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In this paper we present two types of mathematical model which describe the invasion of 
host tissue by tumour cells. In the models, we focus on three key variables implicated in 
the invasion process. namely, tumour cells, host tissue (extracellular matrix) and matrix- 
degradative enzymes associated with the tumour cells. The first model focusses on the 
macro-scale structure (cell population level) and considers the tumour as a single mass. 
The mathematical model consists of a system of partial differential equations describing the 
production and/or activation of degradative enzymes by the tumour cells, the degradation 
of the matrix and the migratory response of the tumour cells. Numerical simulations are 
presented in one and two space dimensions and compared qualitatively with experimental 
and clinical observations. The second type of model focusses on the micro-scale (individual 
cell) level and uses a discrete technique developed in previous models of angiogenesis. This 
technique enables one to model migration and invasion at the level of individual cells and 
hence it is possible to examine the implications of metastatic spread. Finally, the results of 
the models are compared with actual clinical observations and the implications of the model 
for improved surgical treatment of patients are considered. 
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1 INTRODUCTION tumour cell has the potential, over successive divi- 
sions, to develop into a cluster (or nodule) of tumour 

The development of a primary solid tumour (e.g., a cells. Further growth and proliferation leads to the 
carcinoma) begins with a single normal cell becom- development of an avascular tumour consisting of 
ing transformed as a result of mutations in certain key approximately lo6 cells. This cannot grow any fur- 
genes. This transformed cell differs from a normal ther, owing to its dependence on diffusion as the 
one in several ways, one of the most notable being only means of receiving nutrients and removing waste 
its escape from the body's homeostatic mechanisms, products. For any further development to occur the 
leading to inappropriate proliferation. An individual tumour must initiate angiogenesis - the recruitment 
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of blood vessels. The tuniour cells first secrete angio- 
genic factors which in turn induce endothelial cells 
in a neighbouring blood vessel to degrade their basal 
lamina and begin to migrate towards the tumour. As 
it migrates. the endothelium begins to form sprouts 
which can then form loops and branches through 
which blood circulates. From these branches more 
sprouts form and the whole process repeats forming 
a capillary network which eventually connects with 
the tumour, completing angiogenesis and supplying 
the tumour with the nutrients it needs to grow further. 
There is now also the possibility of tumour cells find- 
ing their way into the circulation and being deposited 
in distant sites in the body, resulting in metastasis. 
The complete process of metastasis involves several 
sequential steps, each of which must be successfully 
completed by cells of the primary tumour before a 
secondary tumour (a metastasis) is formed. A sum- 
mary of the key stages of the metastatic cascade is 
as follows: 

cancer cells escape from the primary tumour: 
they locally degrade the surrounding tissue and 
continue migration; 
they enter the lymphatic or blood circulation sys- 
tem (irztravasation); 
they must survive their journey in the circulation 
system; 
they must escape from the blood circulation 
(extruvasution); 

0 the cancer cells (from the primary tumour) must 
then establish a new colony in distant organs; 
the new colony of cells must then begin to grow 
to form a secondary tumour in the new organ. 

A crucial part of the invasive/metastatic process 
is the ability of the cancer cells to degrade the sur- 
rounding tissue or extuacellular matrix (ECM) (Liotta 
et ul., 1983; Stetler-Stevenson et al., 1993; Lawrence 
and Steeg, 1996). This is a complex mixture of 
macromolecules, some of which, like the collagens, 
are believed to play a structural role and others, such 
as laminin, fibronectin and vitronectin, are important 
for cell adhesion, spreading and motility. We note 
that all of these macromolecules are bound within 
the tissue i.e. they are non-diffusible. The ECM can 
also sequester growth factors and itself be degraded to 

release fragments which can have growth-promoting 
activity. Thus, while ECM may have to be physically 
removed in order to allow a tumour to spread or intra- 
or extravasate, its degradation may in addition have 
biological effects on tumour cells. 

A number of matrix degradative enzymes (MDEs) 
such as the plasvninogen activator (P.4) system 
and the large family of rnatri.~ metallopmteinase~ 
(MMPs) have been described (Mignatti and Rifkin, 
1993; Matrisian, 1992; Thorgeirsson et a]., 1994). 
While no MDE is completely specific for one 
element of the ECM, some broad preferences are 
expressed, for example the gelatinases (two members 
of the MMP family) preferentially cleave the laminar 
collagens IV and V and denatured fibrillar collagens 
I, 11 and 111 but can also digest vitronectin and 
laminin, at least in vitro (reviewed in Yu et al.. 
1998). Both PAS and the MMPs have been repeatedly 
implicated in all of the above steps of tumour invasion 
and metastasis (Ahmad et al., 1998; Bafetti et al., 
1998; Brown, 1998; Chambers and Matrisian, 1997; 
Kim er al., 1998; Itoh ef al., 1998; Koshiba et al., 
1998; Parson et a]., 1997; Sehgal et al., 1998; Stetler- 
Stevenson et al., 1996; Zeng and Guillem, 1998). 
Regulation of matrix-degradative activity is highly 
complex. In both these enzyme systems (PAsMMPs) 
there exist several endogenous inhibitors (Beattie and 
Smyth, 1998; Kleiner and Stetler-Stevenson, 1993; 
Stetler-Stevenson et al., 1989), and the enzymes are 
often secreted as inactive precursors which must 
themselves be partially degraded to reach full activity. 
More than one cell type may be involved in the 
activation of any one enzyme (Kleiner and Stetler- 
Stevenson, 1993). 

Over the last ten years or so many mathematical 
models of tumour growth, both temporal and spatio- 
temporal, have appeared in the research literature (see 
Chaplain, 1996, for a review of many of these). Much 
of the experimental data that exist on the growth 
kinetics of avascular tumours have been incorpo- 
rated into mathematical models using various growth 
laws such as Gompertzian growth, logistic growth 
and exponential growth, to name but a few (see, for 
example, Wheldon, 1986; Retsky et 01.. 1990; Maru- 
sic et d., 1994; and references therein). Modelling 
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of the important process of tumour-induced angio- 
genesis and capillary network formation has also 
been undertaken (Chaplain and Stuart, 1993; Chap- 
lain, 1995; Anderson and Chaplain, 1998). Determin- 
istic reaction-diffusion equations have been used to 
model the spatial spread of tumours both at an early 
stage in its growth (Sherratt and Nowak, 1992) and 
at the later invasive stage (Orme and Chaplain, 1996; 
Gatenby, 1996; Perumpanani et al., 1996). Modelling 
of a related phenomenon, embryonic implantation 
involving invading trophoblast cells, using a reaction- 
diffusion approach has also been carried out (Byrne 
et a/., 1999). Typical solutions observed in all the3e 
models (Orme and Chaplain, 1996; Gatenby, 1996; 
Perumpanani et al., 1996; Byrne et al., 1999) appear 
as invading travelling waves of cancer cells. An 
alternative framework is to adopt a continuum/solid 
mechanics approach or a mechano-chemical mod- 
elling approach (Chaplain and Sleeman, 1993; Trac- 
qui, 1995) and to consider physical pressure and 
forces between cells and matrix. Whilst these mod- 
els are able to capture the tumour structure at the 
tissue level, they fail to describe the tumour at the 
cellular level and subsequently the subcellular level. 
On the other hand, cellular automata models pro- 
vide such a description and allow a more realis- 
tic stochastic approach at both the cellular (Kim- 
me1 and Axelrod, 1991; Smolle and Stettner, 1993; 
Qi et al., 1993) and subcellular levels (Duchting, 
1990a,b; 1992; Duchting et al., 1996). 

The models presented in this paper are of two 
types: a continuum, deterministic model (based on 
a system of reaction-diffusion-chemotaxis equations) 
and a discrete, quasi-stochastic model (based on a 
biased random-walk model). We choose to focus on 
three key variables involved in tumour cell invasion, 
thereby producing a minimal model, namely; tumour 
cells, ECM and MDEs. Initially we derive a system 
of coupled nonlinear partial differential equations. 
using conservation laws, to model tumour invasion 
of surrounding tissue. Numerical solutions for this 
system in both one and two dimensions will be 
presented, thus allowing the macroscopic dynamics 
of invasion to be discussed. From a discretised form 
of these partial differential equations, we derive a 

discrete biased random-walk model which enables the 
migration and proliferation of individual cells to be 
considered. 

The main aims of this paper are (i) to lay the 
foundations for developing quantitative mathemati- 
cal models of tumour invasion; (ii) to investigate the 
importance of ECM-tumour interactions in governing 
the migration of tumour cells and (iii) to make pre- 
dictions about the metastatic ability of tumour cells. 
For example, by considering the cells as discrete indi- 
viduals we can estimate, for a given initial tumour, 
how far it will invade and the numbers of cells that 
migrate outwith the main bulk of the tumour and 
thus allow for both qualitative and quantitative com- 
parisons with experimental and clinical data. From 
the clinical perspective, it is the escape of tumour 
cells beyond the boundary of detectable tumour mass 
(which may be resected surgically), that gives rise to 
the serious problems of local and distant recurrence. 

The layout of the paper is therefore as follows: in 
the next section. we formulate the continuum model 
of invasion based on a system of partial differen- 
tial equations. In Section 3 we present the results of 
numerical simulations of this model in 1 and 2 dimen- 
sions, In Section 4 we derive the discrete biased ran- 
dom walk model (based on the model of Section 2) 
and present the results of the discrete simulations in 
Section 5. Finally in Section 6 we discuss the clini- 
cal implications of the results of the model and make 
some concluding remarks. 

2 THE CONTINUOUS MATHEMATICAL 
MODEL 

We will base our mathematical model on generic solid 
tumour growth, which for simplicity we will assume 
is at the avascular stage. Whilst most tumours are 
asymptomatic at this state, it is still possible for cells 
to escape and migrate to the lymph nodes and for 
the more aggressive tumours to invade. The model 
may be extended to incorporate interactions between 
the tumour cells and blood vessels, thereby modelling 
angiogenesis and vascular growth. However since one 
of the aims of the paper is to focus solely on the 
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interactions between the tumour and the surround- 
ing tissue we do not attempt to model interactions 
between the tumour and the vasculature. In prin- 
ciple, our model can be extended to include such 
interactions and the general form of our model will 
be the same for both invading vascular and avascu- 
lar tumours. In the model we therefore consider the 
three variables; tumour cell density (denoted by n), 
MDE concentration (denoted by m) and ECM density 
(denoted by f). Each of the three variables (n, m ,  f) 
is a function of the spatial variable x and time t.  

Most of the macromolecules of the ECM which 
are important for cell adhesion, spreading and motil- 
ity (e.g. fibronectin, laminin, and vitronectin) arefxed 
or hound to the surrounding tissue. As already dis- 
cussed in the introduction. MDEs are important at 
many stages of turnour growth, invasion and metas- 
t a~ i s ,  and the manner in which they interact with 
inhibitors, growth factors and tumour cells is very 
complex. However, it is well known that the tumour 
cells produce MDEs which degrade the ECM locally. 
As well as making space into which tumour cells 
may move by simple diffusion (random motility), we 
assume that this'also results in a gradient of these 
bound cell-adhesion molecules, such as fibronectin. 
Therefore while the ECM may constitute a barrier to 
normal cell movement, it also provides a substrate to 
which cells may adhere and upon which they may 
move. Most mammalian cell types require at least 
some elements of the ECM to be present for growth 
and survival and will indeed migrate up a gradient of 
bound (Le. non-diffusible) cell adhesion molecules in 
culture in vitro (Carter, 1965; Quigley et al., 1983; 
Lacovara et al., 1984; McCarthy and Furcht, 1984; 
Klominek et al., 1993; Lawrence and Steeg, 1996). 

By definition, haptotaxis is the directed migratory 
response of cells to gradients of fixed or bound 
chemicals (i.e. non-difusihle chemicals). While it has 
not yet been explicitly demonstrated that haptotaxis 
occurs in an in vivo situation, given the structure 
of human tissue, it is not unreasonable to assume 
that haptotaxis is a major component of directed 
movement in tumour cell invasion. Indeed, there 
has been much recent effort to characterise such 
directed movement (Klominek et al., 1993; Lawrence 

and Steeg, 1996). We therefore refer to this directed 
movement of tumour cells in our model as haptotaxis 
i.e, a response to gradients of bound macromolecules 
such as fibronectin. To incorporate this response in 
our mathematical model, we take the haptotactic flux 
to be Jhapto = x n V  f ,  where x > 0 is the (constant) 
haptotactic coefficient. 

As mentioned above, the only other contribution 
to tumour cell motility in our model is assumed 
to be random motion. This approach permits us to 
investigate cell-matrix interactions in isolation (i.e. 
in the absence of cell proliferation). To describe the 
random motility of the tumour cells we assume a flux 
of the form Jrandom = - D( f ,  m)Vn, where D( f ,  m) 
may be a constant or a function of either the MDE 
or ECM concentration, the latter cases representing a 
chemokinetic response i.e., increased random motility 
will be observed for regions of high MDEECM 
concentration. 

To enable us to focus entirely on the cell-matrix 
interactions and how these interactions affect tumour 
cell migration, we do not consider any proliferation of 
tumour cells in our partial differential equation model. 
However tumour cell proliferation will be included 
in the discrete model in Section 4. The conservation 
equation for the tumour cell density n is therefore 
given by 

and hence the partial differential equation governing 
tumour cell motion (in the absence of cell prolifera- 
tion) is, 

For the initial simulations given in the next section 
we chose D(f, m) = D,, a constant, the tumour cell 
random motility coefficient. 

The ECM is known to contain many macro- 
molecules, including fibronectin, laminin and col- 
lagen, which can be degraded by MDEs (Stetler- 
Stevenson et al., 1996; Chambers and Matrisian, 
1997). We assume that the MDEs degrade ECM upon 
contact and hence the degradation process is modelled 
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where 6 is a positive constant. 
Active MDEs are produced (or activated) by 

the tumour cells, diffuse throughout the tissue and 
undergo some form of decay (either passive or 
active). The equation governing the evolution of 
MDE concentration is therefore given by: 

where Dm is a positive constant, the MDE diffusion 
coefficient, g is a function modelling the production 
of active MDEs by the tumour cells and h is a func- 
tion modelling the MDE decay. For simplicity we 
assume that there is a linear relationship between the 
density of tumour cells and the level of active MDEs 
in the surrounding tissues (regardless of the amount 
of enzyme precursors secreted and the presence of 
endogenous inhibitors) and so initially these func- 
tions were taken to be g = p n  (MDE production by 
the tumour cells) and h = A m  (natural decay), respec- 
tively. Other functional forms for h were also tried 
(see Section 3.1 for details). 

Hence the complete system of equations describing 
the ' '  .eractions of the tumour cells, ECM and MDEs 
as d ~ ~ a i l e d  in the previous paragraphs is 

This system is considered to hold on some spatial 
domain R (a region of tissue) with appropriate initial 
conditions for each variable. We assume that the 
tumour cells, and consequently the MDEs, remain 
within the domain of tissue under consideration and 
therefore no-flux boundary conditions are imposed on 
8 0 ,  the boundary of a. 

In order to solve the system numerically, we first 
of all non-dimensionalise the equations in the stan- 
dard way. We rescale distance with an appropriate 
length scale L (e.g. the maximum invasion distance 
of the cancer cells at this early stage of invasion 
0.1 - 1 cm), time with r = L ~ D  (where D is a refer- 
ence chemical diffusion coefficient - cm2 s-', 
Bray, 1992), tumour cell density with no, ECM den- 
sity with f o  and MDE concentration with mo (where 
no, fo, mo are appropriate reference variables). There- 
fore setting 

in (4) and dropping the tildes for notational conve- 
nience, we obtain the scaled system of equations: 

random motzlzty haptotasis 

d n  - 
- = d,,V2n - YV . (nV f) .  
d t  

where d,, = D J D ,  7 = z f o / D ,  q = ~n706,  dm = 
D,,/D, a = rpnolmo, P = rX. The cell motility 
parameter D, --. 10-lo cm2 s-' was estimated from 
available experimental evidence (Bray, 1992). The 
haptotactic parameter x -- 2600 cm2 s-' M-' was 
estimated to be in line with that calculated in Ander- 
son and Chaplain (1998) and the parameter fo  - 
lo-' - lo-'' M was taken from the experiments 
of Terranova et al., (1985). We took Dm to be in 
the range - 10-lo cm2 s-'. Estimates for the 
kinetic parameters p. A, 6 were not available since 
these are very difficult to obtain experimentally. 

The zero-flux boundary conditions: 

for the cells and 

for the MDEs are imposed on the boundaries of the 
domain where 5 is an appropriate outward unit normal - 
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vector In one space dimension, the scaled domain is 
the unit interval [0,1], while in two space dimensions, 
the scaled domain is the unit square LO. 11 x (0, 11. 

Initially we assume that there is a nodule of cells 
already present and in one dimension that the tumour 
is centred around 2 = 0 with n having the initial 

where is a positive constant. The initial tUmOur 

density in two dimensions has a similar f0mL but 

is centred on (0.5, 0.5) i.e. 

e x - r 2 )  r E [0,0.11, (9) 
n(x. Y, 0) = {0, r E (O.l,lI 

A 
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3 NUMERICAL SIMULATIONS 

3.1 One dimensional results 

The following n~merical results were obtained using 
the NAG routine D03PCF which implements the 
method of lines and Gear's Method. in the follow- 
ing simulations, the parameter values used were as 

& = 0.001, dm = 0.001, 7 = 0.005, 7 = 10, 

0 = 0 . 1 , P = O a n d c = 0 . 0 1 .  

Figure I shows four snapshots in time of the 
tumour cell density. ECM density, and MDE con- 
centration. The ECM profile shows clearly the degra- 
dation by the MDEs The tumour density distribution 

0.2 

Tumour \ .  - .  

1 

In the next ~imulation in Figure 2, we consider the 
effect of n o d i n ~ ~ r  dmffusion on the inv;.ion of the 

turnour cells by taking D ( f ,  rn) = This repre- 
sents a chemokinetic response of the tumour cells 
'0 MDE concentration where we make the simple 
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1 I I 1 I I I I I - - - 

FIGURE 3 One dimensional numerical solutions of the system (5), with parameter values as in Figure 1 (unless otherwise stated), showing 
the cell density, MDE concentration and ECM density. (a) (top) shows the effect of increasing d,? = 0.01 at t = 5 and in (b) (bottom) the 
effect of increasing oi = 10 at t = 2. 
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assumption that the tumaur cell random motility is 
directly proportional to MDE concentration i.e. where 
there is a high MDE concentration there is high ran- 
dom cell motility. Using the same parameters as in 
Figure 1, the four snapshots in Figure 2 were pro- 
duced. Whilst the MDE and ECM concentration pro- 
files closely resemble those obtained in Figure 1, the 
tumour density distribution has changed considerably. 
By t = 1 we again see a build up of tumour cells at 
the leading edge, more pronounced than in Figure 1, 
which then breaks away from the main body of the 
tumour. This results in two quite distinct clusters, 
one of which migrates much further into the ECM. 
The main body of the tumour however, invades more 
slowly than was observed in Figure 1. If a small 
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cluster of cells breaks away from the main body 
of the tumour, there is then the potential for these 
cells to intravasate any neighbouring vessels and start 
the metastatic cascade. Also if the main body of the 
tumour were to be surgically removed (resected), the 
smaller cluster of cells that has invaded further into 
the ECM may go unnoticed by the surgeon and lead 
to a possible recurrence. These results indicate the 
importance of haptotaxis as a mechanism for invasion 
and implicate its role in the metastatic cascade. 

We now investigate the effect that changing vari- 
ous parameter values has on the solution. In particular 
we consider the effect of increasing the MDE diffu- 
sion coefficient dm,  MDE production rate a and the 
tumour cell haptotactic coefficient y. 
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FIGURE 4 One dimenqional numerical solutions of the system (5) .  with parameter values as in Figure 1 (unleas othenvi'ie stated). 
showing the cell density. MDE concentration and ECM density. (a) (top) shows the effect of increasing d,,, and 7 by a factor of 10 
((I,,, = 0.01.7 = 0.05) at t = 2.5 and in (b) (bottom) the effect of increasing these variables by a factor of 100 (rl , ,  = 0.1.3 = 0.5) at t = 0.5. 

In Figure 3(a) we show the effect of increasing the 
diffusion coefficient of the MDEs by a factor of 10 
i.e. dm = 0.01 (all other parameter values unchanged 
from Figure 1). While in Figure 3(b) we increase the 
value of a by a factor of 100 i.e. a = 10, representing 
increased MDE production by the tumour cells (all 
other parameter values unchanged from Figure 1). In 
both cases. we can see that there has been more 
degradation of the matrix due to the fact that the 
MDE has either spread into the domain more rapidly 
(Figure 3a) or has been produced in greater quantity 
(Figure 3b). In each case the tumour cells remain 
more localised and do not invade the tissue as much. 

In Figures 4(a) and (b) we show the effect of 
increasing both the MDE diffusion coefficient and 

the tumour cell haptotactic coefficient by factors 
of 10 and 100 respectively (all other parameter 
values unchanged from Figure 1). In Figure 4(a) 
(dm = 0.01, y = 0.05) we can see that there is a 
larger proportion of tumour cells breaking away from 
the initial mass and invading the tissue compared 
with Figure (1). In Figure 4(b) (tl,, = 0.1. y = 0.5) 
this effect has been accentuated even more as almost 
all the tumour cells have invaded the tissue, being 
driven mainly by haptotaxis. 

In Figures 5(a) and 5(b) we have increased y 
by a factor of 10 and 100 respectively (all other 
parameters remain unchanged from Figure 1). These 
figures show the importance of turnour-matrix inter- 
actions and haptotaxis. As y is increased, a larger 
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1 I I 1 I I I I I 

FIGURE 5 One dimensional numerical solutions of the system (5), with parameter values as in Figure 1 (unless otherwise stated), 
showing the cell density, MDE concentration and ECM density. (a) (top) shows the effect of increasing 5 by a factor of 10 (7 = 0.05) at 
t = 2.5 and (b) (bottom) shows the effect of increasing y by a factor of 100 (7 = 0.5) at t = 1. 

proportion of the tumour cells invade the tissue, prn f and (iii) h = pm(l - f), where j3 is a positive 
driven forward by haptotaxis and the gradients in constant. The biological interpretation for these forms 
the ECM. Indeed from Figure 5(b) we can see that is (i) natural decay, (ii) decay proportional to ECM 
almost all the tumour cells are invading in a pulse-like density, modelling the assumption that production 
travelling wave. of MDE inhibitors (e.g. TIMPs) is directly propor- 

Having examined the effect of different parameter tional to the underlying ECM density and (iii) decay 
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values on the dynamics of the system, we now con- 
sider different functional forms for the MDE decay 
term, h(m, n, f ) ,  since the exact dynamics of the 
MDEECM and MDEItumour cell interactions are not 
known. However, we do know that certain inhibitors 
(e.p. Tissue Inhibiting Metalloproteases, TIMPs) are 
produced within the ECM and that there will be some 
natural decay of MDEs. We have therefore chosen the 
following three functional forms: (i) h = pm, (ii) h = 
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inversely proportional to ECM density, modelling 
the assumption that regions of higher ECM density 
allows for more MDE to bind there and degrade it. 

Figures 6 (a-c) show plots of the tumour cell den- 
sity, MDE concentration and ECM density respec- 
tively, at t = 10 with the same parameter values as 
for Figure 1 i.e. d, = 0.001, d,,, = 0.001, y = 0.005, 
77 = 10, cr = 0.1 and the additional parameter P = 0.5. 
Within each plot are four curves, one for h = 0 
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FlGURE 6(a) One dimensional numerical solutiorls of the systetn ( 5 ) ,  with parameter values as in Figure 1 (unless otherwise stated), 
showing the (a) cell density. (b) MDE concentration (overleaf) and (c) ECM density (overleaf). (a) shows the tulnour cell density at t = 10 
for each of the three functional f o r m  of h i.e. lz = 0 (solid line), h = 3m (dashed line), h = 37n f (dashed-dotted line) and h = 3m(l - 8 
(dotted line). ib) shows the MDE concentration for each of the three functional form of h at t = 10, key as in (a). (c) shows the ECM 
density for each of the three functional form of h at t = 10, key as in (a). 

(continuous line) and one for each of the above 
functional forms, (i) dashed, (ii) dashed-dotted and 
(iii) dotted. Clearly (with the given set of parame- 
ter values) the impact on the ECM profile is minimal 
(Figure 6c). However, the MDE concentration profile 
curves show that for (ii) very little decay is produced 
but with both (i) and (iii) the MDE concentration is 
substantially reduced (Figure 6b) compared with the 
original. In contrast to this marked difference in the 
MDE concentration, the tumour cell density curves all 
look similar (Figure 6a), although the leading group 
of cells is not so well defined for (i) and (iii). These 
results indicate that the precise functional form of 
h(m, n, f )  (with the given set of parameters) is not as 

important as the actual presence of MDE to degrade 
the ECM i.e. provided there is some net production 
of MDE the dynamics of the tumour cell density will 
remain largely unchanged. 

The importance of haptotaxis as a mechanism of 
invasion is obvious from these results. This in turn 
emphasises the importance of gradients which appear 
in the degraded ECM. Since the ECM is unlikely to 
be a constant homogeneous mass, in order to make 
the model more realistic we must consider a spatially 
heterogeneous ECM. We examine how this affects 
the tumour cell density distribution by considering 
such a heterogeneous ECM in two dimensions in the 
following section. 
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X 

FIGURE 6(b) (Continued) 

3.2 Two Dimensional Numerical Simulations 

The aim of this section is to extend the model to 
a two dimensional spatial domain and therefore to 
allow the spatio-temporal dynamics of the model to 
be explored in more detail. All of the nunlerical 
solutions presented in this section were obtained from 
a finite difference approximation of the system (5) 
with boundary and initial conditions (6)-(9). Since 
there are no birth and death terms in the tumour 
cell equation ( 5 )  and we impose zero flux boundary 
conditions (6) then the total cell number is conserved. 
We used the conservation of cell number as a check 
on the accuracy of our numerical scheme which 
was found to be accurate to within 0.01%. The 
parameter values used in the following simulatio~ls 
(unless specified otherwise) were the same as those 

used in the one dimensional simulations of Figure 1 
i.e. d,, = 0.001, d,,, = 0.001, y = 0.005, rl = 10, cr = 
0.1, /3 = 0 and E = 0.0025 

We first of all consider a homogeneous ECM in two 
dimensions, thereby extending the one-dimensional 
results of the previous section. This will also permit 
us to compare the effect of a heterogeneous ECM 
in subsequent simulations. Thus, initially we assume 
that we have a circular initial tumour cell distribution 
given by (9) and an ECM distribution given by 
f (x, y, 0) = 1 - 0.5n(x, y, 0). Finally, we assume that 
the initial MDE concentration profile is proportional 
to the initial tumour cell density and take m(x,  y, 0) = 
0.5n(x, y,0). The tumour cell initial conditions are 
illustrated graphically at t = 0 in Figure 7. 

Figure 7 shows the results of a numerical 
simulation of equation (5) in 2D. The figure shows 
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FIGURE 6(c) (Continued). 

four snapshots in time of the tumour cell density 
distribution, with the first figure representing the 
initial data, as described above. As expected, we see 
the main body of the tumour invading slowly. At 
the leading edge there is a region of higher density 
of cells, which eventually breaks away as a separate 
ring of cells and invades further into the ECM. These 
results are as expected, and are in keeping with the 
analogous one-dimensional results of the previous 
Section 3.1. 

To examine the importance of the role of ECM in 
the invasive process, we now consider a hypothetical 
heterogeneous ECM with an initial distribution given 
in Figure 8 i.e. there are now regions of high density 
of ECM and regions of low density of ECM. Using 
this initial ECM data, the same initial tumour cell 

distribution and MDE concentration as for Figure 7 
and the same parameter values, we obtained the 
results shown in Figures 9 and 10. From Figure 9 we 
note that the same behaviour is observed at the early 
stages (t = 1 .O, 2.0) as for Figure 7 with a basic radial 
expansion. However, by t = 4.0 the perfect symme- 
try of the initial tumour cell distribution is broken and 
there are several regions of higher tumour cell den- 
sity. The distinction between cells which are mainly 
driven by diffusion and those driven by haptotaxis is 
no longer obvious. At later times, from Figure 10, we 
see that two regions of high cell density form (t = 7.0) 
and continue to invade (t = 10.0). The main body of 
the tumour is approximately bounded by these higher 
density regions, although by t = 12.0 the higher den- 
sity regions have fragmented and a new 'hotspot' has 
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FIGURE 7 Spatio-tenlporal evolution of the turnour cell density fro111 a numerical sirnulation of system (5) with constant tumour cell 
diffusion. representing tumour invasion (see text for parameter values). The figure s h o ~ w  that a ring of cell5 break from the mail1 body of 
the tumour and invade further into the ECM. Colour graduation is directly proportiorial to cell density i t .  red is high density and dark 
blue low density (see colour plate 1). 

appeared. The final figure at t = I5 shows that the 
tumour cell density has spread through most of the 
domain in a somewhat heterogeneous manner with a 
couple of 'hotspots'. This form of tumour cell den- 
5ity distribution is closer to what is observed in real 
life than those of Figure 7 and further emphasises 
the importance of tumour cell/ECM interactions (cf. 
Figures 14, 15 in the discussion section). 

The particular choice of initial ECM distribution 
(Figure 8) is perhaps somewhat exaggerated and was 
selected to emphasise the importance of ECM gradi- 
ents. However, other forms of initial ECM distribu- 
tion would produce qualitatively similar final rewlts 
i.e. a heterogeneous tumour cell density distribution. 

The two important factors governing the final tumour 
cell density distribution are ECM heterogeneity and 
the haptotactic response of the cells to the gradi- 
ents created in the degraded matrix. These results are 
in qualitative agreement with actual clinical observa- 
tions i.e. it is well-known that small clusters of cells 
can break away from the central mass of the tumour 
and invade further leading to possible metastasis (cf. 1 

f 

Figures 14, 15 in the final sect~on). 
Whilst the results of Sections 3.1, 3.2 give an 

indicat~on of the macroscopic behaviour of our model 
and produce qualitatively realistic results, they are 
limited in their quantitative capacity and do not 
account for other important processes such as cell 
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Hetero~eneous Cellular Matrix 

FIGURE 8 Pictorial representation of a hypothetical heterogeneous ECM. Colour graduation is directly proportional to ECM concentration 
i.e. red is high density and dark blue low density (see colour plate 11). 

proliferation, cell mutation and individual cell-cell 
interactions. In the following section we present a 
discrete model that has the capacity to include all of 
these processes in a realistic manner and produce both 
spatial and temporal data on individual invading cells. 

4 THE DISCRETE MATHEMATICAL MODEL 

Discrete mathematical models of tumour invasion 
already exist in the research literature, but these 
mainly involve the use of cellular automata. For 
example, the work of Smolle and Stettner (1993), 
Smolle and Grimstad (1992). Smolle et al. (1990) 
concerns invasive patterns generated from a cellular 
automaton which are compared statistically with 
experimental results in order to detect real invasive 

patterns. The model allows for an estimation of cell 
motility and proliferation. Qi et al. (1992) developed 
a cellular automaton model of cancerous growth 
which was compared with experimental growth 
curves and shown to agree well. Both of these models 
included cell proliferation and migration terms. Qi 
ef al. ( I  992) also included the mechanical pressure 
within the tumour and Smolle and Stettner (1993) 
consider a further level of complexity with the 
influence of autocrine and paracrine chemicals. 

In this section we will develop a discrete 
mathematical model of tumour invasion which will 
enable not only a qualitative but also a quantitative 
comparison with in vivo experimental results. The 
particular technique which we will use to follow the 
path of an individual tumour cell is an implementation 
of the method developed by Anderson et al. (1997) 
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t=l 

FIGURE 9 Spatio-temporal evolution of the tumour cell density f i  

(see text for parameter values). The effect of the ECM on the tumc 
the ring of cells is seen to no longer exist. Colour graduation as in 

and Anderson and Chaplain (1998) and first of all 
involve? discretizing (using standard finite-difference 
methods) the partial differential equation governing 
the rate of change of tumour cell density (5). We 
then use the resulting coefficients of the five-point 
finite-difference stencil to generate the probabilities of 
movement of an individual cell in response to its local 
milieu. This technique differs from previous discrete 
models such as Smolle and Stettner (1993) and Qi 
et al. (1993) in that the movement of individual 
cells is based on a discrete form of the continuous 
model. However, like both of these models there 
is an element of stochasticity (randomness) in the 

-om a numerical simulation of system (5) within a heterogeneous ECM 
)ur cell density only becomes apparent for the later values o f t ,  where 
Figure 7 (see colour plate 111). 

movetnent rules for the cells. In effect, we will derive 
a biased random walk governing the motion of a 
single tumour cell based on the system of partial 
differential equations (5) of Section 2. In this sense, 
our discrete model is most similar in formulation to 
the reinforced random walk models of Otllmer and 
Stevens (1997), where cell movement is modelled in 
response to a chemical stimulus by considering an 
equation (discrete in space and continuous in t i~ne) 
governing the probability that a cell is at a given 
position at time t .  This equation is a function of 

; 
the transition probabilities for one-step jumps to the i 
orthogonal neighbours. The form of the transition 

I 
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FIGURE 10 Spatio-temporal evolution of the tumour cell density from a numerical simulation of system ( 5 )  within a heterogeneous 
ECM, for later values of t (see text for parameter values). The effect of the heterogeneous ECM via haptotaxis on the tumour cells is 
now apparent, with the cells invading the ECM in a more heterogeneous manner - resulting in the appearance of 'hot spots'. Colour 
graduation as in Figure 7 (see colour plate IV). 

probabilities for the gradient model of Othmer and 
Stevens (1997) is very similar to the probabilities 
of movement that will be derived from our discrete 
model (see also Alt. 1980; Davis, 1990). 

We now set about formulating the discrete 
model and deriving the movement probabilities 
for an individual tumour cell in response to its 
surrounding matrix. The implementation of the 
process of cell proliferation will be described 
later. We first discretize (5) using the Euler finite 
difference approximation (Mitchell and Griffiths, 
1980). This involves approximating the continuous 

two dimensional domain [0, 11 x [0, 11 in the usual 
way as a grid of discrete points (mesh size h), and 
time ( t )  by discrete increments (magnitude k) .  The 
full discretized system is given in the Appendix. For 
clarity we only consider the tumour cell equation, 

where the subscripts specify the location on the grid 
and the superscripts the time steps. 
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That is x = ih, y = jlz and t = qlc where i, j, k ,  q and 
h are positive parameters. 

In a numerical simulation of the continuous model 
( 3 ,  the purpose of the discrete equation (10) is 
to determine the tumour cell density at grid posi- 
tion (i, j), and time q + I ,  by averaging the density 
of the four surrounding neighbours at the previous 
time q. For our discrete model, we will use the 
five coefficients Pa to P4 from (10) to generate the 
motion of an individual tumour cell. These coeffi- 
cients can be thought of as being proportional to 
the probabilities of the tumour cell being station- 
ary (Po) or moving left ( P I ) ,  right (Pz), up (P3) or 
down (P4 j. 

Each of the coefficients PI to P4 consist of two 
components, 

P, = Random movement + Haptotaxis (1 1 ) 

thus showing how the discrete tumour cell equation 
is linked to the continuous tumour cell equation of 
system (5). The coefficient Po has a similar form 
(see Appendix). Equation (1 1) is very similar to the 
transition probabilities of the reinforced random walk 
model of Othmer and Stevens (1997). In particular, 
their gradient models have a random component and a 
"taxis" component. Othmer and Stevens (1997) used 
their discrete transition probabilities to then derive a 
partial differential equation in the continuous limit. 
It is possible to show thir for our model by defining 
transition probabilities of the form (1 1). The original 
equation governing the rate of change of tumour cell 
density (5) can then be recovered by following the 
analysis of Othmer and Stevens (1997) in the same 
rigorous manner. 

The exact forms of Po to P4 are functions of 
the ECM density near an individual tumour cell 
(see Appendix). Therefore, if there were no ECM 
the values of PI to P4 would be equal, with Po 
smaller (or larger, depending on the precise values 
chosen for the space and time steps) i.e. there is 
no bias in any one direction and the tumour cell is 
less (more) likely to be stationary - approximating 
an unbiased random walk. However, if there are 
gradients in the ECM, haptotaxis dominates and the 
coefficients Po to P4 will become biased towards 

the direction of increased ECM density. The motion 
of an individual cell is therefore governed by its 
interactions with the matrix macromolecules in its 
local environment. 

Before proceeding to the simulation section, we 
first of all discuss the manner in which we explicitly 
incorporate cell proliferation into the discrete model. 

Cell Proliferation 

In our model we assume that each individual cell has 
the capacity for proliferation and will produce two 
daughter cells provided the following two conditions 
are satisfied: (i) the parent cell has reached maturity 
and (ii) there is sufficient space surrounding the parent 
cell for the two new daughter cells to move into. 
We defined cell maturity to be 500 discrete time 
steps. While this timescale is arbitrary, with a precise 
estimate of parameter values in the original model, 
this maturity time can be made to correspond with an 
actual cell cycle time for specific cancer cells. In order 
to satisfy condition (ii), we assumed that a daughter 
cell could arise if any one of the parent cell's four 
orthogonal neighbours was empty. If more than one 
of the neighbouring grid points is empty then the new 
cell position is chosen randomly from these points. In 
order to keep the running time of simulations within 
reasonable limits we have restricted the maximum 
number of cells to 3000, with an initial distribution 
of 500 cells. 

Simulation Process for the Discrete Model 

Each time step of the simulation process involves 
solving the discrete form of the system (5) numer- 
ically to generate the five coefficients Po to P4 (see 
Appendix). Probability ranges are then computed by 
summing the coefficients to produce 5 ranges, Ro = 0 
to Po and R, = c:;' Pl to P2, where ,m = 1 to 
4. We then generate a random number between 0 and 
1, and depending on the range which this number 
falls in, the current individual tumour cell under con- 
sideration will remain stationary (&) or move left 
( R I ) ,  right (R2), up (R3) or down (R4). The larger 
a particular range, the greater the probability that 
the corresponding coefficient will be selected. Each 
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tumour cell is therefore restricted to move to one of 
its four orthogonal neighbouring grid points or remain 
stationary at each time step. 

All the simulations of the discrete model were 
carried out on a 200 x 200 grid, which is a discretiza- 
tion of a the unit square, [O, 11 x [0, 11, with a space 
step of h = 0.005 and a time step of k = 0.001. A dis- 
crete form of the no flux boundary condition (6) was 
imposed on the square grid, restricting the tumour 
cells to within the grid. The initial conditions in all 
simulations (unless otherwise stated) are given by dis- 
crete forms of (7) and (9) with an initial number of 
500 tumour cells centred around (0.5.0.5). 

The parameter values used in the following 
simulations are the same as those used in the 
previous two dimensional continuous simulations 
(unless otherwise stated) i.e. d, = 0.001, dm = 0.001, 
y = 0.005, 17 = 10, P = 0 and cu = 0.1. 

5 DISCRETE MODEL SIMULATION 
RESULTS 

As with the continuous two dimensional simulations 
we will initially consider our discrete model with a 
homogeneous initial ECM density profile. Figure 11 
shows four snapshots in time of the tumour cell 

FIGURE 11 Spatio-temporal evolution of tumour cell invasion from a numerical simulation of the discrete model. The figure shows 
the tumour cells migrating from the centre (z = 0.5, y = 0.5) into the ECM (see text for parameter values). We observe that the overall 
distribution of the cells is very similar to the continuous equivalent (Figure 7) and that a few individual cells invade further into the ECM 
than the main body of the cells. 
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FIGURE 12 Spatio-temporal evolution of tumour cell invasion from a numerical simulation of the discrete model. The figure shows the 
tumour cells migrating from the centre (x = 0.5, y = 0.5) into the heterogeneous ECM as given in Figure 8 (see text for parameter values). 
No real structure is apparent but the cell distribution is clearly different from Figure 1 I and again a few individual cells are seen to invade 
further into the ECM. 

invasion process. From the initial cluster (shown as from the continuous results. Also since the discrete 
t = 0.0) the tumour cells at the leading edge are seen model incorporates cell proliferation, whereas the 
to migrate the most. As time evolves the ring-like 
structure observed in the continuous results (Figure 7) 
can be seen (t  = 4.0). However, the most striking fea- 
ture of these results is to notice that a few individual 
tumour cells migrate much further into the ECM 
separated from the main tumour mass. These cells 
have the greatest potential to metastasise further and 
are difficult to detect clinically. It should be empha- 
sised that the movements of the individual cells, 
whilst governed by the continuous model via the 
discretisation, do have a genuine stochastic compo- 
nent and the cell movements can therefore deviate 

continuous model does not, we expect to see some 
differences. However, the total cell number is limited 
to a maximum of 3000 cells and therefore the struc- 
tures seen in Figure 11 are produced mainly by cell 
migration i.e. random motility and haptotaxis, rather 
than cell proliferation. 

We now examine tumour cell invasion in a hetero- 
geneous ECM. Using a discrete form of Figure 8 for 
the initial ECM concentration and the same parame- 
ters as above, we obtained Figures 12 and 13. From 
the initial cluster (at t = 0.0) cells begin to migrate in 
a very similar manner to those observed in Figure 11. 
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FIGURE 13 Spatio-temporal evolution of tumour cell invasion from a numerical simulation of the discrete model. The figure shows 
the tumour cells migrating into the heterogeneous ECM as in Figure 8 but for later values of t (see text for parameter values). We now 
observe that the overall distribution of the cells is very similar to the continuous equivalent (Figure 10) and a few individual cells have 
in fact reached the boundaries of the domain. 

However, by t = 2.0 the ring-like clustering of the 
cells is not seen and this is further emphasised at 
t = 4.0. Again we see individual cells migrating out 
further than the main group. The patterning observed 
in the comparable continuous results (Figure 9) is not 
as obvious, but as time evolves we can see from 
Figure 13 (at t = 7.0) the two regions of increased 
cell density that are equivalent to the two regions 
of higher density seen in Figure 10 at t = 7.0. As t 
increases the cells migrate further into the ECM and 
become more dispersed, although, small clusters can 
still be observed e.g. just below x = 0.6, y = 0.8 for 
t = 12.0-15.0. This again is in agreement with the 

continuous results (Figure 10). By t = 15 quite a few 
of the cells have already reached the boundary of the 
domain, which is something that did not occur in the 
continuous model simulations. This further illustrates 
the importance of the ECM structure in aiding or 
hindering the migration of individual cells that have 
the potential to metastasise. 

6 DISCUSSION AND CONCLUSIONS 

The work we have presented here has developed 
a mathematical model for tumour invasion using a 
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novel blend of continuum, deterministic modelling 
and discrete, stochastic modelling in 1 and 2 space 
dimensions. 

The continuum model consists of a system of 
nonlinear partial differential equations and examines 
how tumour cells respond to ECM gradients via hap- 
totaxis, created both by the tumour cells through 
MDE degradation of the matrix and those already in 
existence within the matrix. The results from the one 
dimensional continuum-model simulations demon- 
strate the impact of interactions between tumour cells 
and the ECM on possible metastasis. In particular if 
tumour cells move via random migration and hap- 
totaxis and the intensity of the random movements 
is dependent upon MDE concentration then a small 
cluster of cells can easily break away from the main 
body of the tumour (Figure 2). Even without this 
MDE dependence, it is clear that the tumour cells 
can split into two groups: those driven by random 
migration and those driven by haptotaxis (Figure 1). 
However, this result of the model is mainly due to the 
fact that the only gradients in the ECM are a result of 
MDE degradation and hence the cells at the leading 
edge of the tumour are mostly affected by hapto- 
taxis. When ECM heterogeneity is introduced, in the 
two dimensional simulations, this grouping of cells 
into those driven mainly by random migratioll and 
those driven mainly by haptotaxis is no longer obvi- 
ous because of the gradients already existing within 
the ECM. The heterogeneous ECM (Figure 8) is more 
likely to be characteristic of real ECM within the 
body and the resulting tumour cell density distribu- 
tions are more realistic (Figures 9-10) i.e. a hetero- 
geneous tumour cell density with a few 'hotspots'. 
Indeed, in Figure 14, we present a figure of an actual 
mammogram of a breast cancer. The contrast arises 
from the deposition of calcium (microcalcification), 
which is a common finding in this disease. The cen- 
tral tumour mass can clearly be seen, but also some 
contrast-bright specks around it, which may repre,sent 
clusters of tumour cells which have already broken 
away from the central mass. 

The discrete model that we developed was derived 
from a discretized form of the partial differential 
equations of the continuum model, and permits the 

tracking of individual tumour cells and also enables 
us to explicitly incorporate rules for cell proliferation. 
With reference to the larger scale, the results from 
the discrete model confirm the predictions of the 
continuum model that haptotaxis is important for both 
invasion and metastasis. On a finer scale, the discrete 
results show that cell proliferation can aid in invasion 
as a result of space filling. Also, the ECM structure 
(via haptotaxis) may aid individual cells in breaking 
from the main body of the tumour and thus escaping 
to become possible metastases (Figures 12-13). The 
discrete results were also able to show that many cells 
invade further into the ECM than is predicted from 
the continuous results - which again has important 
implications for metastasis. 

To some extent the discrete model is still under 
development and it has the potential to include more 
processes than just cell proliferation, For example 
specific cell-cell interactions could be modelled, such 
as contact inhibition or cell-cell adhesion. Genetic 
information about each cell can be stored and passed 
from generation to generation incorporating the pos- 
sibility of genetic mutations. These may then alter 
the cell proliferation rate, migration rate, adhesion 
properties, or apoptotic rate. If exact parameter val- 
ues were obtained for the discrete model then it would 
be possible to obtain the physical cell numbers that 
are falling within a given radius of the main tumour 
mass and could therefore be used as a prelctive 
toal for estimating how far a surgeon should cut to 
ensure all of the tumour is removed. To emphasise 
this point and to show that our model reproduces 
clinically observed invasion patterns, we present the 
results of the histological section of a breast cancer, 
stained with haematoxylin and eosin, in Figure 15. 
The tumour tissue is to the top and right, with the 
normal tissue to the bottom and left. Clearly visible 
is the small group (or "nest") of tumour cells, well in 
advance of the invasive front. 

The technique of using partial differential equations 
as the basis for discrete models is clearly very useful, 
with the ability to generate movements of individual 
cells based on a continuum model of a population 
of cells. Indeed, this technique provides a powerful 
means of linking micro-scale events to macro-scale 
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FlGURE 14 Mammogram of a breast cancer. The contrast arises from the deposition of calcium (microcalcification), which is a common 
finding in this disease. Note the central tumour mass, but also some contrast-bright specks around it, which may represent clusters of 
tumour cells. 

events, individual behaviour to population behaviour, 
with potential application to a wide range of problems 
in mathematical biology. 

From a clinical point of view, these models have 
enormous potential. Even at this stage, the behaviour 
of the simulated tumours closely parallels histolog- 
ical observations, especially when a heterogeneous 
ECM is introduced (cf. Figures 9, 10 with Figure 14; 
cf. Figures 12, 13 with Figure 15). It is therefore 

conceivable that measurement in tumours of some 
of the parameters used in these models will provide 
precise information on the invasive behaviour of indi- 
vidual neoplasms. For example, it should then be 
possible to estimate the likely extent of local infil- 
tration by a tumour and thereby tailor the radicality 
of surgical excision for that individual situation. It 
may also be possible to assess more accurately than 
at present the likelihood of metastatic disease, which 
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Appendix 

FIGURE 15 Histological section of a breast cancer, stained with 
haematoxylin and eosin. Tumour tissue is to the top and right, 
normal tissue to the bottom and left. Note the nest of tumour cells, 
well in advance of the invasive front (see colour plate V). 

will have important implications for adjuvant sys- 
temic therapy. 

World Wide Web 

Results from further numerical simulations of the 
model (including MPEG animations) can be found 
at the URL 

http : //www.mcs.dundee.ac.uk : 8080/ - sanderso/invasion/ 

To discretize the continuous system (5) we use Euler 
finite difference approximations (Mitchell and Grif- 
fiths, 1980), which leads to the system, 

with x = ih, y = jh and t = pk. 
The coefficient Po, which is proportional to the 

probability of no movement, has the form, 

and the coefficients PI, P2, P3 and P4, which are 
proportional to the probabilities of moving left, right, 
up and down respectively, have the forms, 

kD Icy 
P4 = - + -[f;j+l - &11. 

h2 4h2 

When there iq no ECM concentration in the same 
region as a tumour cell, PI to P4 are equal since the 
values of f are 0. Alro when there is an equal amount 
of ECM on either side of a tumour cell (i.e. no gra- 
dient), the values f t J P l  and f,,J+l cancel each other 
out as do f t P l  , and f,+,, and thus PI to P4 are equal. 
Therefore, in both these circumstances unbiased ran- 
dom movements will be produced. However, if there 
is more ECM on one side of the tumour cell than 
the other, the probabilities (PI to PA) will no longer 
be equal and hence directed movement, towards the 
higher concentration of ECM, will result. 
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