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Patients with Insulin-Dependent Diabetes are continuously involved in a clinical opti- 
mization process: to maintain strict glycemic control without increasing their risk for 
hypoglycemia. This study offers quantitative tools for on-line assessment of the quality of 
this optimization, based on self-monitoring of blood glucose (SMBG). Ninety-six adults 
with Insulin Dependent Diabetes Mellitus (IDDM), age 35 + 8 yrs., duration of diabetes 
16 + 10 yrs., HbAl, 8.6 i 1.8%, 43 of whom had a recent history of severe hypoglycemia 
(SH), while 53 did not, used Lifescan One Touch I1 meters for 135 i 53 SMBG readings 
over a month. For the following six months the subjects recorded occurrence of SH. The 
two patient groups, with and without a history of SH, did not differ in age, duration of 
diabetes, HbA,,, insulin unitslday. average BG or BG variability. We suggest a com- 
putational procedure based on a symnletrization of the BG measurement scale and on 
a superimposed BG risk function, that allows for computation of two glycemic control 
markers: the Low BG Index (LBGI) and the High BG Index (HBGI). The LBGI is asso- 
ciated with SH: the LBGl and the rate of change of the BG risk, classified correctly 77% 
of the subjects with vs. without a history of SH and accounted for 46% of the variance 
of future SH. The HBGI, in combination with age, duration of diabetes and daily insulin 
dose, accounted for 57% of the variance of patients' glycosylated hemoglobin. We con- 
clude that the LBGI and the HBGI are accurate on-line SMBG measures for patients' 
glycemic control. 
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In health the blood glucose (BG) level is daily control of IDDM involves multiple insulin 
internally regulated through insulin release from the injections, which lower BG. However, this external 
pancreas that counterbalances carbohydrate intake BG control is still not nearly as good as the 
from food. drinks, etc. Since patients with Insulin internal self-regulation: too little insulin results 
Dependent Diabetes Mellitus (IDDM) are unable in chronic high BG levelc, too much can cause 
to produce sufficient amounts of insulin, this hypoglycemia. Recent studies demonstrated that 
internal self-regulation is disrupted. The standard the most effective long-term control of IDDM 
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is the strict maintenance of BG levels within a 
normal range through intensive insulin therapy. 
DeCailed results of its effects are presented by 
the Diabetes Control and Complications Trial 
Research Group (DCCT) (1993) and its European 
counterpart (Reichard and Phil, 1994): chronic high 
BG levels were proven to cause many complications 
in multiple body systems over time, while too 
much insulin resulted in hypoglycemia. Without 
immediate treatment hypoglycemia can rapidly 
progress to severe hypoglycemia (SH), a condition 
defined as an episode of neuroglycopenia which 
precludes self-treatment and requires external help 
for resuscitation (DCCT Research Group, 1997). 
On one side, intensive therapy is the best long- 
term treatment of IDDM, on the other it was 
associated with at least a threefold increase in SH 
(Reichard and Phil, 1994; DCCT Research Group, 
1997). Since SH could result in accidents, coma 
and even death, it discourages patients and health 
care providers from pursuing intensive therapy. 
Consequently, hypoglycemia has been identified as 
the major barrier to improved glycemic control 
(Cryer, 1993; Cryer, Fisher and Shamoon, 1994). In 
short, patients with IDDM face a life-long clinical 
optimization problem: to maintain strict glycemic 
control without increasing risk for hypoglycemia. 
A bio-mathematical problem, associated with this 
optimization is to create a measure, based on 
multiple BG readings that quantifies both trends: 
towards chronically high BG levels and towards 
increased risk for hypoglycemia. 

Traditionally, patients' glycemic control is 
assessed through measurement of glycosylated 
hemoglobin (HbA1 or HbA1,), an accepted 
biochemical marker for average BG levels over 
the preceding two months (Svendsen et al., 1982; 
Santiago, 1993). High glycosylated hemoglobin is 
associated with chronically high BG levels and 
therefore, this measure sets the reference standard 
for control of BG with respect to hyperglycemia. 
However, HbA1, was repeatedly proven to be 
ineffective for assessment of patients' risk for 
hypoglycemia (DCCT Research Group, 199 1 ; Gold 
ef al., 1997; Cox et al. 1994). In fact, the DCCT 

concluded that only about 7% of future SH 
episodes can be predicted from known variables, 
including HbA,, (DCCT Research Group, 1997), 
and this prediction was improved to 18% using 
a recent structural equations model (Gold et al., 
1997). The reason for that poor prediction is quite 
understandable - HbAI, reflects the average BG 
level over a few weeks preceding the measurement, 
but is not sensitive to the relatively quick and sharp 
BG transitions in the lower BG range that are 
respt-msible for SH. In a previous publication we 
reported that a new risk measure, the Low BG Index, 
based on a normalizing transformation of BG data 
(Kovatchev et al., 1997), can predict 40% of future 
SH episodes (Kovatchev et al., 1998). 

In this manuscript we offer a numerical approach 
to the clinical optimization problem related to 
IDDM, based on the following idea: The struggle 
for tight glycemic control often results in great BG 
fluctuations over time. This process is influenced 
by many external factors, including the timing and 
amount of insulin injected, food eaten, physical 
activity, etc. In other words, fluctuations of the BG 
level over time are the measurable result of the 
action of a complex dynamic system, influenced 
by many internal and external factors. Observed 
at a macro-level, such a system has a random 
behavior, which includes quick transitions (such as 
SH episodes) to extreme areas of its state space. 
An appropriate evaluation of stationary and non- 
stationary cl~aracteristics of this random process 
would identify measures for both chronically high 
and very low BG levels, as well as a measure for the 
overall glycemic control of the patient. In order to be 
clinically useful, these markers need to be computed 
on readily available data through relatively simple 
algorithms. In order to be clinically proven, these 
markers need to correlate with established glycemic 
control measures, such as HbAIc, and be sensitive 
to the risk for upcoming SH. 

We will first derive from a set of clinical assump- 
tions a skewness-correction transformation for BG 
data. Then, on that basis, we will suggest a BG risk 
function and two related statistics: the Low and High 
BG Indice~.~To incorporate the temporal behavior of 
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the system we introduce two statistics, related to the 
rate of change of the BG risk: the indices SDn and 
S u p ,  which are measures of how fast the BG risk 
function increases and decreases, respectively. All 
indices will be computed from memory meter data, 
automatically stored during routine home BG self- 
monitoring. We will refer to previous reports and 
reanalyze existing data to validate our data transfor- 
mation, evaluate the relationship between the Low 
BG Index, SUp and SDn and hypoglycemia and 
between the High BG Index and patients' glyco- 
sylated hemoglobin. We will conclude that the Low 
and High BG Indices offer numerically compara- 
ble assessments of the risk for hypoglycemia and 
hyperglycemia, respectively, that can be combined 
in a single measure of overall glycemic control. 

RESEARCH DESIGN AND METHODS 

Subjects 

Ninety-six individuals, 58 women and 38 men, who 
had IDDM for at least two years and were taking 
insulin since the time of diagnosis were recruited 
through advertisement in newsletters, diabetic clin- 
ics, and through direct referrals. All subjects were 
routinely using self-monitoring devices to measure 
their BG. Their average age at the time of recruit- 
ment was 35 years (SD = 8), the average duration 
of diabetes was 16 years (SD = 10) and the average 
daily insulin dose was 0.58 units per kilogram (SD = 
0.19). Since the goal of this research was to study 
risk factors for SH, subjects who had problems with 
recurrent SH were preferentially recruited. History 
of SH was recorded as the number of SH episodes 
in the previous year. The preferential recruitment 
resulted in 43 participants who reported having at 
least two SH episodes in the previous year, and 
53 who reported none. These two groups will be 
referred to as SH and No SH in the text. The SH 
group included 45% of all subjects, which is greater 
than the estimated 4% to 22% frequency of IDDM 
patients who have problems with SH (DCCT, 1997). 
Consequently, the incidence of SH in this study 

was high compared to reports from population-based 
studies. 

Procedure 

After an initial screening assessment, the subjects' 
usual BG meters were replaced by Lifescan One- 
Touch I1 memory meters that can store up to 250 
BG readings. The study proceeded with one month 
of home self-monitoring of BG (SMBG) that yielded 
on average 135 BG readings per subject (SD = 53). 
At one-month meetings the participants' BG data 
were downloaded for analysis and blood was drawn 
for HbA,, determination. The average glycosylated 
hemoglobin was 8.6, SD = 1.8%. During the follow- 
ing six months all participants recorded in diaries 
occurrence of moderate or severe hypoglycemia. 
These diaries were mailed in monthly and resulted, 
on average, in 2.3 records of SH episodes per subject 
(SD = 4.8). SH occurred predominantly in subjects 
from the SH group who reported 4.8 (SD = 7.0) SH 
episodes on average. 

Symmetrization of the BG Measurement Scale 

The BG levels are measured in mgldl in the USA 
and in mmol/L (or mM) most elsewhere. Through- 
out this paper we employ the mM scale. The two 
scales are directly related by: 18 mgldl = 1 mM. 
The whole range of most BG reference meters is I .  1 
to 33.3 mM, which is considered to cover practically 
all observed values. According to the recommen- 
dations of the DCCT (1993), the target BG range 
for a person with IDDM is considered to be 3.9 to 
10 mM. Hypoglycemia is identified as a BG below 
3.9 mM, hyperglycemia is a BG above 10 mM. It 
is obvious that this scale is not symmetric - the 
hyperglyceniic range (10 to 33.3 mM) is much 
greater that the hypoglycemic range ( 1  . I  -3.9 mM) 
and the euglycemic range (3.9-10 mM) is not cen- 
tered within the scale. As a result the numerical 
center of the scale (17.2 mM) is distant from its 
"clinical center" - the clinically desired clustering 
of the BG values of patients with diabetes around 
6-6.5 mM. In a previous report we suggested that 
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this asymmetry of the scale leads to skewed distribu- 
tions of patients' BG readings, and suggested a scale 
transformation that corrects the problem (Kovatchev 
~t al., 1997). The mathematics of thls transforma- 
tion is based on two clinical assumptions: A l )  The 
transformed whole BG range should be symmetric 
around zero. A2) The transformed target BG range 
should be symmetric around zero. In other words, let 
.f(BG) be a continuous function defined on the BG 
range [ 1.1, 33.31 that has the general two-parameter 
analytical form 

f (BG , a .  f i )  = [(ln(BG))" - $1. a, 0 > 0 

that satisfies the conditions Al:  f (33.3, a,  P )  = 

-f(I. l .o,p) and A2: f ( lO ,a ,P )= - j (3 .9 . c~ ,@) .  
The logarithmic form o f f  (BG, a ,  8) is intuitively 
justified by the fact that the BG level is a 
concentration of sugar in the blood, and therefore 
would have a generally logarithmic presentation. 
In the discussion we will also see that this form 
can be deduced from the classic Box-Cox skewness 
correction transformation (Box and Cox, 1964), 
if we impose the assumptions A1 and A2. By 
multiplying by a third parameter y we fix the 
minimal and maximal values of the transformed 
BG range at -m and v% respectively. These 
values are convenient for two reasons: first, a 
random variable with a central normal distribution 
would have 99.8% of its value\ within the interval 
[-m, m], and second, this provldes a nice 

calibration of the BG risk function from 0 to 
100 (see the next section). This scaling and the 
assumptions A1 and A2 lead to the equations 

which are easily reduced to a single nonlinear 
equation for the parameter a .  When solved 
numerically under the restriction a > 0, it gives: 
a= 1.026, P =  1.861 and y = 1.794T. 

Figure 1 presents the graph of f(BG) = 1.794 
[ ( l n ( ~ G ) ) '  026 - 1.86 11. The whole BG range is trans- 
formed into the symmetric interval [-Jl?j, m]. 
The target BG range is transformed into the 
symmetric interval [-0.9,0.9]. Since f (6.25) = 0, 
the transformation brings together (and sets to 
zero) the numerical and the clinical center of the 
BG scale. 

The BG Risk Function 

After fixing the parameters of f (BG) depending 
on the measurement scale that is being used, we 
define the quadratic function r(BG) = ~ O $ ( B G ) ~ .  

t If BG is measured in mgldl, by replacing in the equations 
33.3 mM by 600 mgldl, 1.1 mM by 20 mgldl. 10 mM by 
180 mgtdl, and 3.9 mM by 70 mgldl, we obtain cu = 1.084, 
,j = 5.381, +j = 1.509. 
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FIGURE 1 Transforming the blood glucose: the whole BG range and the target BG range are transformed into symmetric around 
zero intervals. The hypoglycemic and hyperglycemic ranges become symmetric. The numerical and the clin~cal center of the scale 
coincide after the transformation and are equal to zero. 
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Figure 2A presents the graph of r(BG) over 
the transformed hypoglycemic, target and hyper- 
glycemic BG ranges. Figure 2B presents r(BG) in 
the original BG scale. 

The function r (BG)  ranges from 0 to 100. Its 
minimum value is achieved at BG = 6.25 mM, a 
safe euglycemic BG reading, while its maximum 
is reached at the extreme ends of the BG scale. 
Thus, r (BG)  can be interpreted as a measure of 
the risk associated with a certain BG level. The 
left branch of this parabola identifies the risk of 
hypoglycemia, while the right branch identifies the 
risk of hyperglycemia. Based on that, we define the 
Low and the High BG Indices as follows: 

Let x ~ ,  ~ 2 : .  . . ,x,, be n BG readings of a subject 
and let 

rl(BG) = r (BG)  i f f  ( B G )  < 0 and 0 otherwise: 

rh(BG) = r (BG)  iff ( B C )  > 0 and 0 otherwise. 

The Low Blood Glucose [Risk] Index (LBGI) 
and the High BG [Risk] Index (HBGI) are then 
defined as: 

LBGI = I 1-1 (i,) and 
I 1  

1 = I  

1 
HBGI = - viz(x,) respectively 

n 
i= l 

40 Clinical and 

" 
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 

Transformed BG Scale f(5G) 

FIGURE 2a The blood glucose r ~ s k  funct~on as defined on the transformed BG scale. The values of r (BG)  at the left part of the 
5cale ithe Hypoglycemic range) are refened to a\ Low BG Rlsk, while the values at the nght part of the scale (the Hyperglycemic 
range) are referred to as ~ i g h  BG Risk. 

BG Level (mM) 
FIGURE 2b The blood glucose risk function plotted over the standard BG scale. 



6 B. P. KOVATCHEV et al. 

In other word\, the LBGl i\ a non-negative 
quantity that increa\es when the number and/or 
extend of low BG readings increa\es. Similarly, the 
HBGI increases when the number andtor extend of 
high BG readings increases. The sum of LBGI + 
HBGI has a theoretical upper limit of 100. 

RESULTS 

BG Scale Transformation 

The scale transformation f (BG) was applied to all 
96 memory meter data sets. A Kolmogorov-Smirnov 
test was used to fit a normal distribution to each 
individual sample. With a significance level of 0.01, 
only five out of 96 hypotheses that a normal distri- 
bution fits the transformed data were rejected. By 
the same criteria, the transformed data had a closer 
to normal distribution than the original BG readings 
in 70 out of 96 cases. This confirms our previous 
report in which f(BG) normalized 203 out of 205 
individual BG data sets (Kovatchev e ta / . ,  1997). 

Low BG Index 

The LBGI was previously used to differentiate sub- 
jects with and without a history of SH and to 
predict future SH episodes. We demonstrated that 
the LBGI is one of the best predictors of future 
SH accounting (in combination with history of SH) 
for 40% of the variance of future SH episodes 
(Kovatchev et al., 1998). Now, with these data, we 
computed the LBGI for each subject and estimated 
the speed of BG risk changes in the lower BG 
range (BG < 6.25 mM) as follows: We first trans- 
formed the memory meter data of each subject using 
the function f(BG). Then cubic splines were used 
to interpolate the transformed readings and to pro- 
duce estimates of J"(BG) at one-hour increments. 
Based on this interpolation we estitnated SDn as 
the average change of rl (BG) within one hour when 
BG goes down, and S u p  as the average change of 
rl(BG) within one hour when BG goes up (Thus, 
SDIZ is positive, while S u p  is negative, since in the 

lower BG range the risk function increases as BG 
goes down). For more details on the calculation of 
SDil and SUp and some related comments see the 
Appendix. 

Retrospectively, age, duration of diabetes, HbA],, 
insulin unitstday, average BG and BG variability 
(defined as the standard deviation of the BG read- 
ings) did not differentiate SH from NOSH subjects. 
A t-test demonstrated that subjects with a history of 
SH had significantly higher LBG1, 5.2 (SD = 3.3) 
vs. 2.0 (SD = 1.8), t = 4.2, p < 0.00 1. The rate of 
BG risk changes SDn and SUp were also greater (by 
absolute value) for the SH group, 2.5 (SD = 1) vs. 
1.9 (SD = 0.9) and -2.5(SD = 1.1) vs. -- 1.8(SD = 
0.8), both p's < 0.01, indicating sharper risk tran- 
sitions in the low BG range. A significant discrim- 
inant model (Chi-square = 22.5, p < 0.0001) using 
the three variables LBGI, SDn and S u p  classified 
correctly 77% of the subjects with vs. without a 
history of SH. 

Prospectively, a significant regression model (F = 
17.5. P < 0.0001) using LBGI, SDn, SUP and his- 
tory of SH had an R* = 46%, e.g. accounted for 
46% of the variance of future SH. This represents 
a 6% increase over our previous report (Kovatchev 
et dl., 1998) based on LBGI and history of SH. Both 
SDn and Sup had a significant contribution to this 
classification/prediction that is linearly independent 
from LBGI and SH history. No other variables (e.g. 
HbA,,, age, diabetes duration, HBGI, etc.) had any 
additional contribution. 

High BG Index 

As it was to be expected, the HBGI was significantly 
correlated with patients' glycosylated hemoglobin, 
r = 0.7, p < 0.001. A significant regression model 
(F = 29, p < 0.0001) using HBGI, age, duration of 
diabetes and patients' daily insulin dose accounted 
for 57% of the variance of HbA],. HBGI was the 
most significant variable of this regresuion, t = 10.0, 
p < 0.0001. The relationship between the HBGI and 
HbA,, was approximately linear, approximated with 
a piecewise line with two cutpoints, HBGI = 4.5 and 
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1 = H ~ A I  BG J High BG Index 

FIGURE 3 Relationships between average BG, HbA,, and High BG Index 

HBGI = 9 that ma1 .ked changes in the slope of the 
relationship (Figure 3). 

Based on these cutpoints we identify three 
high BG risk zones: HBGI < 4.5, HBGI between 
4.5 and 9 and HBGI above 9. This is similar 
to the procedure we previously reported for the 
LBGI - the risk for SH was classified within three 
zones LBGI < 2.5, LBGI between 2.5 and 5 and 
LBGI above 5 (Kovatchev rt al., 1998). These 
classifications allow for an assessment of the overall 
glycemic control of a patient with IDDM, based on 
memory meter data. 

Table I is constructed as follows: Vertically we 
present the three SH risk groups based on the LBGI, 
horizontally we present the high BG risk groups, 
based on HBGI. In each cell of the table we present 
four numbers: the average (per subject) number of 
retrospectively/prospectively reported SH episodes, 
average HbA1, and the number of subjects. 

TABLE I Glycemic Control Evaluation Based on LBGI and 
HBGI 

HBGI 

<4.5 4.5-9.0 >9.0 

<2.5 
SH: 0/0 SH: 1.2/0.1 SH: 1.410.7 
8.3%/n = 7 8.9%/n = 9 9.9%/n = 20 

LBGI 2.5 - 5.0 
SH: 1.310 SH: 4.912.2 SH: 4.413.6 
7.3%/11 = 6 X.6c/r/n = 20 9.5%/n = 12 

>5.0 
SH: 4.714.3 SH: 15.315.7 SH: 15.0112.0 
7.0%/n = 17 8.0%/11 = 3 7.6%/r1 = 2 

It is intuitively clear that the patients in cell (1,l) 
should have the best glycemic control. Indeed, these 
seven subjects reported 0 SH episodes (retrospec- 
tively and prospectively) and had HbA,, = 8.3%. 
As expected, the glycosylated hemoglobin increases 
horizontally from left to right and the number of 
SH episodes increases vertically from top to bottom. 
3 x 3 ANOVA demonstrated that all three variables 
significantly differed between the cells of Table I: 
History of SH, F = 6.7, p < 0.001; Prospective SH 
episodes, F = 4.0, p = 0.005; HbA,,, F = 9.6, p < 
0.001. However, LBGI was not a significant effect 
for the glycosylated hemoglobin and HBGI was not 
a significant effect for the number of prospective SH 
episodes. 

DISCUSSION 

This investigation offers quantitative tools for 
studying the clinical optimization problem for 
improvement in glycernic control without increasing 
the risk of SH. In general, there are two mathemat- 
ical approaches to that problem. The first approach 
would be to build a deterministic model of insulin- 
glucose dynamics in subjects with IDDM and eval- 
uate individual parameterr of the dynamic5 with the 
goal to assess subjects' ability to process glucose, 
counterregulate and avoid SH, etc. Computer free- 
ware for interactive simulation of insulin and BG 
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profiles, such as AIDA, has been developed on the 
basis of a simple insulin-glucose model (Lehmann, 
1999). We reported previously a deterministic model 
of insulin-glucose-counter-regulation dynamics dur- 
ing controlled hyperinsulinemic clamp (Kovatchev 
er al., 1999) that demonstrated that NOSH subjects 
have more aggressive counterregulatory response, 
thus greater self-protection against SH. 

The second approach would be to observe sub- 
jects' metabolic system on a "macro-level," without 
a reference to specific underlying factors, by sim- 
ply recording multiple BG readings and trying to 
establish patterns through stochastic modeling. The 
assumption behind this second approach is that SH 
and high glycohemoglobin are two extremes of BG 
irregularity, associated with IDDM and driven by 
behavioral and biological factors. Some of these 
factors contribute to future SH, while others are pre- 
cursors to high glycosylated hemoglobin. The prob- 
lem then is to develop statistical methods capable of 
extracting from SMBG information relevant to SH 
and glycosylated hemoglobin. Our first step in that 
direction was to derive and validate a symmetriza- 
tion of the BG measurement scale, since it was our 
opinion that the asymmetry of the scale prevents 
the standard statistical procedures from adequate 
assessment of fluctuations in the low BG range. 
The reason for that is simply numerical-compared 
to hyperglycemia, the range of hypoglycemia is 
scveral times smaller and therefore most averag- 
ing procedures would be intrinsically biased. To 
correct that we suggested a logarithmic transfor- 
mation based on widely accepted clinical assump- 
tions. The general logarithmic form of f  (BG) can 
be derived from the classic Box-Cox power trans- 
formation (x" - ] ) / a ,  u > 0, widely used for cor- 
rection of skewed data (Box and Cox, 1964) as 
follows: Let g(.x:a, b) = (xu -- I) /u - 6, where for 
right-skewed data (like BG levels) the parameter 
a < 1. By fitting the parameters of g(x; a, 6) to sat- 
isfy the assumptions A1 and A2, we find that the 
parameter n should be very close to zero. On the 
other hand, lirn,, ,o(x-" - I)/a = ln(xj, which sug- 
gests that a skewness correction satisfying A1 and 
A2 should be of a logarithmic type. This being 

said, we will emphasize one more time that the 
transformation f ( B G )  unlike the Box-Cox skewness 
correction, does not depend on a particular data set. 
Instead, its parameters are evaluated on the basis of 
accepted clinical assumptions. This makes it appli- 
cable to a variety of data sets without a parameter 
re-estimation. The transformation f (BG) makes the 
BG measurement scale symmetric around zero. An 
immediate statistical implication is that the distribu- 
tion of most BG data sets that we examined becomes 
closer to normal. Thus, the assumptions of the para- 
metric statistical tests will be better satisfied with 
transformed, rather than the original BG data. Clin- 
ically, the transforn~ed data indicate the quality of 
a subjects' glycemic control: a mean less than zero 
shows a tendency towards hypoglycemia during the 
measurements, while a mean above zero is associ- 
ated with hyperglycemia. A large standard devia- 
tion implies poor glycemic control, a small standard 
deviation shows a tight range for the BG levels. This 
intuitive idea serves as a basis for the definition of 
the LBGI and HBGI - two risk statistics related to 
the individual glycemic control in the low and high 
BG range. 

The LBGI repeatedly proved to be the most 
powerful predictor of SH. By using the rates of 
risk change SDn and SUp we include a temporal 
component in our considerations. This new model 
improves the prediction of future SH episodes, 
accounting for 46% of the variance of future 
SH episodes - 6% up from our previous report 
(Kovatchev et d., 1998. Cox e t a / . ,  1994). As we 
mentioned in the introduction, this result is sub- 
stantially better than the prediction of SH by other 
models. Although we collected data about all symp- 
tomatic low BG episodes experienced by the sub- 
jects, we concentrated our predictive analyses on 
SH for two reasons: 1) SH is a clinically signifi- 
cant complication of IDDM that is identified by a 
clear objective criteria, while milder hypoglycemia 
is symptom perception-dependent, and 2) SH is tra- 
ditionally difficult to predict. 

The HBGI is associated with patients' glyco- 
sylated hemoglobin. However, this association is 
no stronger than the association with HbAi, of 
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the average BG, or (2.07 x [ a v e r . ~ ~ e ~ ~ ~ ~ ~ ~ ] )  as 
originally suggested by Svendsen et nl. (1982). With 
our data, both these quantities had correlations of 
0.7 with HbAl,, i.e. displayed relationship similar 
to the linear relationship of HBGI with HbAl,. The 
major advantage of using HBGI instead of simply 
the average BG is that its values are comparable to 
LBGI. In other words, we now have measures for 
both low and high BG risk that are compatible, com- 
parable and additive (the two indices are defined on 
non-intersecting sets of BG readings - below and 
above 6.25). In addition, the HBGI describes very 
well the average BG - their relationship is almost 
strictly linear (see Figure 3), and their correlation 
in these data was 0.98. The latter offers one more 
confirmation of the fact that in calculations using 
the standard BG scale, such as taking the mean 
BG, the hypoglycemic readings simply vanish due 
to the asymmetry of the scale. It also offers one 
more explanation of the poor prediction of SH from 
average BG and HbA1,. 

Clinically, LBGI and HBGI offer an assessment 
of patients' glycemic control that covers both the 
risk for hypoglycemia and the risk for hyper- 
glycemia. This assessment uses readily avail- 
able self-monitoring data and a simple computa- 
tional procedure that can be incorporated in self- 
monitoring devices, or in their downloading soft- 
ware. However, further research is needed to estab- 
lish clinically accurate target limits and lowhigh 
risk zones for the LBGI and HBGI. Since LBGI and 
HBGI quantify observed BG fluctuations, their val- 
ues depend on a variety of biologic and behavioral 
factors such as awareness of hypoglycemia, treat- 
ment decisions and strategies, individual choices, 
etc. Consequently the control of LBGI and HBGI 
within target limits is possible through a variety of 
means, including adjustments of regiment, aware- 
ness training, etc. 

APPENDIX: COMPUTATION OF BG RISK 
RATE OF CHANGE 

Let xl,x2,. . . .xn be rz BG readings of a sub- 
ject's meter at time points t l ,  t2,. . . , t,,. We 

transform this data by calculating the num- 
bers f (xl), f (x2 ), . . . , f (x,) and draw a cubic 
spline S(t) passing through the points ( t t ,  f(xl)), 
(t2, f (x2, )), . . . , (t,, , f (x,,)). Thus, the function S (t) is 
a continuous function defined on the whole interval 
[ t l , t , ]  and such that S(t,) = f(x,), for j = 1 , .  . . , n .  
We calculate the numbers 

sk = IO.S(k + t ~ ) *  if S(k) < 0 and 0 otherwise; 

thus getting interpolated values of rl(BG) at one- 
hour increments. 

Next, consider all couples of numbers Sk with 
consecutive indices: CO = (so, SI ), CI = (sl , s2), C2 = 
($2, s3), . . . and denote by MUp the set of all couples 
Ck, such that sk > s k + l  and by Md,, the set of all 
couples Ck, such that sk < ~ k + ~  Finally, let SDn be 
the average of the numbers .yk+l - sk, provided that 
Ck E Md,,, and SU17 be the average of the numbers 
sk+ 1 - sk, provided that Ck E MUp.  

In fact, the numbers SDn and Sup  provide a 
measure for the rate of change of r(BG(t)) as BG 
fluctuates in the lower BG range. More precisely, 
SDn is a certain measure estimating the rate of 
increase of vl(BG(t)) while BG goes down and 
Sup  is a measure estimating the rate of decrease 
of rl(BG(t)) while BG goes up. 

Acknowledgment 

This study is supported by the National Institutes 
of Health grant R 0 1  DK51562 and by a grant from 
Lifescan Corp., Milpitas, CA. 

References 

Box. G. E. P. and Cox. D. R. (1964). An Analysis of Trans- 
formations (with discussion), Journal o f  t /~e  Ro,yal Strrtistir.al 
SocieQ. Series B (n~etl7odologicnl), 26, 2 1 1-252. 

Cox, D. J., Kovatchev, B. P., Julian, D. M., Gonder-Frederick, 
L. A,. Polonsky, W. H., Schlundt, D. G. and Clarke, W. L. 
(1994). Frequency of severe hypoglycemia in IDDM can be 
predicted from self-monitoring blood glucose data. Journcil of 
Clinical Endocrinology and Metabolism. 79, 1659- 1662. 

Cryer. P. E. (1993). Hypoglycemia begets hypoglycemia. Dia- 
betes, 42, 1691 - 1693. 



10 B. P. KOVATCHEV et a1 

Cryer, P. E., Fisher. J. N. and Shamoon, H. (1994). Hypo- 
glycemia. Diabete.~ Care, 17, 734-755. 

DCCT Research Group. (1991). Epidemiology of aevere hypo- 
glycemia in the diabetes control and complications trial. Amer- 
ican Jourr~ul of Medicine, 90, 450-459. 

DCCT Research Group. (1993). The effect of intensive treatment 
of diabetes on the development and progression of long-term 
complications of insulin-dependent diabetes mellitus. New 
Engla~ld Journal of Medicine, 329, 978-986. 

DCCT Research Group. (1997). Hypoglycemia in the Diabetes 
Control and Complications Trial. Diabetes, 46, 27 1-286. 

Gold, A. E., Frier, B. M., MacLeod, K. M. and Deary, I. J .  
(1997). A structural equation model for predictors of severe 
hypoglycemia in patients with insulin-dependent diabetes 
mellitus. Diabetic Medicine, 14, 309-3 15. 

Kovatchev, B. P.,Cox, D. J.,Gonder-Frederick, L. A. and Clarke, 
W. L. (1997). Symmetrization of the blood glucose measure- 
ment scale and its applications. Diuberes Care, 20, 1655- 1658. 

Kovatchev, B. P., Cox, D. J., Gonder-Frederick, L. A,, Young- 
Hyman. D., Schlundt, D. and Clarke, W. L. (1998). Assess- 
ment of Risk for Severe Hypoglycemia Among Adults with 

IDDM: Validation of the Low Blood Glucose Index. Diabetes 
Care, 21. 1870- 1875. 

Kovatchev, B. P., Farhy, L. S., Cox, D. J., Straume, M., 
Yankov, V. I., Gonder-Frederick, L. A. and Clarke, W. L. 
(1999). Modeling Insulin-Glucose Dynamics During Insulin 
Induced Hypoglycemia. Evaluation of Glucose Counterregu- 
lation. J of Tlzeowtical Medicine. 1, 3 13-323. 

Lehmann, E. D. (1999). Experience with the Internet Release 
of AIDA v4.0 - http:l/www.diabetic.urg.uWaida.htm - An 
Interactive Educational Diabetes Simulator. Diabetes Technol- 
ogy & Therapeutics, 1, 41 -54. 

Reichard, P. and Phil, M. (1994). Mortality and treatment side 
effects during long-term intensified conventional insulin treat- 
ment in the Stockholm Diabetes Intervention study. Diabetes, 
43, 313-317. 

Santiago. J. V. (1993). Lessons from the Diabetes Control and 
Complications Tr~al. Diabetes. 42, 1549- 1554. 

Svendsen, P. A,, Lauritzen, T., Soegaard, U. and Nerup. J. 
(1982). Glycosylated hemoglobin and steady-state mean blood 
glucose concentration in Type I (Insulin-Dependent) diabetes. 
Diubetologia, 23, 403-405. 


