped” state. Tumor burden is also an
important factor in tumor regression mediated through the
immune system. The immune system might not be able to
attack and eliminate the tumor fast enough if the tumor
burden is too high. Currently our model does not account
for this but we are adding more sophisticated immune system
components to the model in order to show this. Our model
is simple in that all but one state (with explicit delay)
have memoryless transitions and yet the model is able to
recapitulate the complex response of tumors to oncogene
inactivation. No age structuring of cells is required as with
some other models [35, 36].

Our model offers more fidelity than models in the liter-
ature that just capture tumor cells in a single variable [37]
because we are able to capture the various cellular states.
These states have not yet been quantitatively captured over
time in vivo. We are working on imaging methods to quantify
distinct cellular processes such as apoptosis, and senes-
cence, proliferation, which will eventually allow us to further
validate our simulation results. Future work will include
validating novel predictions from our model in vivo.
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