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We address here a theoretical basis for the icosahedral symmetry that is observed so commonly for viral
capsids, i.e., the single-protein-thick rigid shells that protect the viral genome. In particular, we outline
the phenomenological hamiltonian approach developed recently (see Zandi, R., Reguera, D., Bruinsma,
R., Gelbart, W.M. and Rudnick, J. (2004), Original of icosahedral symmetry in viruses, Proc. Natl.
Acad. Sci., 101, 15556–15560) to account for the overwhelming prevalence of the Caspar-Klug “T-
number” structures that are found for “spherical” viruses. We feature the role of “conformational
switching energies” defining the competing multimeric states of the protein subunits. The results of
Monte Carlo simulation of this model are argued to shed light as well on the mechanical properties and
genome release mechanism for these viruses.
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1. Introduction

The cowpea rotic mottle virus (CCMV) is a classical

T ¼ 3 RNA virus with a shell composed of 180 identical

subunits, [2] see also A. Zlotnick, this volume. Figure 1(a)

is cryo-TEM image showing 5- and 6-fold morphological

units while figure 1(b) shows the associated arrangement

of the subunits. The capsid has 12 five-fold symmetry

sites, 20 three-fold symmetry sites and 30 two-fold

symmetry sites. The subunits occupy three different types

of subunit locations, denoted by A, B and C, that do not

transform into each other under the symmetry operations.

The subunits can be divided into 12 capsomers that

contain 5 subunits (“pentamers”) and 20 capsomers that

contain 6 subunits (“hexamers”). This architecture

presumably represents a free minimum because CCMV

reversibly self-assembles from its molecular components

under in vitro conditions [3]. More generally, Caspar and

Klug (CK) [2] showed that the subunits of icosahedral

shells constructed from pentamers and hexamers occupy T

non-equivalent locations, with the T-number adopting the

values 1, 3, 4, 7, 13, . . . . . A CK icosahedral shell always

contains 12 pentamers plus 10 (T 2 1) hexamers (so 60 T

subunits in total). This CK classification is the foundation

of modern structural virology. It minimizes the number of

symmetry non-equivalent subunit contacts (known as the

“quasi-equivalence” principle) and, on this basis, is

believed to describe the generic structure of protein

shells.§ However, with current computational capabilities

it is neither possible to verify this claim through all-atom

molecular dynamics simulations nor can we design

artificial protein shells by all-atom simulations.

We recently investigated a simplified model [1] for the

assembly of molecular shells based on capsomer units that

can switch between two internal states P and H, which can

be viewed—but not necessarily—as pentamers and

hexamers (capsid models without internal degrees of

freedom do not reproduce icosahedral symmetry, as

discussed below). P and H capsomer differ only in size,

with a radially symmetric capsomer–capsomer potential.

The number of P units is free to vary and is not fixed to be

12 (as in the CK construction). The energy difference DE

between a P and an H subunit enters as a Boltzmann

probability factor e2DE=kBT for units to be in the P state.

During a simulation run, N interacting capsomers are

allowed to range over a spherical surface starting from a

random initial configuration. The free energy F(R) is

evaluated for a range of sphere radii R and minimized with

respect to R. The capsomer– capsomer interaction

potential V(r) depends only on the separation r between

the capsomer centres. It consists of a short-range

repulsion, representing subunit conformational rigidity,

plus a longer-range attraction, representing capsomer–

capsomer attraction (e.g. by hydrophobic interaction).
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The capsomer–capsomer binding energy 10 was taken to

be 15kBT, a typical value reported by all-atom calculations

of subunit binding energies [4]. The V(r) potential had the

same form for interactions between different capsomer

types except that the equilibrium spacing—the minimum

of V(r)—was adjusted to include a size difference between

P and H capsomers [5]. The P/H size ratio was taken to be

0.85, appropriate for equilateral pentagons and hexagons

of the same edge length (see figure 1(b)). The simplicity of

the interaction potential was motivated by the fact that the

design rules for viral capsids hold for subunits having

different folding domains and polypeptide sequences [6].

We tested different forms for V(r) and found our results to

be robust.

2. Monte-Carlo simulations

The results of the Monte Carlo simulations are shown in

figure 2 as a plot of the free energy per capsomer 1(N),

expressed in units of 10 versus the number N of capsomers.

The black solid line shows 1(N) for the case that the

energy difference DE between P and H states equals zero.

For larger N values, 1(N) is slightly less than 2310, the

binding energy per capsomer for a flat hexagonal array of

capsomers. Pronounced minima of 1(N) are found

at N ¼ 72, 42, 32 and 12. The structures are shown in

figure 3(a), with the capsomers shown, for simplicity, as

disks. All four minimal structures have icosahedral

symmetry and correspond to, respectively, the T ¼ 7,

T ¼ 4, T ¼ 3, and T ¼ 1 CK structures (the N ¼ 32/T ¼ 3

structure should be compared with figure 1(b)). In all four

cases, the equilibrium configuration developed spon-

taneously with no evidence for kinetic traps, though the

T ¼ 7 chiral repeat motif is already fairly complex.

Capsid self-assembly commences when the solution

chemical potential of isolated capsomers exceeds21(N) [7].

Actual size selection of viruses involves certain additional

mechanisms that vary between viral species, such as

“spontaneous curvature” effects [8], the presence of pre-

formed scaffold structures [10], or the size of the enclosed

genome. Assume that these effects restrict the capsid size to

a range of N values, say N ¼ 70 ^ 10, that includes one of

the minima of1(N) (N ¼ 72 in this case). According to figure

2, the energy per capsomer of the N ¼ 72 capsid is only

about 0.0510 less than that of its neighbours, N ¼ 71 and

N ¼ 73, but the total energy difference (72 times larger) is

about 55kBT. The relative abundance of capsids with

N – 72 depends on the total energy difference as

e2ðN1ðNÞ2721ð72ÞÞ=kBT ; so the relative abundance of the

N ¼ 71 and N ¼ 73 structures is completely negligible.

Thus, because the minimum of 1(N) atN ¼ 72 is sufficiently

pronounced, additional size-determining mechanisms need

only to provide a weak dependence onN to produce a nearly

monodisperse solution of T ¼ 7 capsids during self-

assembly.

Figure 1. (a) Cryo-TEM image of CCMV. (b) Arrangement of subunits
on a truncated icosahedron. A, B and C stand for symmetry non-
equivalent sites.

Figure 2. Energy per capsomer for DE ¼ 0 (open circles), and for jDE/kBTj large compared to one (solid line).
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When we increase the P-to-H switch energy DE/kBT, we

encounter a dramatic reorganization of the structure

spectrum for DE values around 1–2 10. The green curve in

figure 2 gives 1(N) for large jDE/10j. The units now are

either all in the H state or all in the P state, depending on

the sign of DE. Pronounced minima in 1(N) are seen at

N ¼ 12, 24, 32, 44, 48 and a weak minimum at 72. The

corresponding capsids are shown in figure 3(b). The new

sequence of “magical numbers” can be understood by

considering the packing of N hard disks on a spherical

surface, known in the mathematics literature as the

Tammes Problem. The magical numbers that minimize

1(N) correspond to the maxima of the packing density of

the Tammes Problem [9].

The suppression of capsomer switching clearly has

profoundly destabilizing effects on icosahedral shells. The

only surviving T-structures are T ¼ 1 (N ¼ 12) and T ¼ 3

(N ¼ 24). The new N ¼ 24 and 48 minima have octahedral

symmetry, while N ¼ 44 has cubic symmetry [5]. Of

particular interest is the N ¼ 24 case, a chiral octahedral

Archimedean solid known as the “snub-cube” (see figure

3(b)). Self-assembly studies of Polyoma capsid proteins—an

exceptional virus whose capsomers do all have the same

size—report the formation of stableN ¼ 24 capsids with the

symmetry of a left-handed snub-cube [11]. The N ¼ 72

structure is unstable: it undergoes dramatic thermal

fluctuations between different structures of various sym-

metry, including T ¼ 7. Moreover, self-assembly at largerN

values is predicted to produce a polydisperse mixture of

capsid sizes.

3. Capsid disassembly

The enclosed genome of a virus applies a significant

osmotic pressure on the viral shell. This pressure and the

associated tension of the capsid wall play an important

role during genome release [12]. Osmotic pressure P can

be included in our simulation by imposing capsid radii R

different from the equilibrium radius R* through

PðRÞ / R=R* 2 1
� �

:† We encountered the following

Figure 3. Minimum free energy structures. (a) The P and H states are degenerate. The N ¼ 12, 32, 42 and 72 structures correspond to stable T ¼ 1,3,4,7
icosahedra, respectively. P state capsomers are shown in black. For clarity the capsomer size was scaled, so all capsids have the same size. (b) The P state
energy is large compared to the capsomer binding energy. N ¼ 24 and 48 have octahedral symmetry. N ¼ 32 corresponds to T ¼ 3. The N ¼ 72 structure
is thermally unstable.

Figure 4. Capsid disassembly. (a) Bursting of a T ¼ 3 capsid under internal pressure when the ratio R/R* of the capsid radius and the equilibrium radius
exceeds 1.107. (b) Capsid just before (a) and just after (b) pentamer decapsidation (R/R* ¼ 1.013).

†Specifically, with PðRÞ ¼ P0ðNÞðR=R* 2 1Þ with P0ðNÞ ¼ ðN=ð4pR* ÞÞððd21ðRÞÞ=dR 2ÞjR¼R* : For the present case with N ¼ 32 and R* ¼ 10 nm,
we find P0ð32Þ < 7 atm:
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sequence of events for N ¼ 32 (T ¼ 3) when we increased

R beyond R*. If we keep both the numbers of P and H

capsomers fixed, then the capsid bursts in a dramatic

manner after R/R* exceeds a critical value of 1.107

(see figure 4(a)). Capsid bursting under external osmotic

shock is a well-known phenomenon that can be used to

measure the mechanical strength of capsids [13].

If the capsomer number N is allowed to change, then the

capsid pressure can be released before bursting. The energy

of a T ¼ 3 (N ¼ 32) capsid exceeds that of an N ¼ 31

icoasahedral capsid with one pentamer removed from one of

the 5-fold sites (see figure 4(b)) when R/R* exceeds 1.013.

Decapsidation by pentamer release is, in fact, the established

genome release mechanism for Tymoviruses [14]. Genome

release scenarios through pentamer conformational changes

have been proposed for the picorna and nodaviruses [15].

We studied pressure-induced conformational changes by

permitting conversion between P to H capsomers at fixed N.

We found that P capsomers progressively transform to H

capsomers, with loss of icosahedral symmetry. These studies

suggest that our two-state model can be usefully applied to

further investigation of the mechanical and structural

properties of viral capsids.
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