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A new mathematical model for the development of spatially heterogeneous biofilm structures 
is presented. Unlike previous hybrid discrete/continuum models it is a continuum model 
throughout, describing the interaction of nutrient availability and biomass production. Spatial 
biomass spreading is described by a nonlinear density-dependent diffusion mechanism. The 
diffusion operator degenerates for small biomass densities and is singular at the biomass den- 
sity bound. The model can be interpreted as a predator-prey model for biomass and nutrients. 
First numerical simulations show that the model is able to predict experimentally observed 
cluster-and-channel biofilm structures. The results are reliable and in qualitatively good 
agreement with experimental expectations. 

Keywords: biofilms, spatio-temporal mathematical modelling, density-dependent diffusion, numerical 
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1 INTRODUCTION - SPATIAL MODELLING they cannot be treated easily by antibiotic therapies 
OF BIOFILM PROCESSES (Costerton et al, 1999). 

Biofilms play an important role in medicine. They 
cause microbial infections in the body, amongst them 1.1 Definition, Occurrence, and Impact of Biofilms 
infections of airways and lungs, middle ear, oral soft 

Biofilms are accumulations of micro-organisms 
growing on phase interfaces, embedded in a poly- 
meric matrix. In this slime layer, other bacteria can be 
captured and a vivid microbial community develops 
in microcolonies. In biofilms, bacteria live in a pro- 
tected mode of growth and this enhances their ability 
to survive in hostile environments. Consequently, 
when biofilms are involved in bacterial infections, 

tissues, gastrointestinal and urogenital tracts. Prosthe- 
ses and implants (Kayser et al., 1993) like hip 
replacements, pacemakers, catheters, and artificial 
heart valves, as well as dead tissue, are susceptible to 
colonization by biofilms, which can lead to bacterial 
infections. A list of human infections involving bacte- 
rial biofilms is given in Costerton et a1 (1999). In the 
mouth, bacteria bind to proteins covering dental 
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enamel, so leading to the development of dental 
plaque (Kayser e ta / . ,  1993). However, since biofilms 
grow wherever dissolved nutrients are available for 
feeding the micro-organisms, health risks from them 
are not restricted to colonizations in the body. For 
example, biofilms developing in water distribution 
systems or in kitchen sinks can cause problems of 
hygiene. 

Sessile bacteria living within a biofilm colony 
grow under different conditions from those growing 
under planktonic conditions and so they behave dif- 
ferently. This is especially true in the interior of the 
biofilm, where nutrients and oxygen are limited. The 
bacteria there live in a slow-growing or starving 
mode, while they may be well-fed in the outer regions 
of the biofilm. Therefore, bacteria of the same species 
can develop very different metabolic states within one 
biofilm colony. Micro-organism response to local 
concentrations and concentration gradients is quanti- 
tatively very different in the two regimes of plank- 
tonic growth and of biofilms. For example, biofilm 
bacteria can withstand host immune reponses and 
they turn out to be more resistant to antimicrobial 
agents than their nonattached planktonic counterpart. 
Antibiotics may not be able to penetrate through the 
outer layer of bacteria and, therefore, may not reach 
the inner organisms, so that these can survive and 
multiply. This induces difficulties in medical treat- 
ment of biofilms settling in the human body. The cells 
cover a wide range of states and conditions, and, thus, 
allow at least some of them to survive any metabolic 
attack (Costerton et al. 1999). For a more extended 
overview of the role of bacterial biofilms in medicine, 
see Costerton et al. (1999) and the references cited 
therein. 

The understanding of biofilm formation is impor- 
tant for devising medical treatment and for the pre- 
vention of biofilm-borne infections. Because of the 
distinctive behaviour of biofilm communities, they 
must be studied separately from planktonic bacteria. 
Biofilms form in many different environments and 
under very different conditions, therefore, no standard 
biofilm exists and the generality of experimental stud- 
ies always suffers from the environmental conditions 
in the laboratory reactor and particular properties of 

the bacteria involved. We hope that mathematical 
modelling of biofilm processes on a very general and 
basic level will help towards their understanding them 
better. Therefore, we present a new mathematical 
approach for the development of spatially irregular 
biofilm structures. 

1.2 Recent Mathematical Models 
for Heterogeneous Biofilm Structures 

Mathematical models for biofilm processes have been 
formulated since the 1970s and 1980s (e.g. Rittmann 
& McCarty, 1980, Kissel et al., 1984, Wanner & 
Gujer, 1986, and the review of Chaudhry & Beg, 
1998). These first models were ordinary or 
one-dimensional partial differential equations assum- 
ing a biofilm which develops as a flat layer. Direct 
observations and new microscopy technologies, how- 
ever, revealed that in realiter biofilms grow in highly 
irregular spatial structures (e.g. Gjaltema et a/., 1994, 
or the review of Costerton et a/., 1995) and, hence, 
that the assumption of flat layered biofilms was a 
gross simplification. Subsequently, multi-dimensional 
models capable of describing spatial non-uniformities 
have been developed in recent years, in addition to 
one-dimensional biofilm models which still are a use- 
ful tool for the global analysis of complex biological 
interactions when no local resolution is required. 

- 

FIGURE 1 The computational domain R consists of a liquid region 
R l  and solid biofilm region R2 separated by an interface r 
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The multi-dimensional models have made an 
explicit distinction between a bulk liquid region Ql 

without biomass and a solid biofilm region Q2 where 
all biomass is contained, as sketched in Figure 1. 
Thus, pores and channels in the biofilm filled with 
liquid belong to Cll according to this definition. Both 
regions are treated as continua separated by an inter- 
face r. In the solid region, nutrients are consumed in 
biochemical reactions and transported by a diffusion 
mechanism. In the liquid region, the transport of 
nutrients is due to diffusion and convection. An anal- 
ysis of characteristic time scales of biofilm processes 
shows, that consumption of nutrients, and diffusive 
and convective transport are much faster than those 
processes governing the development of the biofilm 
structure. Following Kissel, 1984, it is therefore pos- 
sible to decouple processes and to consider 
pseudo-steady state solutions of the more rapid proc- 
esses. This was used in recent two- and three-dimen- 
sional steady state studies of the influence of spatial 
heterogeneities on nutrient transfer and consumption 
in complicated biofilm geometries by Rittmann et a1 
(1999) (2D, cylindrical coordinates, diffusive trans- 
port), Picioreanu et a1 (2000) (2D, Cartesian coordi- 
nates, convective and diffusive transport), and Eberl 
et al. (in press) (3D, Cartesian coordinates, convec- 
tive and diffusive transport). 

The equations describing hydrodynamics, transport 
and consumption of nutrients, and biomass produc- 
tion are well established. Only little is known about 
modelling the actual mechanisms of biomass spread- 
ing and, hence, of formation of biofilm structures. It is 
influenced by many different biological, chemical, 
and physical factors. From numerous experimental 
studies, it is concluded that the shape in which a bio- 
film develops depends primarily on physical and 
environmental conditions (van Loosdrecht et al., 
1995, 1997): Increased shear or detachment forces 
will lead to a smoother biofilm surface. The nutrient 
availability at the biofilm interface influences the 
local biofilm growth. In the case of a strong nutrient 
concentration gradient (due to fast consumption in Q2 

or low mass transport rates from Cll into R2), local 
variations are enhanced and a rough biofilm develops 
(Picioreanu et al., 1998b). The latter phenomenon 

occurs also in crystal growth and is as such well mod- 
elled. In the case of biofilms, however, new biomass 
is formed within the structure. This feature requires 
extra attention during model formulation. Several 
authors (Wimpenny & Colosanti, 1997, Picioreanu et 
al, 1998a, Hermanowicz, 1999, Noguera et al., 1999) 
suggested a lattice discretization of the computational 
domain and use of spreading mechanisms according 
to a set of probabilistic, discrete, local rules: If the 
biomass density in a lattice cell exceeds or 
approaches a critical maximum value, either a speci- 
fied or a random amount of biomass is transfered to a 
neighbouring grid cell. The selection of the new loca- 
tion is random. If there are no empty neighbours, dif- 
ferent strategies can be applied to find an appropriate 
neighbour. It could be shown, that predictions of these 
probabilistic black boxes are qualitatively in good 
agreement with experimental expectations. However, 
these mathematical models have serious physical 
drawbacks: 

- they are strongly lattice-dependent and, hence, 
they are not invariant to changes of the coordinate 
system 

- it can be shown that local grid refinement will lead 

to different model outputs; in particular, local 
symmetry cannot always be obtained under sym- 
metric environmental conditions. 

- an ordering of grid cells must be specified before 

implementing the biomass spreading procedure, in 
order to avoid conflict when two grid cells try to 
move biomass onto a shared neighbour cell. 

- the biomass, though a continuous variable accord- 

ing to growth kinetics, suffers discrete changes 
during splitting 

- many possibilities exist for formulating local 
spreading rules which are apparently reliable but 
qualitatively different and, hence, they are some- 
what arbitrary and might lead to aesthetically 
driven, rather than to physically motivated, model 
formulation. 

Since all these issues arise from the discreteness of 
the spreading mechanism, it appears worthwhile to 
seek a fully continuum model, as an alternative. 
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2 A NEW CONTINUUM MODEL 
FOR BIOFILM GROWTH 

2.1 Important Model Features 

the model was closed only in the one-dimensional 
case like in Wanner & Gujer (1986) and no model for 
biomass pressure in the general multi-dimensional 
case could be given. 

A few properties are postulated in order that the 
model accords with experimental observation and 2.2 of a Density-Dependent 
with previous modelling results. These are Diffusion-Reaction Model for Biomass Spreading 

i. existence of a "sharp front" of biomass at the 
fluidlsolid transition 

ii. biomass spreading is significant only if a certain 
maximum density is approached 

iii. biomass density can not exceed that maximum 
bound 

iv. biomass production is due to standard reaction 
kinetics 

v, the biomass spreading mechanism should be com- 
patible with hydrodynamics and with nutrient 
transfer/consumption models 

vi. for given biochemical parameters, spatial heteroge- 
neities in a mono-species biofilm structure are due 
only to environmental conditions such as nutrient 
availability and initial or boundary conditions 

From i v )  it is concluded that the biomass bound iii) 
can not arise from the reaction terms, as in many other 
models of mathematical biology, but must be associ- 
ated with the biomass spreading process itself. Fur- 
thermore, it can be hoped that it is an immediate 
consequence of ii). 

Probably the first idea for formulating a continuum 
model with a sharp front behaviour is a convective 
transport mechanism for biomass. This was suggested 

An alternative to a convective spreading mechanism 
is spreading due to a diffusive flux. Since diffusion 
with a constant diffusion coefficient leads to an 
instantaneous biomass spreading, which contradicts 
postulate ii), and is able neither to guarantee existence 
of a bound as required in postulate iii) nor to guaran- 
tee i), a density-dependent diffusion coefficient for 
biomass must be introduced which vanishes in the liq- 
uid region. In order to take the environmental condi- 
tions into account which are responsible for the 
availability of nutrients in the liquid region, the bio- 
film growth model must include an accurate enough 
description of transport processes in Ql, that is hydro- 
dynamics and mass transfer. Thus, the spatio-tempo- 
ral model should relate the variables 

t 2 0 time as an independent variable 

x E R space coordinate as an independent 
variable 

m(t, x) biomass density as a dependent variable 

c(t, x) nutrient concentration as a dependent 
variable 

u(t, x) flow velocity vector in the liquid region 
as a dependent variable 

in a one-dimensional model by Wanner Gujer p(t, x) fluid pressure as a dependent variable 
(1986). In a recent paper, Wood & Whittaker (1999) 

dl,2(m) diffusion coefficients for c and m 
also followed this approach. In their approach, how- as variable model parameters 
ever, an evolution equation for the convective bio- 

flc, m) nutrient consumption rate as a variable 
mass transport velocity must be established. This model ~arameter 
equation is similar to the Euler equations of fluid 

g(c, m) biomass production rate as a variable 
dynamics. It contains a further unknown quantity to model Darameter 
be modeled (in the Euler equations, this is the pres- 
sure term). Indeed, this quantity which may be called 
biomass pressure is responsible for generating the The distinction between liquid region Q1 and bio- 
spreading velocity field, just as the pressure drives film structure R2 is made by biomass density m(t, 
fluid flow. In the paper of Wood & Whittaker (1999), x) = 0 or m(t, x) > 0, respectively. The general den- 
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sity-dependent diffusion model for biofilm growth is 
proposed as 

with boundary conditions for the dependent variables 
u, p, c, and m, appropriate to the particular system 
being considered. 

Here, (1) are the continuity and incompressible 
Navier-Stokes equations describing the fluid flow in 
the liquid region Q1, where the density p and kine- 
matic viscosity v are constants. Equation (2) describes 
the transport and consumption of nutrients. In the liq- 
uid region Q l ,  nutrients are transported by convection 
and diffusion. In the solid biofilm region Q2, the 
transport is diffusive. The diffusion coefficient for 
nutrients is given by the function dl(m) > 0. Nutrients 
are consumed in C12 with reaction rateflc,m) given by 
(4). This is the standard Monod reaction which is used 
throughout the biofilm modelling literature. Equa- 
tions ( 1 )  and (2) are derived from first principles. 
They are well-known and have been studied in the 
context of mass transfer and conversion in biofilms in 
two- and three-dimensional systems by Picioreanu et 
al. (2000) and Eberl et al. (in press). 

Equation (3)  is the newly proposed evolution equa- 
tion for biomass density. Spatial spreading is 
described by the diffusive flux d2(m)Vm, with the 
density-dependent diffusion coefficient d2(m) 2 0. 
The formation of new biomass is due to the produc- 
tion term g(c, m) given by (4), including a wastage 
term -k3k4m Since the regions Ql and Q2 depend on 
m(t, x) and so vary with time, no a priori decoupling 
of the hydrodynamic model (1) from the evolution 
equations (2)  - (4)  is possible. In the nutrient con- 
sumption and biomass production and decay terms 

flc, m), g(c, m), the parameters kl ,  . . ., k4 are non-neg- 
ative and may be regarded as given. We may assume 
that the nutrient diffusion coefficient dl(m) is posi- 
tive, bounded and piecewise differentiable. The bio- 
mass diffusivity function d2(rnj must have a form 
which predicts that solutions to (1) - (4) satisfy postu- 
lates i)  - vi). 

It is known that an exponential ansatz for d2(m) can 
avoid instantaneous diffusion (Murray, 1993). That is, 
the diffusive transport mechanism is locally not active 
as long as m = 0. This leads to degeneracy of the dif- 
ferential equation as m = 0. In order to ensure exist- 
ence of a bound iii), a singularity is introduced when 
m = m-. Thus, a first suggestion for the den- 
sity-dependent diffusion coefficient d2(7?2) is 

This function vanishes for m = 0 and d2(m) = 0 as 
long as m is appreciable smaller than m,,. As m -+ 
m,, it becomes very large and leads to diffusive 
transport. In ( 9 ,  the parameter a is to be chosen so as 
to guarantee iii), while E and b are responsible for i )  
and ii). The postulate iv) is obviously satisfied, since 
g(c, m) is the only biomass source term in the model. 
Postulate v) is satisfied for nutrient transport and con- 
sumption (2)  and it is satisfied also for the hydrody- 
namics (I), if a sharp front i) can be obtained 
separating the bulk liquid region Ql from the solid 
biomass region 02,  as in Figure 1. 

The physical interpretation of (3)  with (5) is that 
the biomass diffusivity vanishes as m becomes small 
but increases as m grows due to biochemical reaction 
(4). Moreover, for m = 0,  (3) tends to the biomass pro- 
duction equation of classical one-dimensional or 
multi-dimensional local-rule biofilm models. How- 
ever, note, that - in contradiction to discrete local rule 
models - no probabilistic elements are included in the 
evolution model. 

2.3 First Qualitative Discussion and Model 
Simplifications 

The complete model ( 1 )  - (5) is mathematically 
rather complicated and in its generality not easily 
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accessible for analytical and qualitative interpretation. 
However, some trivial solutions can be found easily. 
One such solution has m = 0 (no biomass in the sys- 
tem) together with any concentration field c satisfying 
the linear, transient, homogenous convection-diffu- 
sion equation and any flow field u satisfying the 
Navier -Stokes equations. On the other hand, if there 
are no nutrients available, the biomass will decay and 
finally the system converges to the stable steady state 
c = 0, m = 0 for nutrients and biomass together with 
an appropriate solution of the Navier-Stokes equation. 
This can be generalized: if there are nutrients in the 
system initially, but no further nutrients are added, c 
will tend to 0 due to consumption and the system will 
again converge to this steady state. Though these 
solutions describe important physical special cases, 
they are not very helpful for the description of spatial 
heterogeneities in biofilm formation. Therefore, for 
further analysis additional simplifications must be 
induced into the model. 

A major difficulty of the model results from the 
Navier-Stokes equation (1). Since we are mainly 
interested in the behaviour of the biomass evolution 
equation (3) with ( 5 ) ,  we will restrict ourselves to the 
hydrostatic case in this first study, i.e. we assume that 
u = 0. In the presence of a flow field, nutrient concen- 
tration boundary layers around the biofilm structure 
will be thinner and, hence, the nutrient gradients at 
the fluid/solid transition will be steeper leading to 
enhanced mass transfer and conversion rates (see 
Eberl et ul, in press). 

Many experimental studies have been carried out to 
determine the nutrient diffusion coefficient d l (m) .  
Depending on the size of molecules, it may differ in 
the bulk liquid R1 and in the biofilm R2 while 
remaining of the same order of magnitude (Bryers & 
Drummond, 1998). For small molecules it is almost 
the same in both regions. Again, since we are focus- 
ing on the biomass spreading model (3) with (5) ,  the 
actual form of the piecewise smooth, positive func- 
tion d l @ )  is not critical and has only minor rele- 
vance. Therefore, for simplicity we assume d l (m)  = 
d l  to be constant. Introducing dimensionless depend- 
ent variables M: = m/m,,, and C: = c/co, the simpli- 
fied model reads 

( 7 )  

with 

This system of diffusion-reaction equations for bio- 
mass and nutrients resembles a spatio-temporal pred- 
ator-prey model for biomass and nutrients. 

3 NUMERICAL ILLUSTRATIONS OF MODEL 
BEHAVIOUR 

Since equations (6) - (8) are still difficult to treat ana- 
lytically, even though we have neglected the flow 
field, numerical experiments are carried out to vali- 
date the model behaviour. The goal is to show that 
postulates i )  - vi) are satisfied and that the biofilm 
structure generated by the model is sensitive to cru- 
cial parameters in a manner similar to that observed in 
a biofilm reactor. Picioreanu et ul. (1998b) grouped 
these parameters into a dimensionless number 

In this definition, 1 is a constant characteristic 
length and p, is the specific growth rate. Since we are 

interested only in qualitative variations of rather 
than its quantitative value, the particular definition of 
1 is not of relevance here. In our model formulation, 
p, is included in kl through 

kl = -m,.., (2 + n7,9) where Yxs is the sub- 

strate growth yield factor and m, is the maintenance 
coefficient. These biochemical parameters define 
model parameters k3 = YXS/mmM and k4 = mp,,.. 
k2 = Ks is the Monod saturation constant. 
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TABLE I Model parameters used in one-dimensional (ID) and three-dimensional (3D) numerical studies. The symbol - represents a value 
equal to the one in the previous column 

The numerator in (9) contains the biological factors 
whereas the denominator contains the local nutrient 
availability. For large values of , the regime is 
transport limited, for low values it is growth limited. 
In the first case the biomass forms a less regular and 
rough structure, in the latter it becomes more compact 
and grows faster (Picioreanu et al., 1998b). In our 
study, variation of G arises only from changes of 
m,,, dl, and co. The numerical values of physical 
and biological model parameters are given in Table I 
together with the parameters of (5). They are taken 
from Picioreanu (1999) and have been modified 
where appropriate in order to obtain varying G num- 
bers. 

The numerical simulation was performed applying 
finite difference methods. The spatial derivatives 
have been discretized on a regular grid for both, C and 
M, using a standard centred scheme on the compact 
stencil. It is well-known that finite difference methods 
with explicit time-integration suffer from a strict sta- 
bility restriction for the maximum admissible 
time-step At < d . const, where the constant is the 
smaller the faster the diffusion process is. This makes 
explicit methods inefficient for fast diffusion proc- 
esses. On the other hand, explicit time-stepping on a 
compact stencil assures that information travels only 
as far as one grid cell per time-step. This is an inter- 
esting property for the spreading of biomass, i.e. the 

integration of (7). Since M = 0 holds in Rl, in an 
explicit method the only grid cells which need to be 
considered are those in R2 and those of Q1 for which 
the compact stencil accesses points of R2. This is an 
important advantage, in particular in the initial stages, 
when R2 is much smaller than Rl. Therefore, a 
hybrid time-integration strategy has been applied. The 
slower biomass spreading process is solved explicitly, 
whereas the faster nutrient transport process is discre- 
tized implicitly. This requires the solution of a 
semi-linear algebraic system during every time-step 
for which we used a Newton-BiCGSTAB method. 
The explicit time-step size was adaptively controlled 
using as estimate for the nonlinear equation the stabil- 
ity criterion for a linear diffusion equation. 

We first describe some one-dimensional experiments. 
Of course, these give no information about the forma- 
tion of locally heterogeneous structures, but they are 
computationally cheap and allow a first validation of 
some important features of the model. In particular, 
we can check postulates i), ii), iii). Furthermore, even 
in one-dimensional examples, we can test the model 
behaviour with regard to simple spatial heterogenei- 
ties in the nutrient field and the influence of lunetic 
model parameters. 
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After the simplifications discussed above, the gen- 
eral one-dimensional model equation for R = [0, L] 
reads 

b-a ( ' M'. Different with = mmal i ~ ; i ~  

experimental arrangements are expressed by varying 
the initial and boundary conditions for this system of 
partial differential equations. The length of the system 

was chosen to be L = 10-~rn, divided using 64 equally 

spaced grid points (Ax = 1.6 . 10-~m). 

(A) growth on a solid surface 

A first example is chosen similar to classical 
one-dimensional biofilm models. A bacterial inocu- 
lum of thickness 2Ax is attached to the solid wall at x= 
0 and at the other end x = L the nutrient concentration 
is fixed. Then, initial and boundary conditions are 

c z ( t ,  a) z o, c ( t ,  L )  -- I v t  0; 

C ( 0 , x )  = 1 'dx E [O,L] ( 1 1 ~ )  

Mo for z <  AX 
M("> = { o for z > 2 ~ 1  (lib) 

A typical result is shown in Figure 2. Here and in 
all subsequent model studies we observe the forma- 
tion of a sharp front separating the liquid from the 
solid regions (i.e. postulate i) together with the wait- 
ing time behaviour ii)) and the existence of a biomass 
density bounds iii). Since characteristic time-scales 
for nutrient transport and consumption are much 
smaller than the characteristic time-scales for biomass 
formation (Kissel et al., 1984) and since the biomass 
density itself is not uniform at t = 0, the initially uni- 
form nutrient concentration is disturbed immediately 
and a non-uniform nutrient concentration field devel- 
ops. In the biofilm at x = 0, C tends rapidly to 0. 

(B) one-dimensional growth with asymmetric 
boundary conditions 

The next case is to demonstrate how environmental 
conditions and biological parameters - i.e. the number 

FIGURE 2 Growth of a bacterial colony attached to a solid surface: 
Shown are biomass density M and nutrient concentration C. Nutri- 
ents are consumed in the biomass region. The biomass fonns a 
sharp front and spreads only for biomass densities M = M,,,, 

G as defined in (9) - affect biomass growth and 
spreading in our model description. For this purpose, 
an inoculum biomass covering a small interval of 
length 2Ax was placed approximately in the middle of 
the computational domain [0, L] and nutrients were 
fed at one end only. Hence, we have 

C, ( t ,O) zO,  C ( t , L ) = l  V t > O ;  

C ( O , z ) = l  V X E [ O , L ]  (l2a) 

M ( 0 , z )  = M~ for x E [$ - A X ,  $ + Ax]  
O elsewhere 

This example is more complicated than the stand- 
ard one-dimensional model because now biomass 
spreads in two directions, whereas an adhesion of bio- 
mass to a solid surface as in (A) allows movement 
only in one direction, as in the spreading mechanism 
of the classical one-dimensional model of Wanner & 
Gujer (1986). 

Starting from a reference state (Figure 3a), first the 
maximum biomass density has been decreased 
(Figure 3b) and then the nutrient concentration was 
increased (Figure 3c). Both b) and c) of this example 
result in a value G lower than in a). Since different 
boundary conditions for C are specified at the two 
ends of the computational domain, the initially uni- 
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FIGURE 3 Growth of a bacterial colony in the centre of the one-dimensional domain for varying environmental conditions and different bio- 
mass bounds: Shown are biomass density M and nutrient concentration C: Nutrients are depleted from right to left and the hiofilm structure 
develops different on both directions, due to different boundary conditions at x = 0 and x = L. a) Starting from parameter set 
mmax = 80kglm3, cg = 2glm3, biomass growth and spreading is accelerated b) after m,,,, is decreased (m,,,,, = 40kg/m3, co = 2g/m3), or c) 
after cg is increased (co = 4g/m3, mmax = 40kg/m3). decreases from a) through c) 

form nutrient field soon becomes spatially heteroge- 
neous. After a short initial phase, virtually no nutrient 
remains on the side of the biofilm away from the 
source in a) and b), due to nutrient consumption in the 
solid region. Therefore, biomass grows only towards 
the nutrient source. Only in case c) an appreciable 
quantity of nutrients remains on this side and the bio- 
mass spreads in both directions; that is, the develop- 
ing biofilm structure shows the same heterogeneity as 

the nutrient field. As expected, the changes b) and c) 
accelerated the formation of the biofilm; in the first 
case because more nutrients are available, in the sec- 
ond case because the spreading mechanism acts 
sooner (i.e. for smaller M). In all cases, due to lack of 
nutrients the decay term dominates the growth term in 
G(C, M )  on the shielded side and biomass depletion 
starts. 
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1 
K32 x [grid units] 

FIGURE 4 Biomass growth and spreading under symmetric bound- 
ary conditions. Shown are biomass density M and nutrient concen- 
tration C. Biomass grows symmetrically. Nutrients are consumed in 
the structure. At a given moment biomass starts to decay in the cen- 
tre due to nutrient limitation 

(C) one-dimensional growth with symmetric initial 
and boundary conditions 

While the last example (B) already contains a simple 
spatial heterogeneity - though only in one dimension 
- we will now generate a symmetrical setup to evalu- 
ate how a biofilm structure may develop in a regular 
nutrient field. The initial and boundary conditions in 
this case read 

C(t,O) F 1, C ( t ,  I,) = 1 'dt > 0; 
C(O,.r) = 1 v z  r [0, L] ( 1 3 ~ )  

I a. L + a  MO for x  E [y, +] 
0 elsewhrre 

According to vi) we expect a symmetrically devel- 
oping biofilm structure. Figure 4 refers to this case 
and clearly shows that our expectations are fultXled. 
The biofilm grows symmetrically in both directions, 
i.e. towards both nutrient sources. After some time, 
when the structure is so thick that, due to consump- 
tion, nutrients are depleted near its center and decay 
starts and the biomass density decreases again. 

(D) One-dimensional growth with merging colonies 
under symmetric initial and boundary conditions 

As a final one-dimensional example, the collision of 
two sharp biomass fronts is investigated. For this pur- 

pose we place two equally sized colonies on the inter- 
val LO, L ]  and apply the same boundary conditions as 
in (C): 

C ( t , O ) % l ,  C ( t , L ) r l  v t 2 0 ;  

C ( 0 , z )  = 1 v x  E [O,L] ( 1 4 ~ )  

nqo, x )  = { Mo f o r z ~  [ Z ~ , X ~ ] U [ Z ~ , X ~ ]  
0  elsewhere 

with xl  = L - xq, x2 = L  - ~ 3 ,  0 < x2 - X I  = x4 - 
x 3 = h < < L  

This case appears critical, since in the collision two 
moving interfaces may turn into interior points, then 
allowing mass transfer from one colony to the other. 
With respect to spatial modelling this is a very impor- 
tant case since in general the inoculum will be distrib- 
uted in small colonies over the whole substratum 
rather than being concentrated in a single colony. 

Figure Sa, shows that our newly formulated model 
is able to describe the merging of colonies while satis- 
fying the biomass density bound postulation iii). Bio- 
mass spreads in both directions from each initial 
colony. Figure 5b shows the same experiment, but 
with increased in,, and decreased co (i.e. increased 
G ). There, delayed and slower biomass spreading 
(compared to Figure 5a) is observed. Between the two 
initial colonies nutrients become limited, so conse- 
quently no merging takes place but instead a channel 
remains separating the two biomass clusters. 

3.2 Discussion of One-dimensional Examples 

The one-dimensional results (A), (B), (C), (D) allow 
preliminary deductions of the model behaviour in the 
presence of spatial heterogeneities in a biofilm struc- 
ture. Increased nutrient availability or decreased max- 
imum biomass concentration ( i .e .  decreased ) 

accelerate the spatial spreading of biomass and, in 
consequence, colonies merge earlier and form a more 
compact spatial structure. In contrast, increase in 
might keep colonies isolated as a consequence of 
delayed biomass spreading and lack of nutrients. If 
the nutrient availability is only locally increased (i.e. 
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FIGURE 5 Spreading of biomass with two initial colonies under 
symmetric boundary conditions for different : Shown is biomass 
density M. In a) a compact structure develops after merging of both 
colonies (m,,ax = 60kg/m3, co = 2g/rn3) while in b) the two colo- 
nies remain separated (m,ax = 90kg/m3, co = lg/m3), due to an 
increase in 

the nutrient field is spatially irregular), biomass pro- 
duction may also increase only locally and a spatially 
irregular structure may develop. A symmetric inocu- 
1um under symmetric boundary conditions will 
develop into a symmetric, but not necessarily com- 
pact, structure, whereas the biomass spreads in an 
asymmetric, but not necessarily non-compact, fashion 
if the initial andlor boundary conditions are already 
spatially heterogenous. Even if the initial nutrient 
field is uniform, it will become heterogeneous if the 
biomass distribution (and, hence, nutrient consump- 
tion) is heterogeneous. The consequent spatially het- 
erogeneous nutrient availability then influences 

further biomass production in turn. Thus, we have 
seen that the proposed model is capable of describing 
cluster-and-channel biofilms which are observed in 
numerous laboratory experiments. This will be veri- 
fied in the sequel by means of fully three-dimensional 
simulation. 

3.3 Three-dimensional Studies: the Fully Spatially 
Heterogeneous Case 

After one-dimensional analysis revealed that the pro- 
posed model satisfies postulates i) - vi), fully heterog- 
enous three-dimensional computer simulations were 
carried out to investigate the model behaviour in a 
general and physically relevant case. For this purpose, 
the three-dimensional equations (6) and (7) were 
solved. 

A constant nutrient concentration is maintained at 
the top of the rectangular computational domain 
R = [0, L,] x [0, L2] x [0, L3], i.e. at x 3  = L3. At all 
other boundaries of Q we apply standard outflow 
boundary conditions. That is, there is no diffusive 
flux. The initial colonization of the domain (i.e. at 
t = 0) is generated randomly after specification of 
inoculum density. Together, we have initial and 
boundary conditions 

where n is the outward normal unit vector of the 
boundary of the computational domain. With the 
specified Dirichlet boundary conditions for xl and x2, 
the simulated system can be considered a small sec- 
tion of a bigger biofilm system. All simulations pre- 
sented here were carried out on the equidistant regular 
grid with spatial step-size Ax = 1.89ym. 

(A) development of a spatially heterogeneous 
biojilm structure 

In a first experiment, a substratum of 64 x 64 grid 
points was inoculated with biomass in 162 grid cells. 
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(h) t = 122h 

( c )  f = 56711 ( i )  t = G1311 

FIGURE 6 Development of a biofilm structure in time: first a wavy structure forms, later when nutrients are limited bigger colonies start to 
dominate over smaller ones. As a consequence of this competition for nutrients, the bigger colonies grow faster and develop into mushroom 
shapes while the smaller ones grow much slower 

Maximum colony height in the inoculum was two domain is 63 grid cells. The simulation is visualized 
grid cells. The total height of the computational in Figure 6. First, so long as nutrients are available 
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everywhere in the system, the biomass spreads in all 
directions and forms a wavy layer. With increasing 
biomass in the system, the nutrient concentration 
decreases due to increased consumption and finally 
the nutrients become limited. Then, larger bacterial 
colonies start to dominate over their smaller neigh- 
bours due to higher nutrient consumption. This leads 
to the formation of mushroom-type structures which 
are also reported in the experimental literature (e.g.  
Costerton et al., 1995). 

(B) simulation with diflerent inoculum density 
and varying 6 
In a second experiment, the sensitivity of the model to 
inoculum density and to G is validated. The system 
size is 128 x 64 x 63 grid cells. Three initial states 
were created with 83,411, and 821 grid cells occupied 
by biomass. Simulation runs were stopped, after the 
biofilm reached a maximum height 36pm (= 0.3L3). 
Afterwards the experiment was repeated with lugher 
maximum biomass and lower bulk nutrient concentra- 
tion, causing G to increase by a factor 8.89. 

The results are shown in Figure 7. Independently of 
the inoculum density it is observed that, for the larger 
6 , the bacterial colonies hardly merge at this stage 
of biofilm formation. They grow upwards, where 
nutrients are abundant, rather than spreading horizon- 
tally where they are l h t e d .  This tendency to form iso- 
lated colonies for larger values of 6 was already seen in 
the one-dimensional studies (Figure 5b) and is in good 
agreement with empirical expectations. For lower 6 
the behaviour is different. Since nutrients are not limited, 
biomass spreading is not only towards the source but 
also horizontally so that colonies may merge. We deduce 
that the more dense the inoculum, the more compact is 
the biofilm in the case of lower G , whereas for high 6 
even for dense inoculum rough and irregular structures 
might develop. This is in accordance with the findings of 
Picioreanu et nl., 1 998b. 

3.4 Discussion of Fully Three-Dimensional 
Simulations 

Non-uniform initial distribution of biomass disturbs a 
uniform mitial distribution of nutrients so that local 

nutrient availability soon becomes heterogeneous. 
With heterogeneous nutrient availability, biomass 
production becomes non-uniform and spatially heter- 
ogeneous biofilm structures develop. The formation 
of cluster-and-channel biofilm structures is observed 
with mushroom-shaped colonies dominating over 
smaller neighbor colonies. Those findings are in good 
agreement with experimental experience (e.g. Coster- 
ton et al., 1995). 

In this first study, only biofilm formation under 
hydrostatic conditions with fixed nutrient concentra- 
tion at a specified height was investigated. In the 
hydrodynamic case, the flow field contributes to con- 
vective transport of nutrients and, hence, influences 
their local availability and as a direct consequence 
influences the biofilm structure. Though already 
included in the original model formulation ( I )  - (5) 
and conceptually straightforward, it is technically 
very difficult and computationally very expensive to 
consider hydrodynamics in computer simulations. 
This is beyond the scope of this first presentation of 
the new biomass spreading mechanism. Another phe- 
nomenon occurring in biofilm systems with flowing 
bulk liquid is biomass detachment due to shear 
stresses. This process is not included in the present 
model formulation (1) - (5) but a model extension is 
required, as presented by Picioreanu et al. (1999) for 
a two-dimensional discrete biofilm growth model. 

4 CONCLUSION 

A new spatio-temporal continuum model for biofilm 
formation is developed. It yields the observation that 
spatial heterogeneities in the biofilm structure evolve, 
due to spatial heterogeneities in the environmental 
conditions. In contrast to previous models it is purely 
deterministic, yet nevertheless is able to predict spa- 
tially highly irregular biofilm formation. The starting 
point for the model development was the a priori pos- 
tulation of some required properties of the model. 
This suggested a quasilinear system of diffusion-reac- 
tion equations for biomass and nutrient substrate 
which can be interpreted as a spatio-temporal preda- 
tor-prey-model. The diffusivity for biomass spreading 
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i~loculuni: 83 grit1 cclls 41 1 grid cells 821 grid cells 

FIGURE 7 Biofilm formation for different inoculum densities: for lower 6! bacterial colonies merge and form a compact biofilm, for higher 
6! colonies remain isolated independent of the inoculum density 

vanishes as biomass vanishes and has a singularity for 
maximum biomass density. Analytical progress is 
very difficult, so model validation was performed by 
one- and three-dimensional computations. The model 
behaviour is found to be qualitatively in good agree- 
ment with previous experimental and modelling expe- 
rience. By its construction, the model is invariant to 
changes of the coordinate system. The biomass den- 
sity is a continuous function, governed by a differen- 

tial equation. Possible grid refinements are an issue 
for the numerical discretization and not of the model 
itself. Thus, some major previously mentioned draw- 
backs of the discrete local-rule based approaches are 
avoided. The model presented in this paper should be 
considered the first step in deterministic continuum 
modelling of spatio-temporal irregular biofilm struc- 
ture. Future steps are the extension for multi-spe- 
cieslmulti-substrate biofilms, in order to allow the 
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investigation of biofilm formation and reformation as 
a consequence of an antibiotic therapy. Some further 
planned extensions are the inclusion of additional 
processes like biomass detachment and EPS forma- 
tion. 

Acknowledgements 

This study was financially supported by the European 
Commission under grant number ERBFM RX-CI 97- 
0114 (TMR Network BioToBio) and grant number 
ERBFM C;E-CT 95--005 1 (the TRACS programme at 
EPCC). Three-dimensional computations were car- 
ried out with the CRAY T3Es of the Edinburgh Paral- 
lel Computing Center (EPCC) and the Center for 
High Performance applied Computing at Delft UT 
(HPaC). HJE wants to thank Douglas A Smith 
(EPCC) for many valuable suggestions on implemen- 
tational issues. 

References 
Bryers JD, Drummond F (1998). Local macromolecule diffusion 

coefiiecients in structurally non-uniform bacterial biofilms 
using fluorescence recovery after photobleaching (FRAP), 
Biotechnology and Bioengineering, 60(4):462473. 

Chaudhry MAS, Beg SA (1998). A Review on the Mathematical 
Modeling of Biofilm Processes: Advances in Fundamentals of 
Biofilm Modelling, Chemical Engineering Technology, 
21(9):701-710. 

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lap- 
pin-Scott HM (1995). Microbial Biofilms. Annual Review 
Microbiology, 49:711-745. 

Costerton JW, Stewart PS, Greenberg EP (1999). Bacterial Bio- 
films: A Common Cause of Persistent Infections, Science, 
284:13 18-1322. 

Eberl HJ, Picioreanu C, van Loosdrecht MCM (in press). A 
three-dimensional numerical study on the correlation of geo- 
metrical structure, hydrodynamic conditions, and mass trans- 
fer and conversion in biofilms. to appear in Chemical 
Engineering Science. 

Gjaltema A, Arts PAM, van Loosdrecht MCM, Kuenen JG, Hei- 
jnen JJ (1994). Heterogeneity of Biofilms in Rotating Annular 
Reactor: Occurence, Structure, and Consequences. Biotech- 
nology and Bioengineering, 44:194-204. 

Hermanowicz SW (1999). Two-dimensional simulations of biofilm 
development: effects of external environmental conditions. 
Water Science and Technology, 39(7):107-114 

Kayser FH, Bienz KA, Eckert J, Lindemann J (1993). Medizinische 
Mikrobiologie, 8th edn, Georg Thieme Verlag Stuttgart. 

Kissel JC, McCarty PL, Street RL (1984). Numerical Simulation of 
Mixed-Culture Biofilm, Journal of Environmental Engineer- 
ing, 110(2):393-411. 

van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, 
Tijhuis L, Heijnen JJ (1995). Biofilm Structures, Water Sci- 
ence and Technology, 32(8):3543. 

Murray JD (1993). Mathematical Biology, 2nd edn, Springer 
Van Loosdrecht MCM, Picioreanu C, Heijnen JJ (1997). A more 

unifying hypothesis for biofilm structures. FEMS Microbiol- 
ogy Ecology, 24:181-183. 

Noguera DR, Pizarro G, Stahl DA, Rittmann BE (1999). Simula- 
tion of multispecies biofilm development in three dimensions. 
Water Science and Technology, 39(7):123-130. 

Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998a). A new 
combined differential-discrete cellular automaton approach 
for biofilm modelling: Application for growth in gel beads, 
Biotechnology and Bioengineering, 57(6):718-731. 

Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998b). Mathe- 
matical Modelling of Biofilm Structure with a Hybrid Differ- 
ential-Discrete Cellular Automaton Approach, Biotechnology 
and Bioengineering, 58(1):101-116. 

Picioreanu C (1999). Multidimensional modeling of biofilm struc- 
ture, PhD-Thesis, Delft UT. 

Picioreanu C, van Lossdrecht MCM, Heijnen JJ (2000) A theoreti- 
cal study on the effect of surface roughness on mass transport 
and transformation in biofilms. Biotechnology and Bioengi- 
neering, 68(4):355-369. 

Rittmann BE, McCarty PL (1980), Model of Steady-State-Biofilm 
Kinetics. Biotechnology and Bioengineering, 22:2343-2357. 

Rittmann BE, Pettis M, Reeves HW, Stahl DA (1999). How biofilm 
clusters affect substrate flux and ecological selection. Water 
Science & Technology, 39(7):99-105. 

Wanner 0, Gujer W (1986). A Multispecies Biofilm Model. Bio- 
technology and Bioengineering, 28:3 14-328. 

Wimpenny JWT, Colasanti R (1997). A unifying hypothesis for the 
structure of microbial biofilms based on cellular automaton 
models, FEMS Microbiology Ecology, 22:l-16. 

Wood BD, Whitaker S (1999). Cellular Growth in Biofilms. Bio- 
technology and Bioengineering, 64(6):65&669. 


