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We use a compartmental model to illustrate a possible mechanism for multiple outbreaks or
even sustained periodic oscillations of emerging infectious diseases due to the psychological
impact of the reported numbers of infectious and hospitalized individuals. This impact leads
to the change of avoidance and contact patterns at both individual and community levels, and
incorporating this impact using a simple nonlinear incidence function into the model shows
qualitative differences of the transmission dynamics.
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1. Introduction

SARS, the first severe infectious disease to have emerged in the twenty-first century, exhibits

some distinct features such as rapid spatial spread and self-control. These features, associated

with the increasing trend of globalization and the development of information technology,

are expected to be shared by other emerging infectious diseases. It is therefore important to

refine classical mathematical models to reflect these features by adding the new dimensions

of massive news coverage and fast information flow that generate a profound psychological

impact on the public and have great influence not only on the individual behaviors but also on

the formation and implementation of public intervention and control policies.

There are now extensive research activities about the psychological impact of SARS

outbreak on the general public and about the media impact on SARS control and prevention

(see, for example, [1–3,9,11]), and there are several models proposed to describe the

SARS transmission dynamics [5,6,10,20], but more comprehensive studies will require

interdisciplinary research across traditional boundaries of social, natural, and medical

sciences, and mathematics. In this paper, we use a compartmental model to illustrate the

possibility of multiple outbreaks caused by the change of individual avoidance and contact

patterns as a response to the reported information of infectious and hospitalized cases, while

multiple outbreaks can hardly occur if the avoidance and contact patterns are adjusted

according to the reported number of exposed individuals instead.

As shown in figure 1, the transmission of SARS in the Great Toronto Area experienced

multiple outbreaks. We hope our work can provide some theoretical analysis for the
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mechanisms of the phenomena of multiple outbreaks. In particular we hope to show that

second or multiple outbreaks may be rooted in the change of individual behavior when the

infectious process runs its own course. The media report and coverage, the information

processing, the individual’s alerted response to the information and media coverage, the

official control and prevention measures and policies are so intertwined that they jointly

make the undesirable multiple outbreaks feasible. We thus hope this work may be useful for

consideration of what constitutes essential public information for disease control.

2. A model emphasizing the psychological impact

We start with a partition of the whole population into five distinct classes of susceptible,

exposed, infectious, hospitalized and removed individuals in terms of certain specific

infectious disease under consideration. We emphasize that this preliminary work will not

consider the factors of mandatory quarantine and isolation, but concentrate only on the

situation where effective contacts will be reduced when the infection level increases. We

assume that the outbreak duration is sufficiently short and hence the total number of

susceptible remains relatively unchanged and the demographic details (natural death and

birth) can be ignored. It follows from Ref. [14], a standard formulation for the temporal

evolution of the exposed (E), infectious (I) and hospitalized (H) sub-populations then takes

the following format:

dE
dt
¼ b0IS2 aE;

dI
dt
¼ aE2 dI 2 hI;

dH
dt

¼ hI 2 dhH 2 rH;

8>><
>>:

ð2:1Þ

where E ¼ E(t) is the number of individuals who are exposed to the infected but not yet

infectious, I ¼ I(t) is the number of infectious individuals, and H ¼ H(t) is the number

of infectious individuals who are receiving medical treatment in hospital settings;

Figure 1. Number of reported SARS cases in Great Toronto area from February 23 to June 4, 2003. The data is
taken from Ref. [7].
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we also assume that the hospitalized individuals no longer impose risk to the susceptible

individuals.

In model (2.1), the parameters involved, which are positive, are

b0: we assume that the exposed population is increased following infection acquired

via contact between a susceptible and an infectious individual with a transmission

coefficient;

b0. This parameter measures the effect of both the infectiousness of the disease and the

contact transmission rates;

S: as mentioned above, we assume that the total number of susceptible individuals

remains unchanged, and thus S will be regarded as a parameter;

a: the transmission rate per unit of time (day, in case of SARS) that exposed individuals

become infectious;

d: the disease induced death rate of infectious individuals before entering the health care

settings;

h: the rate at which infectious individuals enter the health care settings seeking for

treatment;

dh: the disease-induced death rate of hospitalized individuals;

r: the recovery rate of the hospitalized individuals.

It is not difficult to observe that the system has only one equilibrium, the origin that

corresponds to the disease free state. Simple calculation yields that the basic reproduction

number (see [14,18]) is R0 ¼ ðb0SÞ=ðd þ hÞ, and hence the origin is asymptotically stable

and the disease will die out exponentially if R0 , 1, while the origin is unstable and the

disease will grow exponentially if R0 . 1.

The aforementioned model is clearly a crude reflection of the complicated nonlinear

phenomena of the transmission dynamics, and it does not incorporate the self-control property

due to the change of avoidance patterns of individuals at different stages of the infectious process.

It is reported that the massive news coverage had significant impact on the avoidance behaviors

at both individual and society levels, and the reported numbers of exposed, infectious and

hospitalized individuals have clearly profound psychological impact on the social conduct that

seems to reduce the effective contact of susceptible with infectious individuals. A detailed

functional description for such a psychological impact is not available and would be extremely

difficult to achieve; here we simply assume that this impact is described by an exponential

decreasing factor, resulting the transmission coefficient as b0 ¼ be2a1E2a2I2a3H . Here b is the

basic transmission rate if the impact of the reported numbers of exposed, infectious and

hospitalized were ignored, and a1, a2, a3 are non-negative parameters to measure the effect of

psychological impact of media reported numbers of exposed, infectious and hospitalized

individuals. The modified model of (2.1) then becomes

dE
dt
¼ be2a1E2a2I2a3HIS2 aE;

dI
dt
¼ aE2 dI 2 hI;

dH
dt

¼ hI 2 dhH 2 rH:

8>><
>>:

ð2:2Þ

In general, the first available information is the reported number of hospitalized patients when

the infectious disease is at the emerging stage, hence we will focus more on the impact of the

number of reported hospitalized cases.
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3. Nonlinear dynamics and oscillatory behaviors

We study system (2.2) in the following biological feasible region D ¼ {ðE; I;HÞ [ R3
þ}: It

can be verified that D is positively invariant for (2.2). One can verify that for any fixed a1, a2

and a3, model (2.2) always has a disease free equilibrium (DFE) at the origin. We denote this

DFE by E0 ¼ (0,0,0). One can verify that the reproduction number R0 ¼ bS=ðd þ hÞ is the

same as the reproduction number in (2.1). The following Lemma gives the global stability of

the DFE.

Lemma 3.1. If the reproduction number R0 , 1, the DFE E0 is globally asymptotically stable

in D.

Proof. For V ¼ E þ I, we have

_V ¼ ðbSe2a1E2a2I2a3H 2 ðd þ hÞÞI # ðbS2 ðd þ hÞÞI:

This gives _V # 0 if R0 , 1. Furthermore, _V ¼ 0 in D if and only if I ¼ 0. Therefore, the

largest compact invariant set in {ðE; I;HÞ [ D; _V ¼ 0} is the singleton E0. The LaSalle’s

invariance principle [4] then implies that the DFE E0 is globally asymptotically stable when

R0 , 1. A

If R0 is increased through the critical value 1, a transcritical bifurcation occurs, the DFE

E0 ¼ (0,0,0) becomes unstable (hence the disease will be established in the community) and a

positive equilibrium, the endemic equilibrium, appears in D. By letting the right-hand sides of

(2.2) equal zero, one can verify that if R0 . 1, this positive equilibrium Eþ ¼ðE *; I *;H *Þ is

given by

E * ¼ Cðdh þ rÞðd þ hÞ; I * ¼ Cðdh þ rÞa; H * ¼ Cha; ð3:1Þ

where

C ¼
lnðR0Þ

a1ðd þ hÞðr þ dhÞ þ a2aðr þ dhÞ þ a3ah
:

Note that if ai ¼ 0, i ¼ 1, 2, 3 and R0 ¼ 1, then all points ðððd þ hÞ=aÞ; 1; ðh=ðdh þ rÞÞÞI

with I $ 0 are equilibria of model (2.2). From the expression of the endemic equilibrium E þ in

(3.1) we can see that when R0 . 1, E *; I *;H * !1 if ai ! 0þ; i ¼ 1; 2; 3: This means that if

without media or psychological impact in the model, the number of exposed, infectious and

hospitalized will grow exponentially which is consistent with the simple dynamics of the

model (2.1).

It then becomes important to examine the behaviors of the system near the endemic

equilibrium E þ. In what follows, we consider the case when the reproduction number

R0 . 1 and study the stability of and possible bifurcations from the endemic equilibrium

E þ. We will take contact transmission rate b and h as parameters. Note that R0 . 1

corresponds to h . bS 2 d. We denote the straight line defined by R0 ¼ 1 by

G0 : h ¼ bS2 d;
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we restrict ourselves in the region defined by 0 , h , bS2 d in the (h, b)-plane. We first

note that Jacobian matrix of the model (2.2) at E þ is

JðEþÞ ¼

2ba1D*SI * 2 a 2ba2D *SI * þ bD*S 2ba3D*SI *

a 2ðd þ hÞ 0

0 h 2ðdh þ rÞ

0
BB@

1
CCA; ð3:2Þ

where D* ¼e2a1E *2a2*I *2a3*H *
.

3.1 Case a1 > 0, a2 5 0, a3 5 0: the impact of the reported number of exposed

individuals

We first explore the impact of the reported number of exposed individuals, hence a2 ¼ a3 ¼ 0

and a1 . 0. In this case, the Jacobian of the endemic equilibrium J can be simplified to

JðEþÞ ¼

2að1 þ lnR0Þ d þ h 0

a 2ðd þ hÞ 0

0 h 2ðdh þ rÞ

0
BB@

1
CCA:

The three eigenvalues are determined by

ðlþ dh þ rÞ½l2 þ ðhþ d þ að1 þR0ÞÞlþ aðd þ hÞlnR0� ¼ 0:

One can verify that all the three eigenvalues are negative. Therefore, the endemic equilibrium is a

stable node and we have:

Theorem 3.2. For the model (2.2) with a2 ¼ a3 ¼ 0 and a1 . 0, if R0 . 1, the unique

endemic equilibrium is always a stable node.

The solution curves of the number of exposed, infectious and hospitalized individuals as

functions of time are curves with at most one peak.

3.2 Case a1 5 0, a2 > 0, a3 5 0 the impact of the reported number of infectious

individuals

We now consider the impact of reported numbers of infectious cases, i.e. a1 ¼ a3 ¼ 0 and

a2 . 0. Note that the Jacobian of the endemic equilibrium J now can be simplified to

JðEþÞ ¼

2a ð1 2 lnR0Þðd þ hÞ 0

a 2ðd þ hÞ 0

0 h 2ðdh þ rÞ

0
BB@

1
CCA:

The corresponding characteristic equation becomes

ðlþ dh þ rÞ½l2 þ ðhþ d þ aÞlþ aðd þ hÞlnR0� ¼ 0:
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One eigenvalue is l1 ¼ 2ðdh þ rÞ , 0, the other two are determined by

l2 þ ðhþ d þ aÞlþ aðd þ hÞlnR0 ¼ 0: ð3:3Þ

Denote the discriminant of (3.3) by D(h, b). Namely,

Dðh;bÞ ¼ ðaþ d þ hÞ2 2 4aðd þ hÞlnR0: ð3:4Þ

Note that both roots of (3.3) have negative real parts, and hence the endemic equilibrium is

always locally asymptotically stable. However, as shown in figure 2, the sign of D(h, b)

determines the type of this equilibrium. The endemic equilibrium is a focus if D(h, b) . 0

and a node if D(h, b) , 0. For the parameters in the region above the curve, multiple

outbreaks with damped amplitudes may occur.

3.3 Case a1 5 0, a2 5 0, a3 > 0: the impact of reported number of hospitalized

individuals

Comparing to the previous two cases, media coverage on the number of hospitalized

individuals has much stronger impact on the transmission patterns, and the endemic

equilibrium can undergo a Hopf bifurcation. To show this, we first note that the Jacobian of

the endemic equilibrium J can be simplified to

JðEþÞ ¼

2a d þ h 2 ðdþhÞðdhþrÞ
h

lnR0

a 2ðd þ hÞ 0

0 h 2ðdh þ rÞ

0
BB@

1
CCA:

Figure 2. Bifurcation diagram for case a1 ¼ a3 ¼ 0,a2 . 0. G1 denotes the curve D(h,b) ¼ 0 defined in (3.4).
Multiple outbreaks may occur for the parameters above the curve G1.
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The characteristic equation is

f ðlÞ ¼l3 þ ðaþ hþ dh þ r þ dÞl2 þ ðdh þ rÞðhþ aþ dÞl

þ aðd þ hÞðdh þ rÞlnR0 ¼ 0:
ð3:5Þ

Let li (i ¼ 1, 2, 3) be the three eigenvalues, then we have

l1 þ l2 þ l3 ¼ 2ðaþ hþ dh þ r þ dÞ;

l1l2 þ l1l3 þ l2l3 ¼ ðdh þ rÞðhþ aþ dÞ;

l1l2l3 ¼ 2aðd þ hÞðdh þ rÞlnR0:

8>><
>>:

ð3:6Þ

We are interested in possible sustained periodic oscillations. Thus we consider the case

when f(l) ¼ 0 has a pair of purely imaginary roots. For f(l) ¼ 0 to have a pair of purely

imaginary roots, we must have

Gðh;bÞ ¼ ðhþ aþ dÞðaþ hþ dh þ r þ dÞ2 aðd þ hÞlnR0 ¼ 0: ð3:7Þ

Therefore, if h and b satisfy G(h, b) ¼ 0, in addition to one eigenvalue

l1 ¼ 2ðaþ hþdh þ r þ dÞ , 0, the endemic equilibrium has a pair of imaginary

eigenvalues:

l2;3 ¼ ^i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a lnR0ðd þ hÞðdh þ rÞ

aþ hþ dh þ r þ d

r
¼ ^i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ aþ dÞðdh þ rÞ

p
:

Let G2 be the curve defined by G(h, b) ¼ 0 in the (h, b)-plane:

G2 : b ¼ bðhÞ ¼
d þ h

S
e
ðhþaþdÞðhþaþdhþrþdÞ

aðdþhÞ : ð3:8Þ

As shown in figure 3 G2 has a local minimum at ðĥH ; b̂HÞ with ĥH ¼ 2ð1=2Þa2 d þ ð1=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 þ 4adh þ 4ar

p
and b̂H ¼bðĥHÞ. When G2 is crossed from below, a Hopf bifurcation

occurs. The stability of the possible Hopf bifurcations from the endemic equilibrium is

described in next theorem.

Theorem 3.3. Consider the model (2.2) with a1 ¼ a2 ¼ 0 and a3 . 0. For (h, b) in the region

above G0 of the first quadrant of the (h, b)-plane, we have, as shown in figure 3, the following

conclusions:

. if ððhþ dÞ=SÞ , b , ððd þ hÞ=SÞeðððhþaþdÞðhþaþdhþrþdÞÞ=ðaðdþhÞÞÞ, the endemic equilibrium

is locally asymptotically stable; if b . ððd þ hÞ=SÞeðððhþaþdÞðhþaþdhþrþdÞÞ=ðaðdþhÞÞÞ, the

endemic equilibrium is unstable.

. as b increases and G2 is crossed, a Hopf bifurcation occurs. System (2.2) has a stable

periodic solution.

Proof. Using the Routh–Hurwitz criteria, we get that if (h, b) is between G2 and G0, then all

eigenvalues of the endemic equilibrium have negative real parts, hence the endemic

equilibrium E þ is locally asymptotically stable.
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By the definition of G2 in (3.8) we know that a Hopf bifurcation may occur when G2 is

crossed [19]. Note that one eigenvalue is always negative. To see how the real parts of the

other two eigenvalues change their signs, we check the transversality condition of the Hopf

bifurcation. Let l ¼ a ^ bi with a, b [ R be the pair of complex eigenvalues. Substituting

l ¼ a þ bi into the characteristic equation, the real part of f(l) then becomes

Rða; b; hÞ ¼ aðd þ hÞðdh þ rÞlnR0 þ ðdh þ r þ aþ d þ hÞa2 þ ð2dh 2 3a2 d 2 r

2 h2 aÞb2 þ ðaþ d þ hÞðdh þ rÞaþ a3: ð3:9Þ

Note that if G(h, b) ¼ 0, we have a ¼ 0. Using implicit differentiation of (3.9), we have

›a

›h

����
a¼0;G¼0

¼
2ð›R=›bÞ

›R=›a

����
a¼0;G¼0

¼ 2
aðd þ hÞðdh þ rÞ

bð3a2 2 3b2 þ 2aðaþ hþ dh þ r þ dÞ þ ðdh þ rÞðaþ d þ hÞÞ

����
a¼0;G¼0

¼
aðd þ hÞ

2bðaþ d þ hÞ
. 0;

where if a ¼ 0 and G ¼ 0, b2 ¼ 2ððaðd þ hÞðdh þ rÞlnR0Þ=ðaþ hþ dh þ r þ dÞÞ ¼

ðaþ d þ hÞðdh þ rÞ. It follows from [15] (Chapter 5) and [12] that a Hopf bifurcation

occurs when the curve G2 is crossed.

In order to decide the stability of the Hopf bifurcation, we have to compute the first

Lyapunov coefficient of the endemic equilibrium. By using the formula in Ref. [15] (p. 175–

178) and a short straightforward calculation, the first Lyapunov coefficient is negative.

Figure 3. Bifurcation diagram for case a1 ¼ a2 ¼ 0 and a3 . 0. G2 is the Hopf bifurcation curve defined by
G(h,b) ¼ 0 in (3.7). When G2 is crossed from below, a Hopf bifurcation occurs which results in the existence of
sustained periodic solutions (periodic outbreaks).
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Therefore, the Hopf bifurcation is supercritical, and the periodic solution bifurcated from E þ

is orbitally asymptotically stable. A

Recall that h is the reciprocal of the median time for an infectious individual to be admitted

to a hospital for medical treatment and for isolation. Therefore, the above results show that

sustained periodic oscillations can take place by either increasing this median time from

relatively small to a moderate level, or by decreasing this median time from relatively

large to a moderate level. This is because the individual’s behavior and contact patterns are

changed as a function of the number of hospitalized individuals and this represents a delayed

response to the true level of infection (reflected more actually by the numbers of exposed and

infectious individuals).

4. Simulations and discussions

The qualitative behaviors described in the previous section are independent of the specific

disease under consideration. To explain the impact of media/psychology on possible multiple

outbreaks of the transmission of infectious disease, we take the SARS outbreaks in Great Toronto

Area in 2003 as an example. We now discuss the parameter values to be used in our simulations.

During the SARS outbreaks in Great Toronto Area, the media mainly focused on the

number of hospitalized SARS patients, and also the only available and reliable data was the

number of hospitalized cases, shown in figure 1. Hence in model (2.2), we take a1 ¼ a2 ¼ 0

and consider the model in the case discussed in section 3.3. For the parameter S, the total

population in the Toronto area, based on the 1996 census adjusted by 1999 intercensus, we

assume that S ¼ 5,446,104 for the year 2003.

Since the average time for an infectious individual to be admitted to a hospital was estimated

to be 3 days [5], we takeh ¼ 0.33 day21. 1/d is the average period before an infectious individual

dies without being admitted to a hospital. This number is small, reflecting a relatively low death

rate. The 21 day survival in a Toronto cohort of 144 hospitalized cases was 93.5%, with negative

outcomes most often associated with diabetes or other comorbid conditions [5]. Estimates for

case fatality rates are also associated with age, with a fatality rate of 13.2% for those under 60,

rising to 43.3% for those ($) 60 reported in Hong Kong [16]. Therefore we use d ¼ 0.00001.

Similarly, we use dh ¼ 0.01 if we think of death rate as 0.1 and the average hospitalization day as

10 days for those SARS patients who eventually die of the disease. In reality, both dh and d are

small, and the small perturbation of these parameters will not affect significantly the numerical

simulations during a short period of time.

In Ref. [20], the authors study the critical roles of the nosocomial transmission of SARS,

and the study yields an average infectious induced secondary infection 1.6 for the general

community, and an average hospitalized patient induced secondary infection 4.5 for the

health care setting, in comparison with the basic reproduction number around 3 estimated

in Refs. [8,17] when the health care setting is not isolated from the general community.

Note that those values of the reproduction number are the average value during the whole

period of the SARS outbreak. While in model (2.2), we assume the contact rate is reduced

as an exponential function of the number of hospitalized. So it is reasonable to take the

basic reproduction number as 6.6, which is about twice as great as the estimated average

reproduction number during the whole period of the SARS outbreak. We now use the

reproduction number R0 ¼ (bS/(d þ h)) to estimate the contact rate b. Using the values of

R0, d and h, we obtain that b ¼ 0.0000004.
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The value of a3 is one of the main factors which decide the value of “controlled” average

contact rate and the “controlled” average reproduction number. Here, “controlled” average

contact rate bc is defined as
Ð T

0
be2a3HðtÞdt=T where T is the length of the outbreak of the

disease. “Controlled” average reproduction number Rc is given by bc=ðd þ hÞ. Using the real

hospitalized data, shown in figure 1, and the basic reproduction number around 3 estimated in

Refs. [8,17] when the health care setting is not isolated from the general community, we can

estimate a3 ¼ 0.08. Since the median time from self-reported earliest known exposure to

symptoms onset is 5–6 days [5], we take 1/a ¼ 5 days, i.e. a ¼ 0.2 day21. Though the

median hospital stay was 10 days [5], the hospital stay for the infectious individuals in the

early stage was much larger, hence 0 , r , 0.1 and we take r ¼ 0.05 day21.

We summarize all the parameters in table 1. We refer to [20] for more detailed discussions

of the identification on the parameters.

The data shown in figure 1, of reported hospitalized SARS cases is taken from Ref. [7] which

begins at February 23, 2003 and ends at July 4, 2003. In the simulations, the time unit is day, and

t ¼ 0 corresponds to February 23, 2003. The data is represented in figure 4 by blue bar. The

smooth curve in figure 4 is the simulation prediction from the model. Note that there exists a

second outbreak in the prediction curve, due to the media coverage of hospitalized individuals.

The individual’s contact rate was reduced due to the media coverage of the number of

hospitalized cases. Figure 5 shows how the contact transmission rate changes over the time.

In this case the “controlled” average contact rate is bc ¼ 0.00000009, which yields the

“controlled” average reproduction number 1.55.

System (2.2) seems to be the first model that incorporates the media or psychological

impact based on a simple EIH model. Our analysis and simulations based on model (2.2)

suggested a possible mechanism for multiple outbreaks of highly infectious diseases: the

impact of the emphasis of media coverage for the hospitalized individuals. These results

show that caution must be exercised when the number of hospitalized individuals decreases,

and premature relaxing of control measures may lead to increase in the contact rate which

can result in a possible secondary outbreak.

SARS was first recognized in Toronto on February 23, 2003. Transmission to other persons

resulted subsequently in an outbreak among 257 persons in several Greater Toronto Area

hospitals. After implementation of province wide public health measures that included strict

infection-control practices, the number of recognized cases of SARS declined substantially, and

no new cases were detected and reported after April 20. On May 14, 2003, WHO [13] removed

Toronto from the list of areas with recent local SARS transmission because 20 days (i.e. twice the

maximum incubation period) had elapsed since the most recent case of locally acquired SARS

was isolated or a SARS patient had died, suggesting that the chain of transmission had

terminated. Unfortunately, a secondary outbreak occurred after WHO’s removal of the travel

advisory against Toronto. Whether the relaxation of the control measures contributed to the

Table 1. Parameters for the simulation of the SARS outbreak in GTA in 2003.

Parameters Value The source of data

b 0.0000004 Estimation
h 0.33 day21 [20]
a3 0.08 Estimation
a 0.2 day21 [20]
d 0.000001 day21 Estimation
dh 0.01 day21 Estimation
r 0.05 day21 [20]
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secondary outbreak remains debatable; our study confirms that when the total population size

remains a constant and other factors are ignored, the media coverage/impact is not the intrinsic

factor that decides if the disease will outbreak, but has great impact on the pattern and scale of the

transmission. Therefore, it is critical to maintain a high level of alertness especially after a

decline of the hospitalized cases is reported [7].

Figure 4. The comparison of the real data and the model simulation for the case of 2003 SARS outbreak in GTA.

Figure 5. The time dependent contact rate changes with respect to time.
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