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We extend well-known mathematical models of viral infection to examine the response of 
cytotoxic T lymphocytes (CTL) to both conserved and variable viral epitopes. Because most 
viruses are subject to error-prone reproduction, CTL recognition may be faced with highly 
variable epitopes, while other CTL epitopes may remain conserved across viral strains. In this 
paper we examine the steady state conditions for a simple model of viral-immune system 
dynamics in which the viral strain can be limited by either a specific immune response, a 
cross-reactive immune response, or host cell availability. We find that the most important fac- 
tors determining the type of immune response elicited and viral diversity are the relative pro- 
liferation rates of the two types of immune response. If the immune response to variable 
epitopes is strong compared with the response to conserved epitopes, diversity will be nega- 
tively correlated with the total burden of infected cells. In this situation high diversity may be 
indicative of a strong immune response and slower disease progression. In contrast, for 
patients whose immune response is directed predominantly towards conserved viral epitopes, 
our model predicts that diversity and viral load will be posirively correlated. 
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1 INTRODUCTION 

Cytotoxic T lymphocytes (CTLs) constitute an impor- 
tant immune defense to viral infection. These lym- 
phocytes recognize and respond to small sections of 
viral proteins called epitopes. Because most viruses 
are subject to highly error-prone reproduction, CTL 
recognition can be confronted with viral mutations 
(Eigen and Schuster 1977). Within some epitopes, 
mutations may allow the virus to escape immune rec- 

ognition ("variable" epitopes); conversely. epitopes 
may exist in conserved regions of the viral genome 
where mutations are not possible, or may not lead to 
immune escape ("conserved" epitopes). Clearly the 
interactions between the immune system and these 
conserved or variable epitopes will differ, and may 
impact disease progression. 

We hope to shed light on possible interactions 
between viral mutations and the immune system by 
translating the key features of this complex system into 
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a mathematical framework; this process makes our 
assumptions about the underlying dynamics explicit 
(Kirschner 1996; Blower and Ganem 1998). In particu- 
lar, we classify CTL responses into two categories: the 
CTL response to conserved epitopes ("cross-reactive" 
CTL response); and the CTL response to variable 
epitopes ("specific" CTL response). In this way we are 
able to investigate how small changes in the environ- 
ment or the appearance of a new mutant might affect 
both the type of immune response elicited and the 
number of mutants present (diversity). 

Our analysis builds on earlier work investigating 
the effects of immune responses against multiple 
epitopes (Nowak et al. 1995a; Nowak et al. 1995b); 
similar models have been studied recently in Ribeiro 
and Bonhoeffer 1999; Regoes et al. 1998, and Ribeiro 
et al. 1998. In this paper we extend earlier work by 
explicitly examining the inherent competition 
between cross-reactive and specific CTL responses 
(Antia and Koella 1994), that is, we consider the situ- 
ation when some epitopes are variable and others are 
conserved across all viral strains. This work forms the 
underpinning for a more complete understanding of 
the immunological changes which may occur in 
response to the appearance of new mutations during 
viral infections (Wahl et al. 2000; Borrow et al. 1997). 

2 THE MODEL 

A number of possible models for virus-immune sys- 
tem dynamics have been suggested in the literature 
(for review see Marchuk 1997; DeBoer and Perelson 
1998); to capture the key effects of conserved and 
variable viral epitopes, however, we propose the fol- 
lowing: the number of healthy cells is given by x, and 
these are produced (activated) at a constant rate h and 
die at rate dx. The number of cells which are infected 
is given by x C Plvl where y,  stands for the number of 
cells which are infected with virus type i, while p, is 
the infectivity parameter. Without loss of generality 
the virus types shall be numbered so that pz > . . . 
> p,, (the higher the infectivity parameter the smaller 
the index). Virus types may differ at one or more 
epitopes, but we assume that at least one epitope is 

conserved across all viral types. Note that we do not 
explicitly include circulating virus in the model, 
assuming that the circulating virus and infected cells 
are at effective equilibrium at the time scale of interest. 

Infected cells die at rate ayi (here we allow a to be 
smaller than, equal to or larger than 6). Cytotoxic T 
lymphocytes zi which are specific for mutants of type i 
kill infected cells at rate pyg,,  while the cross-reactive 
immune response (w) is responsible for the death of 
qwyi infected cells. A clear limitation of this model, for 
antigenically heterogeneous viral populations, is that 
we do not include the effects of CTL which may recog- 
nize some, but not all, of the existing viral strains. We 
have instead made the simplifying asumption that any 
epitope that is conserved between some viral strains is 
conserved between all viral strains. 

Although the lymphatic system produces highly 
diverse CTL, the abundance of a specific response 
type might not be large. When the virus is detected by 
a suitable CTL, i.e., the epitope fits the immune cell's 
paratope (the corresponding surface proteins of the 
immune cell), this immune response will proliferate. 
In our model the proliferation rate is ciy iq,  implying 
that the specific immune response will be elicited 
more quickly if more infected cells exist. The natural 
death rates of the immune cells - whether they are 
specific or cross-reactive - are byi and bw respec- 
tively. The response to the conserved epitope is 
evoked at rate w C kigi since all mutants carry this sur- 
face structure. 

Further we assume that there is a maximum 
number of different mutant strains, n. This number 
can be large. Given certain conditions (parameter val- 
ues, immunological influences) only some of the pos- 
sible virus mutants will exist at equilibrium. 

Thus it is necessary to differentiate between the 
number of surviving mutants, m, and the maximum 
possible number of mutants, n. 

This yields the following system of differential 
equations: 

! j i  = ~ ~ ( 1 3 ~ ~  - a - p i  - qw) i = 1 . . . , n (2) 
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3 THE CASE OF TWO VIRUS STRAINS 

To gain some insight into the dynamics of this system, 
we first consider the simple case of two viral strains, 
and determine the steady states of this system and the 
conditions under which they exist and are stable. 
Once again we note that these viral sub-types may 
differ at one or more epitopes, but have in common a 
conserved epitope which is theoretically capable of 
eliciting an immune response. In this case the system 
of differential equations can be re-written: 

, , 

We find seven possible equilibrium states for this 
system, as described in Table I. These states cone- 
spond to the uninfected state (Ex), three states in 
which only a single virus type exists, kept in check by 
(i) target cell availability ( E , )  (ii) a specific 
immune response (E!'));  or (iii) a cross-reactive 
immune response (EL,!)), and three states in which 
both virus types are present and there is (i) a specific 
immune response against only one type ( E ! ~ ) ) .  (ii) a 
specific immune response against both types ( E ! ~ ) ) ;  
or (iii) a cross-reactive immune response and a spe- 
cific immune response against one type (E:)). 

TABLE I ~quilibriurn loads and conditions for existence and stability of steady states d the rgstern with two virus types Note that the basic 
? A  aproductive ratio. R, = i The notation E : ~ ~ ~ )  is used for consistency with the yeneml model. and is discussed in greater detail in 

Section 4. ad 
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From Table I it is clear that the existence of the var- 
ious equilibrium states depends on two factors: the 
relative proliferation rates (ci and ki) of the specific 
and cross-reactive immune responses; and the basic 
reproductive ratios (Ri) of the two virus types. The 
basic reproductive ratio gives the average number of 
cells newly infected by one infected cell during its 
lifetime. We note first that if RI  is sufficiently small, 
no immune response is necessary to keep the system 
in equilibrium, and state Ex or ,@,l) results. 

Neither of the virus subtypes can survive in the body 
as long as R1 and R2, are both smaller than one, where 

3 X R, = %, Since we aswme that the transmission 
(1 tl 

rates are ordered so that 0, > P2, this implies silnply 

that R,  is srnaller than 1. When this condition is met, 

the uninfected state, Ex, is the only stable equilibrium. 

When R ,  is large enough that an immune response 

is evoked, several possible equilibrium states exist. If 
the cross-reactive immune response is elicited more 
readily by y l  than the specific immune response 

(: > 1) ; we find that u d ~  one equilibrium state 

(Ell)) is possible, and it is clear that a second virus 

type with a lower infectivity can never invade. If, on 

1; 
the other hand, - < 1, the equilibrium state will 

C'1 

depend on R2: if R2 issmall, state El1) will be stable 

(the second virus type is not present at equilibrium); if 

Rz is slightly larger, state will result (thc second 

virus type is present but regulated by host cell availa- 

bility); if R2 is larger yet, state El') or ,$:) will be 
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stable (either the specific or cross-reactive immune 
response will be evoked). 

In conclusion we note that no stable equilibrium exists 
in which both virus types are present and only the 
cross-reactive immune response is elicited, neither is 
there an equilibrium state in which the cross-reactive and 
specific immune responses to both types are present. 

4 THE GENERAL CASE OF N VIRAL STRAINS 

For the more general system, we likewise determine 
the steady states and the conditions under which they 
exist and are saturated (i.e. no other mutants would 
survive), and then discuss the effects of environmen- 
tal (immunological) changes. 

In theory there exist six different categories of possi- 
ble equilibria, but two can be excluded, because they 
either contradict our assumption that all pi are different 
or are subject to a condition which is very unlikely. 

As for the n = 2 case, we find that the uninfected 
state exists only under the condition that the basic 
reproductive ratio of all virus types is less than one. 

In general within our model infection cannot be 
controlled by target cell availability alone. Only one 
strain of the virus can be controlled by target cell 
availability; this is a special case of the situations dis- 
cussed below. An equilibrium with rn different types 
of virus and no immune response at all would mean 
PI = pZ =. . .= Dm, which we exclude. Hence, if more 
than one viral sub-type is present, the immune 
response must be active in some way. In fact, we dis- 
cover three possible constellations. 

TABLE 11 Steady srates, description and conditions 

El,"' ' s f 0. 
y , # O V z = l  . . . . .  in. 

? , # U V i = l  . . . . .  7 1 2 - 1  

p, = p2= ... = pm 
3 contradicts 0 1 >. . . > p,, 

3 unlikely 

Note that m is the largest number i which meets the conditions given above 
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First, rn virus mutants and m-1 types of specific 
immune response are present and establish a steady 
state. We call this kind of equilibrium E:,"). While 
the m- 1 most infectious virus subtypes are controlled 
by the specific immune responses, the least infectious 
subtype is held in check by the limited availability of 
healthy cells. (Note that rn-1 might equal zero.) 

Second, m virus mutants and the same number of 
specific immune responses exist in equilibrium. This 
fixed point is referred to as Eirn). If more different 
mutants are present at equilibrium, we see that the 
specific immune response must proliferate more 
quickly (ci large) or else the cross-reactive immune 
response will be evoked. In other words, the more 
mutants, the higher the probability that a cross-reac- 
tive response spreads. 

Thirdly, a cross-reactive immune response is 
present with m different types of infected cells and 
m-1 types of specific immune response. We use 
ELrn) to denote these equilibrium states. In this case 

the cross-reactive response plus diminished target cell 
availability is enough to keep y,  under control. 
(Again, m- 1 might equal zero.) 

The steady state in which all the specific immune 
responses and the cross-reactive response are present 
is excluded because this is only possible under very 
specific (and therefore unlikely) conditions. 

All these equilibria are shown in Table I1 with the 
conditions which must be fulfilled to make their exist- 
ence possible. 

5 IMMUNE RESPONSE PARAMETERS AND 
THEIR EFFECTS 

Note that neither p nor q appears in the conditions in 
Table 11. This means that the size of the immune 
response parameters, i.e. the rate of killing by the spe- 
cific and cross-reactive T cells, has no effect on the 
qualitative behavior of the system. The more effi- 
ciently the specific immune response works large), 
however, the fewer immune cells will be employed 
( 2, small). The same is true for the cross-reactive 
immune response ("q large" corresponds to ''?i, 
small" and vice versa). So, immune reaction parame- 
ters have only a scaling effect on the equilibrium 
loads, as can be seen in Table 111. 

TABLE 111 Equilibrium loads 
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El,!" 

To isolate the effect of immunogenicity, we assume 
that the immunogenicity factors do not differ greatly 
for all viral mutants, and therefore we can simplify 
the mathematical analysis by setting ci = c and ki = k 
for all i. If the specific and cross-reactive immune 
responses are elicited more or less equally, both 
response types will be present at equilibrium. The 
dynamics will approach E?) with m small, i.e., the 
abundance of virus types will be small. If the specific 
immune response reacts more quickly to the infection 
than the cross-reactive response, then the variety of 
mutants will increase. With increasing immunogenic- 
ity c, the cross-reactive response decreases and may 
disappear entirely. In contrast, if the cross-reactive 
immune response reacts more quickly than the spe- 
cific response, the variety of mutants will decrease, 
and the specific immune response may disappear. 

These effects are illustrated in Figures 1 and 2, 
where the parameters ci and ki are varied, respec- 
tively. In Figure 1, the ci are assumed to be equal for 
all viral strains and vary from c = 0 to c = 3. In the top 
panel diversity (the number of surviving viral strains) 
is plotted against c; the second panel shows the equi- 
librium load of uninfected cells (dashed line) and the 
total burden of infected cells (solid line); the third 
panel gives the equilibrium loads for the total specific 
immune response (dashed line) and the cross-reactive 
immune response (solid line). In each panel vertical 
dotted lines show the transitions when an additional 
viral strain survives at equilibrium. 

For small c we observe a single virus type with a 
cross-reactive immune response and no specific 
response (~2)). For slightly larger c, a second 

mutant can survive and a specific response to the first 
mutant emerges. This is followed by states E!:) and 
then I3L3) as c increases further (the cross-reactive 
response disappears and a specific response to the 
least infectious strain appears). For even larger values 
of c. another virus type can survive, but a specific 
immune response to this type does not appear without 
a further increase in c. 

Examining in particular the equilibrium load of 
uninfected cells (dashed line). we see that the number 
of healthy cells increases with higher immunogenic- 
ity, and therefore with higher diversity. Likewise, we 
see that increases in specific immunogenicity corre- 
late with decreases in the equilibrium load of infected 
cells, ij (solid line). 

We also note that the equilibrium loads for both 
types of immune response are discontinuous, exhibit- 
ing 'all or nothing' behavior. This indicates that the 
survival of a new type of specific immune response at 
equilibrium results in a significant difference to the 
total frequency of specific immune cells. As the fre- 
quency of the specific immune response increases, the 
cross-reactive response falls to lower levels. At 
c = 1.2 the immunogenicity of the cross-reactive 
response is so small relative to that of the specific 
response that the cross-reactive response disappears 
altogether. 

Figure 2 shows similar results, but in this case c has 
been held constant while the cross-reactive immuno- 
genicity, k, is varied between 0.02 and 1. Once again, 
as the efficiency of the immune response increases, 
the equilibrium load of uninfected cells increases and 
the total burden of infected cells decreases. In this 
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FIGURE 1 Effects of increasing specific immunogenicity. In each panel the x-axis represents the proliferation of specific CTLs in response 
to infection, parameter c in the model. Thus towards the right the specific immune response proliferates more effectively than the cross-reac- 
tive immune response: the immune response to conserved epitopes is weaker. The first panel illustrates the number of viral strains surviving 
at equilibrium, which increases with specific immunogenicity. The vertical dotted lines show transitions where an additional viral strain sur- 
vives; these lines are repeated in the second and third panels. The second panel shows the equilibrium load of uninfected cells (dashed line) 
and the total burden of infected cells (solid line). The third panel shows corresponding changes to the equilibrium load of the specific (dashed 
line) and cross-reactive (solid line) immune response. For c E (0; 0.4) one mutant plus the cross-reactive response can be observed. At 0.4 
and 0.8 another virus type can survive, together with the corresponding specific immune response to the more infectious type. With even 
stronger specific immunogenicity (c 2 1.2j the cross-reactive response disappears while a specific response even to the least infectious strain 
emerges. For c e (1.72; 2.16) a fourth mutant is able to survive and is regulated by target cell availability alone. When (c Z 2.16), the specific 
response to this mutant also survives. We note two counter-intuitive results: the number of healthy cells increases with the number of surviv- 
ing mutants; and likewise the total burden of infected cells decreases with increasing diversity. As explained in the text, we have chosen 
ci = c for all mutants, to isolate the effect of varying immunogenicity for the specific immune response. Note that the corresponding immuno- 
genicity parameters ki are likewise assumed to be the same for all mutants, hence ki = k = 0.4. Other parameter values are: r~ = 0.1, h = 0.4, 
p ,=0.0S, f i2=0.075, f i i=0.06,P4=0.055,~5=0.05,d=0.5 ,k ,=k=0.4 ,k  = l , p = 0 . 3 , q = 0 . 2  
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FIGURE 2 Effects of increasing cross-reactive immunogenicity. In each panel the x-axis represents the proliferation of cross-reactive CTLs 
in response to infection, parameter k in the model. Thus towards the right the cross-reactive immune response proliferates more effectively 
than the specific immune response; the immune response to conserved epitopes is stronger. The first panel illustrates the number of. viral 
strains surviving at equilibrium, which decreases with cross-reactive immunogenicity. The vertical dotted lines show transitions where an 
additional viral strain disappears; thece lines are repeated in the second and third panels. The second panel shows the equilibrium load of 
uninfected cells (dashed line) and the total burden of infected cells (solid line). The third panel shows corresponding changes to the equilih- 
rium load of the specific (dashed line) and cross-reactive (solid line) immune responses. We note that in this case the number of healthy cells 
increases with decreasing diversity, and likewise the total hurden of infected cells decreases with decreasing diversity. As explained in the 
text, we have chosen ki = k for all mutants, where k varies between 0.02 and I ;  likewise ci = c = 0.4. Other parameter values are: u = 0.1. 
b = 0.4, 6,=0.1, 6, = 0.995, P3= 0.990, P4 = 0.985. fi5 = 0.980. d = 0.5, k, = k =  0.4, h= l , p  = 0.3, q = 0.2 

0.1 - - - - - -/ - 
I L 

:r..I----$ I specific immune response, - Czi 
0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

cross-reactive immune proliferation, k 



46 B. BITTNER and L. M. WAHL 

case, however, diversity decrenses as the cross-reac- 
tive immune response becomes more effective. This 
interesting constrast between Figures 1 and 2 will be 
taken up again in the discussion. 

6 CHANGES DUE TO A NEW MUTANT 

The analysis above sets the stage for a detailed inves- 
tigation of changes in the irnmune response which 
may be elicited by the emergence of a novel mutation 
in this system. With the emergence of a new viral 
strain, it seems clear that a shift in the steady state 
might occur, diversity might change and virus load 
(mirrored by the number of infected cells at equilib- 
rium) may be adjusted. Most importantly, we expect 
that shifts in the type of immune response elicited 
may be possible. Although a thorough analysis of this 
behavior is beyond the scope of this paper (see Wahl 
et al. 2000), we offer an example of one such change 
to illustrate the interesting effects this model allows 
us to investigate. 

As an example, let us consider an immunological 
system at an equilibrium with both specific and 
cross-reactive immune responses, and with m differ- 
ent virus mutants, i.e., at steady state E!,?). Now a 
new virus type (k) emerges (observed in the appear- 
ance of infected cells yk). Since there will be hardly 
any specific immune response to the new mutant, it 
will be able to invade the body iff ;%? - (1 > qti', 
which is equivalent to Pk - P,, > 0. From this condi- 
tion it seems clear that only virus strains which infect 
cells more efficiently than the least infectious strain m 
can invade in this case. We expect that the vast major- 
ity of mutants will not be more infectious than the 
wild-type virus, nonetheless some mutants may be 
more infectious than one of the viral sub-types 
present at equilibrium. It is also likely that certain 
mutations could confer an infective advantage if the 
virus is facing strong selective pressures, such as dur- 
ing drug therapy. 

In the simplest case only one strain of the virus ( y j )  
is present, and the abundance of this strain is regu- 
lated by an immune response directed against it. Sup- 
pose a second type of infected cell (yk) invades the 

equilibrium, and that the new viral strain does not 
escape from the i m m ~ ~ n e  response directed at yj, i.e, 
the relevant epitope is conserved. It seems likely in 
this case that an immune response specific to one of 
the viral strains must also emerge, i.e, an immune 
response directed against the epitope that differs 
between the two viral strains will proliferate. If this 
were not the case, the new equilibrium would be spec- 
ified by .? # 0: 7;' # 0, 6.1 # 0 and y k  # 0 
which is only possible under the condition that 
Pj = P k ,  contradicting our previous assumption that P 
, >.. . > pn 

The question is, which specific immune response 
will emerge, zjor zk? Assume 1 -  # 0 and 2, = 0. 
Then 41;) will equal ,3jf - a and 

In contrast, if we assume i k  = 0 2 j  f 0, then 
2 j  would be negative. Thus we conclude in this sim- 
ple case that the new equilibrium will include a spe- 
cific immune response to the invading viral strain. 

A diagram illustrating this type of transition is 
shown in the top panel of Figure 3. 

Initially (on the left) the system is in equilibrium 

EL:); three viral strains are controlled by the 
cross-reactive immune response and specific immune 
responsea against all but the least infectious strain. 
When a mutant appears which is more infectious, 
however, the system moves to equilibrium E L " ) .  A 
specific immune response to the invading mutant 
appears. In this example, however, the appearance of 
the new mutant also causes the cross-reactive immune 
response and the least infectious viral strain to disap- 
pear. The lower two panels show a sin~ulation of this 
transition. At the beginning of the simulation the sys- 
tem is seeded with viral strains y2, y3 and y4, as well 
as small amounts of both the specific and cross-reac- 
tive immune responses. We see that the cross-reactive 
response proliferates, as well as specific responses to 
y2 and y3. At (arbitrary) time 1000 a small amount of 
a new mutant, y l  (dotted line), is injected. Shortly 
afterwards y4 (dashed line) disappears. The immune 
response to this transition is shown in the lowest 
panel: after an interlude when the cross-reactive 
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FIGURE 3 Fixpoint transition from E,,. to E,. In the top row we illustrate a population of virus which consists of three viral strains, y2, yg and y4. 
Each is controlled by the cross-reactive immune response w ;  specific immune responses z2 and z3 also control y2 and y3 respectively. The system 

is in equilibrium state E!;?'. After a new mutant arises (y,), the system moves to equilibrium state ,EL3'. Here the new mutant causes the 

emergence of its own specific immune response, z,, as well as the di.~appenrarzce of the cross-reactive i~n~nune  response; the viral strain y4 also 
disappears. The second panel shows a simulation of this transition; the population is seeded with viral strains y2.  y3 and y4 initially, as well as all 

specific and cross-reactive immune responses. The system quickly reaches equilibrium E E J .  At an arbitrary time (1000), a small amount of 

viral strain yl is injected (dotted line), as well as (again) small amounts of every possible immune response. Only the three most infective viral 
strains survive the transition; y4 (dashed line) is rapidly out-competed. The third panel illustrates that the cross-reactive immune response (w, 
dashed line) disappears, while the specific immune response zl (dotted line) emerges. Parameter values are: h= 1: d = 0.5: u = 0.1; p = 0.3; 
q = 0.2; b = 0.4; PI = .08; P2 = ,076; P3 = .075; 13, = .06; e l ,  c3, and c4 = 0.9; c2 = 1; kl and k3 = 0.4; kZ = .1; k4 = 0.5 
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immune response M' dominates (dashed line), w also is 
eliminated from the equilibrium and a specific 
response to the new mutant (zl,  dotted line) appears. 
Thus the emergence of a new mutant causes, in this 
example, the disappearance of a different, less infec- 
tive viral strain, and the appearance of a specific 
immune response directed against the new-comer. 
Most importantly perhaps, the new mutant causes the 
cross-reactive immune response (which affects and is 
elicited by every other viral species in the system), to 
disappear. (For a discussion of the oscillatory dynam- 
ics of this system, refer to Nowak et al. 1995b). 

7 DISCUSSION 

In this paper we compare the immune responses to 
conserved and variable epitopcs in viral infection. We 
examine the dynamics of this system by determining 
all possible steady states (equilibria) of the model and 
the conditions under which they exist and are stable. 
Our model predicts the existence of four different 
types of steady state: first, there is no infection; sec- 
ond, infection is controlled by immune responses to 
variable epitopes and the least infectious mutant is 
contained by limited target cell availability; third, all 
mutants are held in check by specific CTL responses 
to variable epitopes; fourth, responses to both con- 
served and variable epitopes control infection. In the 
latter three equilibria, the diversity of CTL is limited 
by viral diversity; this effect is analogous to the prin- 
ciple of competitive exclusion in theoretical ecology, 
and has been described previously for T-cell dynam- 
ics (DeBoer and Perelson 1994; DeBoer and Perelson 
1995). 

We also note that when a cross-reactive immune 
response is present, the immune response to the varia- 
ble epitope does not recognize the least infectious 
viral strain, which is held in check by the cross-reac- 
tive immune response alone. This implies that there is 
no stable equilibriunl in which the immune system 
recognizes a conserved epitope of the virus and each 
variant at a variable epitope. If a mix of cross-reactive 
and specific immune responses are present, there will 

always appear to be one viral strain that "escapes" 
detection by the specific immune response. 

We find that the most important factors in deter- 
mining the type of immune response and the number 
of mutants at steady state are the relative proliferation 
rates of the two types of immune response. These pro- 
liferation rates ( k i  and ci in the model) reflect the 
magnitude of the immune response generated per 
infected cell by conserved and variable epitopes, 
respectively. The ratio of cross-reactive to specific 
proliferation is decisive for the number of surviving 
mutants - the smaller this ratio is, the more mutants 
can survive. In other words, the more effectively 
CTLs respond to viral epitopes which are conserved 
across all viral strains, the fewer mutations will sur- 
vive at the steady state, Conversely, we find that if the 
immune response is directed predominantly against 
variable viral epitopes, the immune system itself 
exerts selective pressure on the virus and thereby 
favors mutation. For further discussion on the correla- 
tion between diversity and infection see Lukashov 
and Goudsmit 1998; Bittner et al. 1997; Nowak and 
Bangham 1996; Nowak et al. 1996; Wolinsky et al. 
1996a, and Wolinsky et al. 1996b. 

Although total viral diversity may increase with 
increasing CTL response to variab!e epitopes, the cor- 
relation between diversity and viral load is not 
straightforward. If the immune response to variable 
epitopes is strong cornparcd with the response to con- 
served epitopes, diversity will be negatively corre- 
lated with the total burden of infected cells. In this 
situation high diversity may be indicative of a strong 
immune response and slower disease progression. 
These results agree with empirical results in Ogg et al. 
1998, where an inverse correlation was found 
between the levels of HIV-specific CTLs and viremia. 
In contrast, for patients whose immune response is 
directed predominantly towards conserved viral 
epitopes, diversity and viral load will be positively 
correlated. Since the immunogenicities of the con- 
served and variable epitopes may differ between 
patients, trends which may be true for some patients 
will not generalize to all infected individuals. These 
phenomena are discussed further in Bittner et al. 
1997, and Nowak and Bangham 1996, and have led to 
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minor differences of opinion in the scientific cotnmu- 
nity, see Nowak et al. 1996, Wolinsky et al. 1996a, 
and Wolinsky et al. 1996b. 

Our model naturally lends itself to further analysis 
of possible transitions between the steady states we 
have determined (Wahl et al. 2000). We illustrate one 
example of such a transition and find a surprising 
range of changes in response to the emergence of a 
single, novel mutation; this rich behaviour compares 
well with the results of Nowak et al. 1995b, for a mul- 
tiple epitope model with no cross-reactive immune 
response. Although the emergence of a specific 
immune response to a new viral strain may be 
expected, we also find that the emergence of a new 
mutant may cause the disappearance of other viral 
wb-species and, in fact, the disappearance of the 
cross-reactive immune response. As experimental 
characterization of the short-term kinetics of viral and 
CTL diversity becomes increasingly feasible (see for 
example Borrow et al. 1997), understanding of 
immune transitions during disease progression will 
likewise become increasingly necessary. 
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