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Elementary excitations (electrons, holes, polaritons, excitons, plasmons, spin waves, etc.)
on discrete substrates (e.g., polymer chains, surfaces, and lattices) may move coherently
as quantum waves (e.g., Bloch waves), but also incoherently (“hopping”) and may lose
their phases due to their interaction with their substrate, for example, lattice vibrations.
In the frame of Heisenberg equations for projection operators, these latter effects are
often phenomenologically taken into account, which violates quantum mechanical con-
sistency, however. To restore it, quantum mechanical fluctuating forces (noise sources)
must be introduced, whose properties can be determined by a general theorem. With in-
creasing miniaturization, in the nanotechnology of logical devices (including quantum
computers) that use interacting elementary excitations, such fluctuations become impor-
tant. This requires the determination of quantum noise sources in composite quantum
systems. This is the main objective of my paper, dedicated to the memory of Ilya Pri-
gogine.

1. Introduction

Thermodynamics impresses us again and again by its great generality. Its laws apply to
all kinds of matter and all kinds of aggregations (provided the systems are in or close
to thermal equilibrium). Thus it is no surprise that Ilya Prigogine, who was a master in
thermodynamics and its applications to physical and chemical processes, used thermo-
dynamics as a starting point for his explorations into the fascinating field of open systems
with their ability to form dissipative structures. This is witnessed for instance by his books
jointly with Glansdorff [2] as well as with Nicolis [5]. An excellent account of various ap-
proaches to the physics of open nonequilibrium systems can be found in the book by
Babloyantz [1]. In fact, as it happens quite often in science, a new field may be explored
from several starting positions. Thus in the field of nonequilibrium processes, my own
approach was based on quantum field theory and quantum statistics. The present paper,
that I dedicate to the memory of Ilya Prigogine, is a late outflow of my early steps in quan-
tum statistics of systems away from thermal equilibrium. My paper is also motivated by
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the progress made in information technology, and here again especially in nanotechnol-
ogy. So far, information processing is based on logical elements that use large numbers of
elementary excitations such as electrons so that quantum fluctuations can be ignored, at
least in many cases. With increasing miniaturization, however, the quantum domain be-
comes important and thus quantum fluctuations can no more be ignored. Therefore, my
contribution tries to show how quantum fluctuations can be calculated in a unique way
for all kinds of elementary excitations and their interactions that may be used in logical
elements (devices).

2. Elementary excitations

The formalism I am going to develop in this paper is applicable to electrons, holes, ex-
citons (Wannier, Frenkel), plasmons, spin waves, and so forth. They may be delocalized
or localized, for example, at quantum dots. In the following, I will base the analysis on
localized states from which running elementary excitations can be built up by means of
suitable superpositions. In order to realize logical elements characterized by their truth
table, one may start from rate equations for electron densities that are for instance of the
typical form

dn

dt
= p(n)− l(n), (2.1)

where p and l represent gain and losses, respectively. A truth table for the logical operation
“and” can be realized by

dnr
dt

= αn1n2− κnr , (2.2)

where n1 and n2 are incoming currents of the channels 1 and 2, and nr is the resulting
occupation number in the outflow. Quite clearly, nr can be produced only if both n1 and
n2 are unequal to zero. When we proceed to small particle numbers, quantum fluctua-
tions will play an important role and the obvious question arises how we can replace the
phenomenological rate equations (2.2) by fully quantum mechanical equations.

3. General approach

Here I will proceed in two steps. First, I will consider a single quantum system with levels
i= 1, . . . ,N , and later composite quantum systems. We describe its dynamics by means of
projection operators Pi j that project the system from state j to state i. If we wish to use
creation and annihilation operators for particles, we may represent Pi j in the form a+

i a j ,
where a+,a are the creation and annihilation operators, respectively. The use of P is more
general because it implies that we are dealing with elementary excitations, for instance,
with polarons that are electrons surrounded by their ionic cloud. The same remark holds
for other elementary excitations. If not otherwise stated, we have localized states in mind.
In the following, we use the fundamental quantum mechanical property of projection
operators

Pi jPlk = δjlPik. (3.1)
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Our approach will be based on the Heisenberg equations of motion that are in the form

dPi j
dt

= i

�

[
H ,Pi j

]≡ i

�

(
HPij −Pi jH

)
, (3.2)

where H represents the Hamiltonian. Most importantly in all practical applications, es-
pecially in nonequilibrium systems, the quantum system under consideration is coupled
to reservoirs that give rise to damping and pumping and perhaps other incoherent effects.
Thus it is absolutely necessary for a complete description to include these reservoirs. As
can be shown, these reservoirs with their numerous variables can be eliminated, which
gives rise to projection operator equations in the Heisenberg form but with additional
terms:

dPi j
dt

= i

�

[
H ,Pi j

]
+Lr,i j . (3.3)

The detailed derivation of the operator Lr,i j may be tedious, but another approach has
turned out to be successful. Namely, the damping and pumping terms, and so forth, can
be introduced in a phenomenological manner as I will show by means of an example. The
quantum statistical average over Pii can be interpreted as particle number at point i:

P̄ii = ni. (3.4)

Then in a phenomenological way, one may describe the hopping process of that particle
along a chain with sites i by means of the rate equations

dni
dt
=−γni +w

(
ni+1 +ni−1

)
. (3.5)

This is, however, a quantum statistically averaged equation where the quantum fluctua-
tions have been lost. Our main purpose will be to restore the quantum mechanical con-
sistency as expressed by (3.1). Another example is provided by the coherent motion along
a chain where the Hamiltonian can be described by

H =
∑
lm

wlmPlm. (3.6)

The Heisenberg equation of motion reads

dPi j
dt

= i

�

(∑
l

wliPl j −
∑
m

wjmPim

)
+Lr,i j , (3.7)

where we have used the property

[
Plm,Pi j

]= δmiPl j − δjlPim (3.8)

that derives from (3.1). The additional operator Lr,i j stems from incoherent processes
due to the interaction with reservoirs such as lattice vibrations. Taking only the nearest
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neighbour interaction in a linear chain into account, (3.7) can be evaluated as

dPi j
dt

= i

�

(
wi+1,iPi+1, j +wi−1,iPi−1, j −wj, j+1Pi, j+1−wj, j−1Pi, j−1

)
+Lr,i j . (3.9)

Again the incoherent processes can be incorporated in addition to the coherent processes
determined by the Hamiltonian (3.6) by choosing

L̄r,ii =−2WP̄ii +WP̄i+1,i+1 +WP̄i−1,i−1 for i= j, (3.10)

L̄r,i j =−γP̄i j for i �= j. (3.11)

Equation (3.11) describes phase-destroying processes. In order to restore quantum me-
chanical consistency, we have to add fluctuating forces Γi j so that the total Heisenberg
equations acquire the form

dPi j
dt

= i

�

[
H ,Pi j

]
+ L̄r,i j +Γi j(t), (3.12)

where, however, in the second term on the right-hand side the averaged P̄ is to be replaced
by P. We now turn to the explicit determination of the fluctuating forces Γ.

4. Haken-Weidlich theorem [3, 4]

We denote quantum statistical averages by square brackets. We assume that, for instance,
the following averaged equations are given phenomenologically or partly phenomeno-
logically and partly from first principles:

d
〈
Pi j
〉

dt
=
∑
kl

〈
Mij,klPkl

〉
, (4.1)

where the elements M do not depend on P, but may depend on variables of other quan-
tum systems. As one may show, the solutions to (4.1) do not obey the quantum mechani-
cal consistency relations (3.1). To restore quantum mechanical consistency, we introduce
the equation

dPi j
dt

=
∑
kl

MijklPkl +Γi j(t). (4.2)

We assume that the averages vanish:

〈
Γi j(t)

〉= 0, (4.3)

and that the fluctuating forces are δ-correlated in time:

〈
Γi j(t)Γkl(t′)

〉=Gij,klδ(t− t′). (4.4)

This is the only assumption to be made in the present context. In many cases, it is ful-
filled if for instance the reservoirs are broadband or the relaxation time of the fluctuating
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forces is short compared to that of all other processes in the system. The Haken-Weidlich
theorem states that the strength of the fluctuating forces is uniquely determined by

Gij,kl =
∑
mn

〈(
δjkMil,mn− δnlMij,mk − δmiMkl, jn

)
Pmn

〉
. (4.5)

As a comparison with Section 3, for example (3.3), M may be decomposed into

Mij,kl =M(1)
i j,kl +M(2)

i j,kl, (4.6)

where M(1) stems from i/�[H ,Pi j]. As can be shown, the terms M(1) cancel each other
so that it is sufficient to determine the strengths of the fluctuating forces by using M(2)

instead of M in (4.5). We illustrate our result by means of an example that is self-explan-
atory:

d
〈
Pi j
〉

dt
=−γi j

〈
Pi j
〉

, i �= j,

Mijkl =−γi jδikδjl, i �= j,

d
〈
Pii
〉

dt
=−2W

〈
Pii
〉

+W
〈
Pi+1,i+1

〉
+W

〈
Pi−1,i−1

〉
, i= j,

Mii,ii =−2W , Mii,i+1,i+1 =W , Mii,i−1,i−1 =W.

(4.7)

5. Composite quantum systems

Logical elements are realized by means of the interaction or transformations of different
quantum systems as can be seen, for example, from (2.2). We must observe, however, that
such relations can be translated into quantum mechanics in several ways depending on
the experimental setup. For instance, the particle numbers can be translated into particle
number operators according to

n
j
l −→ P

j
1,1, (5.1)

but they can also be translated into probability amplitudes according to

nj −→ bj , (5.2)

where bj is an annihilation operator of a particle of the kind j. In the latter case, the
interaction stems from the Hamiltonian of the form

H = gb+
r b1b2 + g∗b+

2 b
+
1 br , (5.3)

and the annihilation operators must be translated into projection operators according to

bj −→ P
j
0,1. (5.4)

The details of these translations will be published elsewhere. Here, however, we want to
concentrate on the central issue, namely, how to generalize the Haken-Weidlich theorem
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to composite quantum systems. This requires the introduction of the appropriate multi-
plication rules of projection operators. First, we adopt the already known rule

P1
i jP

1
kl = δjkP

1
il, (5.5)

where the upper index l refers to the specific subsystem. Similarly we have

P2
i jP

2
kl = δjkP

2
il . (5.6)

However, what is new is the relation for the composite system given by

P1
i jP

2
kl = P0

ik, jl . (5.7)

From (5.5), (5.6), and (5.7), we may deduce the following multiplication rules:

P1
i jP

0
i′k′, j′l′ ≡ P1

i jP
1
i′, j′P

2
k′l′ = δji′P

0
ik′, j′l′ , (5.8)

P2
i jP

0
i′k′, j′l′ = P2

i jP
1
i′ j′P

2
k′l′ = δjk′P

0
i′i, j′l′ , (5.9)

P0
i j,klP

0
i′ j′,k′l′ = P1

ikP
2
jlP

1
i′k′P

2
j′l′ = δki′δl jP

0
i jk′l′ . (5.10)

For the following, we need a concise notation so that we introduce the following abbrevi-
ations: PK

i
˜
, j
˜

for K = 1, i
˜
= 1, and j

˜
= j; for K = 2, i

˜
= 1, and j

˜
= j; and for K = 0, i

˜
= i1i2,

and j
˜
= j1 j2. With its help, we can cast the relations (5.5), (5.6), (5.7), (5.8), (5.9), and

(5.10) in the concise form

PK
i
˜
, j
˜
PL
i
˜
′, j
˜
′ = hKLVi

˜
, j
˜

;i
˜
′, j
˜
′;i
˜
′′, j

˜
′′ ·PV

i
˜
′′ j
˜
′′ , (5.11)

where, for instance, if (K ,L)= 1,1, h111
i j,i′ j′,i′′ j′′ = δji′δi′′iδ j′ j′′ holds. The basic idea is now

similar to that of Section 4. We assume that the averaged equations

d

dt

〈
PK
i
˜
, j
˜

〉
=
〈∑

k
˜

,l
˜
,L

MKL
i
˜
j
˜

,k
˜
l
˜
PL
k
˜
l
˜

〉
, (5.12)

that may be either based on Hamiltonians and phenomenologically added incoherent
terms, or containing only incoherent terms, are given. We want to convert these equations
into quantum mechanically consistent equations by adding fluctuating forces

d

dt
PK
i
˜
, j
˜
=
∑
k
˜

, l
˜
,L

MKL
i
˜
j
˜

,k
˜
l
˜
PL
k
˜
l
˜

+ΓLi
˜
j
˜
. (5.13)

We lump the projection operators together to a state vector

A=


P(1)

P(2)

P(0)


 (5.14)
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that has to obey equations that we write in the form

dA

dt
=MA+Γ. (5.15)

The formal solution of (5.15) reads

A=
∫ t

G(t,τ)Γ(τ)dτ +Ah, (5.16)

where G is the Green’s function with the property

G(t, t)= E (5.17)

and Ah a solution to the homogeneous equation (5.15). We consider

〈
ÃBA

〉=
〈(∫ t

Γ̃(τ)G̃(t,τ)dτ + Ãh

)
B

(∫ t

G(t,τ′)Γ(τ′)dτ′ +Ah

)〉
, (5.18)

where the tilde refers to the transposed matrix or transposed vector Ã, B̃, and so forth.
We have introduced a matrix B in the form

B =


B11 B12 B10

B21 B22 B20

B01 B02 B00


 , (5.19)

where each submatrix is further labelled by means of indices I = i
˜
, j

˜
, where eventually we

will choose only one nonvanishing element. Because of (5.11), we obtain for the left-hand
side of (5.15)

〈
PK
I B

KL
IJ P

L
J

〉= BKL
IJ

〈
PK
I P

L
J

〉= BKL
IJ h

KLV
I ,I′,I′′

〈
PV
I′′
〉
. (5.20)

Taking the derivative with respect to time, we then obtain for the left-hand side of (5.18)
the relation

d

dt

〈
PK
I B

KL
IJ P

L
J

〉=BKL
IJ h

KLV
I ,I′,I′′

∑
J ,W

〈
MVW

I′′J P
W
J

〉
. (5.21)

After differentiation, the right-hand side (5.18) contains the terms

〈
Γ̃(t)B

(∫ t

0
G(t,τ)Γ(τ)dτ +Ah

)〉
, (5.22)

〈(∫ t

0
Γ̃(τ)G̃(t,τ)dτ + Ãh

)
BΓ(τ)

〉
, (5.23)

〈
ÃM̃BA

〉
, (5.24)〈

ÃB̃MA
〉
. (5.25)
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A simple analysis and using a single element of B transforms (5.22) into BKL
IJ 1/2GKL

IJ and
the same expression results from (5.23). The expression (5.25) can easily be transformed
into

BKL
IJ

〈
PK
I

∑
NU

MLU
JN PU

N

〉
= BKL

IJ

∑
NU

hKUV
INJ ′

〈
MLU

JN PV
J ′
〉
. (5.26)

Similarly, the expression 〈(MA)TBKL
IJ P

L
J 〉 that stems from (5.24) can be transformed into

BKL
IJ

∑
I′,V ′

〈
MKV ′

IJ ′ PW
J ′′
〉
hV

′LW
J ′JJ ′′ . (5.27)

Collecting all expressions and choosing only one matrix element B with its specific in-
dices, we obtain our final result

GKL
IJ = hKLVI ,I′,I′′′

∑
JW

〈
MVW

I′′J P
W
J

〉−∑
NU

hKUV
INJ ′

〈
MLU

JN PV
J ′
〉

−
∑
J ′,V ′

hV
′LW

J ′JJ ′′
〈
MKV ′

IJ ′ PW
J ′′
〉
.

(5.28)

This is the desired extension of the theorem of Section 4 to a composite quantum system.

6. Conclusion and outlook

Some general remarks about the applicability of our above formalism may be in order.
The projection operators correspond, at least in general, to physical observables, such
as occupation numbers, (complex) amplitudes, and so forth. With their help, we may
calculate correlation functions of the form

〈
PV
I ,J(t)P

V ′
I′,J ′(t

′)
〉

(6.1)

or

〈(
PV
I ,J(t)−

〈
PV
I ,J(t)

〉)(
PV ′
I′,J ′(t

′)− 〈PV ′
I′,J ′(t

′)
〉)〉

. (6.2)

In particular, the latter form (6.2) enables us to determine the contribution of the fluc-
tuations. We may thus determine the error made by a quantum device, for example, by a
logical gate. The formalism is rather general in that it does not only apply to elementary
excitations, but also to general collective states provided that they can be characterized by
quantum numbers and that their generalized Heisenberg equations are known.

A final remark should be made. As our above formalism reveals, Hamiltonian quan-
tum systems are noise free. Only when they are coupled to reservoirs that cause inco-
herent processes, fluctuations become manifest. Explicit examples on specific logical ele-
ments will be published elsewhere.
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