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The existence of positive periodic solutions for a delayed discrete predator-prey model
with Holling-type-III functional responseN1(k+1)=N1(k)exp{b1(k)−a1(k)N1(k− [τ1])
−α1(k)N1(k)N2(k)/(N2

1 (k) +m2N2
2 (k))}, N2(k + 1) = N2(k)exp{−b2(k) + α2(k)N2

1 (k −
[τ2])/(N2

1 (k − [τ2]) + m2N2
2 (k − [τ2]))} is established by using the coincidence degree

theory. We also present sufficient conditions for the globally asymptotical stability of this
system when all the delays are zero. Our investigation gives an affirmative exemplum for
the claim that the ratio-dependent predator-prey theory is more reasonable than the tra-
ditional prey-dependent predator-prey theory.

1. Introduction

The current spectacular interest in ecological systems has built up gradually; it can be
traced back to the years after the First World War. Since the pioneering theoretical works
by Lotka and Volterra early at that time, the study of realistic mathematical models in
ecology, especially the study of the relations between species and their environment, has
become a very popular topic that interested mathematicians as well as biologists. Inves-
tigations on various population models reflect their use in helping to understand the
dynamic processes involved in such areas as predator-prey and competition, renewable
resource management, evolution of pesticide resistant strains, ecological control of pests,
multispecies societies, plant-herbivore systems, and so on. The increasing use of mathe-
matics in biology is inevitable as biology becomes more quantitative. In fact, most realistic
biology problems could be solved on the fundament of constructing suitable mathemati-
cal models. In many such models, the key terms specifying the outcome of predator-prey
interactions are the functional and numerical responses, which reflect the relationship
between predators and their prey. The dynamic relationship between predators and their
prey has long been and will continue to be one of the dominant themes in both ecology
and mathematical ecology due to its universal existence and importance (see Berryman
[4]). Although these problems may appear to be mathematically simple at first sight,
they are, in fact, very challenging and complicated. There are many different kinds of

Copyright © 2004 Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society 2004:2 (2004) 325–343
2000 Mathematics Subject Classification: 92D25, 34C25, 39A10
URL: http://dx.doi.org/10.1155/S1026022604310010

http://dx.doi.org/10.1155/S1026022604310010


326 Periodic solutions and stability

predator-prey models in the literature; for more details, we refer to [4, 8]. In general, a
predator-prey system takes the form

x′ = rx
(

1− x

K

)
−ϕ(x)y,

y′ = y
(
µϕ(x)−D

)
,

(1.1)

where ϕ(x) is the functional response function, which reflects the capture ability of the
predator. For more biological meaning, the reader may consult [8, 24]. Massive work has
been done on this issue. We refer to the monographs [10, 19, 25, 28] for general delayed
biological systems and to [13, 27, 29, 30, 31, 33, 35] for investigations on predator-prey
systems. Here ϕ(x) may be in different forms: the standard Holling-type-I, type-II, and
type-III response functions [12], Ivlev’s functional response [17], and Rosenzweig’s func-
tional response [26]. For the most examples that appear in the literature, it is assumed
that ϕ(x) has the second continuous derivative and satisfies the following assumptions:
(i) ϕ(0)= 0; (ii) ϕ′(x) > 0 for x ≥ 0; (iii) ϕ′′(x) < 0 for x > 0; (iv) limx→+∞ϕ(x)= c <∞.

Recently, there is growing explicit biological and physiological evidence [3, 13, 18, 20]
that in many situations, especially when predators have to search for food (and, therefore,
have to share or compete for food), a more suitable general predator-prey theory should
be based on the so-called ratio-dependent theory, which can be roughly stated as that
the per capita predator growth rate should be a function of the ratio of prey-to-predator
abundance, and so should be the so-called ratio-dependent functional response (thus the
traditional model (1.1) should be named as prey-dependent model [14]). This is strongly
supported by numerous field and laboratory experiments and observations [2, 11]. A
general form of a ratio-dependent model is

x′ = rx
(

1− x

K

)
−ϕ

(
x

y

)
y,

y′ = y
(
µϕ
(
x

y

)
−D

)
.

(1.2)

Here the predator-prey interactions are described by ϕ(x/y) instead of ϕ(x) in (1.1). This
can be interpreted as follows. When the numbers of predators change slowly (relative
to the change of their prey), there is often competition among the predators, and the
per capita rate of predation depends on the numbers of both preys and predators, most
likely and simply on their ratio. For system (1.2) with periodic coefficients, Fan et al.
[7] explored the existence of periodic solutions with delays. In addition, most research
papers concentrate on the so-called Michaelis-Menten-type ratio-dependent predator-
prey model

x′ = rx
(

1− x

K

)
− αxy

my + x
,

y′ = y
(
−d+

f x

my + x

)
;

(1.3)
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see [3, 13, 18, 20, 32] and the references therein. In view of periodicity of the actual
environment, Fan and Wang [5] established verifiable criteria for the global existence
of positive periodic solutions of a more general delayed ratio-dependent predator-prey
model with periodic coefficients of the form

x′(t)= x(t)
[
a(t)− b(t)

∫ t

−∞
k(t− s)x(s)ds

]
− c(t)x(t)y(t)
my(t) + x(t)

,

y′(t)= y(t)
[

f (t)x
(
t− τ(t)

)
my(t− τ) + x(t− τ)

−d(t)
]
.

(1.4)

The functional response function ϕ(u)= cu/(m+u), u= x/y, in above models was used
by Holling as Holling-type-II function; they usually describe the uptake of substrate by
the microorganisms in microbial dynamics or chemical kinetics [8].

But when we describe the relationship between higher animals, a more suitable re-
sponse function,

ϕ(x)= µx2

1 + ρx2
, (1.5)

should be taken into consideration in the predator-prey interactions, which is proposed
by Holling [12] based on experiment. This response function is usually called the Holling-
type-III response function [8]. In our previous papers [29, 30], we established verifiable
criteria for the global existence of positive periodic solutions and the stability of the fol-
lowing delayed predator-prey model with Holling-type-III response function:

N ′
1(t)=N1(t)

[
b1(t)− a1(t)N1

(
t− τ1(t)

)− α1(t)N1(t)
1 +mN2

1 (t)
N2
(
t− σ(t)

)]
,

N ′
2(t)=N2(t)

[
− b2(t)− a2(t)N2(t) +

α2(t)N2
1

(
t− τ2(t)

)
1 +mN2

1

(
t− τ2(t)

)],
(1.6)

where N1(t), N2(t) are the densities of the prey population and predator population at
time t, bi : R→ R, ai,τi,σ ,αi : R→ [0,+∞) (i = 1,2) are continuous functions of period
T and

∫ T
0 bi(t)dt > 0, αi(t) �= 0, and m is a nonnegative constant. And, in [31], we inves-

tigated the global existence of positive periodic solutions and the permanent property
of the ratio-dependent predator-prey system with Holling-type-III functional response
which takes the form

x′(t)= x(t)
[
a(t)− b(t)

∫ t

−∞
k(t− s)x(s)ds

]
− c(t)x2(t)y(t)
m2y2(t) + x2(t)

,

y′(t)= y(t)
[

e(t)x2(t− τ)
m2y2(t− τ) + x2(t− τ)

−d(t)
]

,

(1.7)

where the functional response function ϕ(u) = cu2/(1 +m2u2), u = x/y; a(t), b(t), c(t),
e(t), and d(t) are all positive periodic continuous functions; and m > 0, τ ≥ 0 are real
constants.

On the other hand, though most predator-prey theories are based on continuous mod-
els governed by differential equations, the discrete-time models are more appropriate
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than the continuous ones when the size of the population is rarely small or the popu-
lation has non-overlapping generations [1, 25]. For the discrete Michaelis-Menten-type
ratio-dependent predator-prey model, Fan and Wang [6] established the existence of pos-
itive periodic solutions.

Based on the above considerations, we pay our attention to the discrete-time analogue
of the ratio-dependent predator-prey system with Holling-type-III functional response.
We organize the present paper as follows. In the next section, by using the coincidence
degree theory developed by Gaines and Mawhin [9], we will establish some sufficient
conditions for the existence of at least one positive ω-periodic solution. For the work
concerning the existence of periodic solutions of delay differential equations which was
done by using coincidence degree theory, we refer to [15, 16, 21, 22, 23, 31, 34] and refer-
ences cited therein. In view of the importance of the problem concerning the survival of
species in ecological systems, we will present sufficient conditions for the globally asymp-
totical stability of the system in consideration when all the delays are zero in Section 3. A
brief discussion is carried out in the final section.

2. Existence of positive periodic solutions

Throughout this paper, we always denote Z, Z+, R, R+, and R2 as the sets of all integers,
nonnegative integers, real numbers, nonnegative real numbers, and two-dimensional
Euclidean vector space, respectively.

We begin with the corresponding continuous ratio-dependent predator-prey system
with Holling-type-III functional response:

dN1(t)
dt

=N1(t)
[
b1(t)− a1(t)N1

(
t− τ1

)]− α1(t)N2
1 (t)N2(t)

N2
1 (t) +m2N2

2 (t)
,

dN2(t)
dt

=N2(t)

[
− b2(t) +

α2(t)N2
1

(
t− τ2

)
N2

1

(
t− τ2

)
+m2N2

2

(
t− τ2

)
]

,

(2.1)

where N1(t) and N2(t) represent the densities of the prey population and predator popu-
lation, respectively, at time t; m> 0, τ1 ≥ 0, τ2 ≥ 0 are real constants; bi : R→R and a1,αi :
R→R+ (i= 1,2) are continuous periodic functions with period ω > 0 and

∫ ω
0 bi(t)dt > 0

(i = 1,2); b1(t) stands for prey intrinsic growth rate; b2(t) stands for the death rate of
the predator; α1(t) and α2(t) stand for the conversion rates; m stands for half captur-
ing saturation; the function N1(t)[b1(t)− a1(t)N1(t− τ1)] represents the specific growth
rate of the prey in the absence of the predator; and N2

1 (t)/(N2
1 (t) +m2N2

2 (t)) denotes the
ratio-dependent response function, which reflects the capture ability of the predator.

We assume that the average growth rates in (2.1) change at regular intervals of time,
then we can incorporate this aspect in (2.1) and obtain the following modified system:

1
N1(t)

dN1(t)
dt

= b1
(
[t]
)− a1

(
[t]
)
N1
(
[t]− [τ1

])− α1
(
[t]
)
N1
(
[t]
)
N2
(
[t]
)

N2
1

(
[t]
)

+m2N2
2

(
[t]
) ,

1
N2(t)

dN2(t)
dt

=−b2
(
[t]
)

+
α2
(
[t]
)
N2

1

(
[t]− [τ2

])
N2

1

(
[t]− [τ2

])
+m2N2

2

(
[t]− [τ2

]) , t �= 0,1,2, . . . ,

(2.2)
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where [t] denotes the integer part of t, t ∈ (0,+∞). By a solution of (2.2), we mean a
function N = (N1,N2)T , which is defined for t ∈ (0,+∞) and possesses the following
properties:

(1) N is continuous on [0,+∞);
(2) the derivatives dN1(t)/dt, dN2(t)/dt exist at each point t ∈ [0,+∞) with the pos-

sible exception of the points t ∈ {0,1,2, . . .}, where left-sided derivatives exist;
(3) the equations in (2.2) are satisfied on each interval [k,k+ 1) with k = 0,1,2, . . . .

On any interval of the form [k,k+ 1), k = 0,1,2, . . . , we can integrate (2.2) and obtain,
for k ≤ t < k+ 1, k = 0,1,2, . . . ,

N1(t)=N1(k)exp

{[
b1(k)− a1(k)N1

(
k− [τ1

])− α1(k)N1(k)N2(k)
N2

1 (k) +m2N2
2 (k)

]
(t− k)

}
,

N2(t)=N2(k)exp

{[
− b2(k) +

α2(k)N2
1

(
k− [τ2

])
N2

1

(
k− [τ2

])
+m2N2

2

(
k− [τ2

])
]

(t− k)

}
.

(2.3)

Letting t→ k+ 1, we obtain from (2.3) that

N1(k+ 1)=N1(k)exp

{
b1(k)− a1(k)N1

(
k− [τ1

])− α1(k)N1(k)N2(k)
N2

1 (k) +m2N2
2 (k)

}
,

N2(k+ 1)=N2(k)exp

{
− b2(k) +

α2(k)N2
1

(
k− [τ2

])
N2

1

(
k− [τ2

])
+m2N2

2

(
k− [τ2

])
}

,

(2.4)

which is a discrete-time analogue of system (2.1), where N1(t), N2(t) are the densities of
the prey population and predator population, respectively, at time t.

For convenience, in the sequel, we denote

Iω = {0,1, . . . ,ω− 1}, g = 1
ω

ω−1∑
k=0

g(k), G= 1
ω

ω−1∑
k=0

∣∣g(k)
∣∣, (2.5)

where {g(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.
The exponential form of (2.4) assures that, for any initial condition N(0) > 0, N(k)

remains positive. In the remainder of this paper, for biological reasons, we only consider
solutions N(k) with

Ni(−k)≥ 0, k = 1,2, . . . ,max
{[
τ1
]
,
[
τ2
]}

, Ni(0) > 0, i= 1,2. (2.6)

In order to obtain the existence of a positive periodic solution of system (2.4), we first
make the following preparations.

Let Ω ⊂ Rn be an open bounded set with closure Ω and f ∈ C1(Ω,Rn)∩C(Ω,Rn).
For x ∈Ω, let J f (x) denote the Jacobian determinant of f at x and let S f be the set of all
critical points of f , that is, S f = {x ∈Ω : J f (x)= 0}.

For y ∈Rn\ f (∂Ω∪ S f ), that is, y is a regular point of f , the degree of f at y is defined
as

deg{ f ,Ω, y} =
∑

x∈ f −1(y)

sgn J f (x). (2.7)
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Let X and Z be two Banach spaces, DomL⊂ X a subspace, and L : DomL→ Z a linear
mapping. The Kernel of L is defined by KerL= L−1(0) and its range by ImL= L(DomL).

Let CokerL= Z/ ImL be the quotient space of Z under the equivalence relation z˜z′ ⇔
z− z′ ∈ ImL. Thus, CokerL= {z+ ImL : z ∈ Z}. So dimCokerL= codimImL.

The linear mapping L is called a Fredholm mapping if (i) ImL is closed in Z and (ii)
KerL and CokerL are finitely dimensional. When L is a Fredholm mapping, its index
is defined by IndL = dimKerL− codimImL. If IndL = 0, then L is called a Fredholm
mapping of index zero.

If L is a Fredholm mapping of index zero, then there exist continuous projections
P : X → X and Q : Z → Z such that

ImP = KerL, ImL= KerQ = Im(I −Q). (2.8)

Define LP : DomL∩KerP → ImL as the restriction LDomL∩KerP of L to DomL∩KerP.
Then LP is an isomorphism. Define KP : ImL→DomL by

KP = L−1
P . (2.9)

Then (a) KP is one-to-one and PKP = 0; (b)on ImL, LKP = I ; and (c)on DomL, KPL =
I −P.

Let N : X → Z be a continuous mapping. N is called L-compact on Ω if QN(Ω) is
bounded and KP(I −Q)N : Ω→ X is compact. Since ImQ is isomorphic to KerL, there is
an isomorphism

J : ImQ −→ KerL. (2.10)

In the proof of our main theorem, we will use the following result from Gaines and
Mawhin [9, page 40].

Theorem 2.1. Let X and Z be two Banach spaces and let L be a Fredholm mapping of index
zero. Assume that N : Ω→ Z is L-compact on Ω with Ω open bounded in X . Furthermore,
assume that

(a) for each λ∈ (0,1), x ∈ ∂Ω∩DomL,

Lx �= λNx; (2.11)

(b) for each x ∈ ∂Ω∩KerL,

QNx �= 0,

deg{JQNx,Ω∩KerL,0} �= 0, JQN : KerL−→ KerL.
(2.12)

Then the equation Lx =Nx has at least one solution in Ω∩DomL.

We are now in a position to state two lemmas that guarantee our main result.



L.-L. Wang and W.-T. Li 331

Lemma 2.2 [6]. Let g : Z→R be a function satisfying g(k+ω)= g(k), k ∈ Z. Then for any
fixed k1,k2 ∈ Iω and k ∈ Z,

g(k)≤ g
(
k1
)

+
ω−1∑
k=0

∣∣g(k+ 1)− g(k)
∣∣,

g(k)≥ g
(
k2
)− ω−1∑

k=0

∣∣g(k+ 1)− g(k)
∣∣.

(2.13)

Lemma 2.3. Assume that the following conditions hold:

(H1) 2mb1 > α1,
(H2) α2 > b2.

Then the system of algebraic equations

b1− a1u1−α1
u1u2

u2
1 +m2u2

2
= 0,

b2−α2
u2

1

u2
1 +m2u2

2
= 0

(2.14)

has a unique solution (u∗1 ,u∗2 )T ∈R2 with u∗i > 0, i= 1,2.

Proof. Let v = u2/u1 > 0, then from the second equation of (2.14) and in view of (H2),
we can solve that

v =
√√√√α2− b2

m2b2
. (2.15)

The first equation of (2.14) and (H1) imply

u∗1 =
b1

a1
− α1v

a1
(
1 +m2v2

) ≥ b1

a1
− α1v

2ma1v
= 1

2ma1

(
2mb1−α1

)
> 0,

u∗2 = vu∗1 > 0.
(2.16)

It follows that the algebraic equations (2.14) have a unique solution (u∗1 ,u∗2 )T ∈R2 with
u∗i > 0, i= 1,2. The proof is complete. �

Define

l2 =
{
y = y(k) : y(k)∈R

2, k ∈ Z
}
. (2.17)

For θ = (θ1,θ2)T ∈ R2, define |θ| = max{θ1,θ2}. Let lω ⊂ l2 denote the subspace of all
ω-periodic sequences equipped with the norm

‖y‖ =max
k∈Iω

∣∣y(k)
∣∣, (2.18)
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that is,

lω = {y = y(k) : y(k+ω)= y(k), y(k)∈R
2, k ∈ Z

}
. (2.19)

It is not difficult to show that lω is a finite-dimensional Banach space.
Set

lω0 =
{
y = y(k)∈ lω :

ω−1∑
k=0

y(k)= 0
}

,

lωc =
{
y = y(k)∈ lω : y(k)= h∈R

2, k ∈ Z
}
.

(2.20)

Then it follows that lω0 and lωc are both closed linear subspaces of lω and

lω = lω0 ⊕ lωc , dim lωc = 2. (2.21)

Now we state our main result of this section.

Theorem 2.4. Assume that (H1) and (H2) hold. Then (2.4) has at least one positive ω-
periodic solution.

Proof. Make the change of variables

N1(t)= exp
{
x1(t)

}
, N2(t)= exp

{
x2(t)

}
; (2.22)

then (2.4) can be reformulated as

x1(k+ 1)− x1(k)= b1(k)− a1(k)exp
{
x1
(
k− [τ1

])}− α1(k)exp
{
x1(k) + x2(k)

}
exp

{
2x1(k)

}
+m2 exp

{
2x2(k)

} ,

x2(k+ 1)− x2(k)=−b2(k) +
α2(k)exp

{
2x1

(
k− [τ2

])}
exp

{
2x1

(
k− [τ2

])}
+m2 exp

{
2x2

(
k− [τ2

])} .
(2.23)

Define

X = Y = lω, (Lx)(k)= x(k+ 1)− x(k),

(Nx)(k)=



b1(k)− a1(k)exp

{
x1
(
k− [τ1

])}− α1(k)exp
{
x1(k) + x2(k)

}
exp

{
2x1(k)

}
+m2 exp

{
2x2(k)

}
−b2(k) +

α2(k)exp
{

2x1
(
k− [τ2

])}
exp

{
2x1

(
k− [τ2

])}
+m2 exp

{
2x2

(
k− [τ2

])}




≡
[�1(k)
�2(k)

]
,

(2.24)

for any x ∈ X and k ∈ Z. It is easy to see that L is a bounded linear operator,

KerL= lωc , ImL= lω0 , dimKerL= 2= codimImL, (2.25)

then it follows that L is a Fredholm mapping of index zero.
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Set

Px = 1
ω

ω−1∑
k=0

x(s), x ∈ X , Qz = 1
ω

ω−1∑
k=0

z(s), z ∈ Y , (2.26)

and P, Q are continuous projectors such that

ImP = KerL, KerQ = ImL= Im(I −Q). (2.27)

Furthermore, the generalized inverse to L

KP : ImL−→ KerP∩DomL (2.28)

exists and can be read as

KP(z)=
k−1∑
s=0

z(s)− 1
ω

ω−1∑
s=0

(ω− s)z(s). (2.29)

Thus

QNx =




1
ω

∑ω−1
k=0 �1(k)

1
ω

∑ω−1
k=0 �2(k)


 ,

KP(I −Q)Nx =




1
ω

∑ω−1
s=0 �1(s)

1
ω

∑ω−1
s=0 �2(s)


−




1
ω

∑ω−1
s=0 (ω− s)�1(s)

1
ω

∑ω−1
s=0 (ω− s)�2(s)




−



(
k− ω+ 1

2

)
1
ω

∑ω−1
s=0 �1(s)

(
k− ω+ 1

2

)
1
ω

∑ω−1
s=0 �2(s)


 .

(2.30)

Obviously, QN and KP(I − Q)N are continuous. It is not difficult to show that

KP(I −Q)N(Ω) is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli
theorem. Moreover, QN(Ω) is clearly bounded. Thus, N is L-compact on Ω with any
open bounded set Ω⊂ X .
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Now we reach the position to search for an appropriate open bounded set Ω for the
application of the continuation theorem. Corresponding to the operator equation Lx =
λNx, λ∈ (0,1), we have

x1(k+ 1)− x1(k)

= λ

[
b1(k)− a1(k)exp

{
x1
(
k− [τ1

])}− α1(k)exp
{
x1(k) + x2(k)

}
exp

{
2x1(k)

}
+m2 exp

{
2x2(k)

}
]

,

x2(k+ 1)− x2(k)

= λ

[
− b2(k) +

α2(k)exp
{

2x1
(
k− [τ2

])}
exp

{
2x1

(
k− [τ2

])}
+m2 exp

{
2x2

(
k− [τ2

])}
]
.

(2.31)

Assume that x(t)∈ X is an ω-periodic solution of (2.31) for a certain λ∈ (0,1). Sum-
ming on both sides of (2.31) from 0 to ω− 1 with respect to k, we obtain

ω−1∑
k=0

[
x1(k+ 1)− x1(k)

]

= λ
ω−1∑
k=0

[
b1(k)− a1(k)exp

{
x1
(
k− [τ1

])}− α1(k)exp
{
x1(k) + x2(k)

}
exp

{
2x1(k)

}
+m2 exp

{
2x2(k)

}
]

,

ω−1∑
k=0

[
x2(k+ 1)− x2(k)

]

= λ
ω−1∑
k=0

[
− b2(k) +

α2(k)exp
{

2x1
(
k− [τ2

])}
exp

{
2x1

(
k− [τ2

])}
+m2 exp

{
2x2

(
k− [τ2

])}
]
.

(2.32)

Notice that

ω−1∑
k=0

[
x1(k+ 1)− x1(k)

]= ω−1∑
k=0

[
x2(k+ 1)− x2(k)

]= 0. (2.33)

Thus

b1ω =
ω−1∑
k=0

[
a1(k)exp

{
x1
(
k− [τ1

])}
+

α1(k)exp
{
x1(k) + x2(k)

}
exp

{
2x1(k)

}
+m2 exp

{
2x2(k)

}
]

, (2.34)

b2ω =
ω−1∑
k=0

α2(k)exp
{

2x1
(
k− [τ2

])}
exp

{
2x1

(
k− [τ2

])}
+m2 exp

{
2x2

(
k− [τ2

])} . (2.35)
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From (2.31), (2.34), and (2.35), we obtain

ω−1∑
k=0

∣∣x1(k+ 1)− x1(k)
∣∣

≤
ω−1∑
k=0

[∣∣b1(k)
∣∣+ a1(k)exp

{
x1
(
k− [τ1

])}
+

α1(k)exp
{
x1(k) + x2(k)

}
exp

{
2x1(k)

}
+m2 exp

{
2x2(k)

}
]

= (B1 + b1
)
ω,

(2.36)

ω−1∑
k=0

∣∣x2(k+ 1)− x2(k)
∣∣

≤
ω−1∑
k=0

∣∣b2(k)
∣∣+

ω−1∑
k=0

α2(k)exp
{

2x1
(
k− [τ2

])}
exp

{
2x1

(
k− [τ2

])}
+m2 exp

{
2x2

(
k− [τ2

])}
= (B2 + b2

)
ω.

(2.37)

Note that x(t)= (x1(t),x2(t))T ∈ X ; then there exist ξi,ηi ∈ Iω (i= 1,2) such that

xi
(
ξi
)=min

k∈Iω
xi(k), xi

(
ηi
)=max

k∈Iω
xi(k), i= 1,2. (2.38)

In view of (2.34) and (2.38), we get

a1ωexp
{
x1
(
ξ1
)}≤ ω−1∑

k=0

[
a1(k)exp

{
x1
(
k− [τ1

])}]≤ b1ω, (2.39)

so we get

x1
(
ξ1
)≤ ln

(
b1

a1

)
. (2.40)

Combining (2.40) with (2.36) and in view of Lemma 2.2, we conclude that

x1(k)≤ x1
(
ξ1
)

+
ω−1∑
k=0

∣∣x1(s+ 1)− x1(s)
∣∣≤ ln

(
b1

a1

)
+
(
B1 + b1

)
ω :=H11. (2.41)

Also, from (2.34), (2.38), and the inequality a2 + b2 ≥ 2ab, we have

b1ω−
ω−1∑
k=0

a1(k)exp
{
x1
(
k− [τ1

])}= ω−1∑
k=0

α1(k)exp
{
x1(k) + x2(k)

}
exp

{
2x1(k)

}
+m2 exp

{
2x2(k)

} ≤ α1

2m
ω,

(2.42)

which implies

a1ωexp
{
x1
(
η1
)}≥ b1ω− α1

2m
ω; (2.43)
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by (H1), we get

x1
(
η1
)≥ ln

(
2mb1−α1

2ma1

)
; (2.44)

also, in terms of (2.36) and Lemma 2.2, we obtain

x1(k)≥ x1
(
η1
)− ω−1∑

k=0

∣∣x1(s+ 1)− x1(s)
∣∣

≥ ln
(

2mb1−α1

2ma1

)
− (B1 + b1

)
ω =H12.

(2.45)

Thus (2.41) and (2.45) lead to

∣∣x1(k)
∣∣≤max

{∣∣H11
∣∣,
∣∣H12

∣∣} :=H1. (2.46)

On the other hand, from (2.35), we know that

b2ω ≤
ω−1∑
k=0

α2(k)exp
{
x1
(
k− [τ2

])}
2mexp

{
x2
(
k− [τ2

])} ≤ α2ωexp
{
H11

}
2mexp

{
x2
(
ξ2
)} , (2.47)

which yields

x2
(
ξ2
)≤ ln

(
α2 exp

{
H11

}
2mb2

)
; (2.48)

in view of (2.37) and Lemma 2.2, we obtain

x2(k)≤ x2
(
ξ2
)

+
ω−1∑
k=0

∣∣x2(s+ 1)− x2(s)
∣∣

≤ ln
(
α2 exp

{
H11

}
2mb2

)
+
(
B2 + b2

)
ω =H21.

(2.49)

Also, from (2.35) and the monotonicity of the function x2/(x2 + a), we have

b2ω ≥
ω−1∑
k=0

α2(k)exp
{

2H12
}

exp
{

2H12
}

+m2 exp
{

2x2
(
η2
)} ; (2.50)

by (H2), this leads to

x2
(
η2
)≥ 1

2
ln
(
α2− b2

m2b2

)
+H12. (2.51)
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From (2.51), (2.37), and Lemma 2.2, we know that

x2(k)≥ x2
(
η2
)− ω−1∑

k=0

∣∣x2(s+ 1)− x2(s)
∣∣

≥ 1
2

ln
(
α2− b2

m2b2

)
+H12−

(
B2 + b2

)
ω :=H22.

(2.52)

Combine (2.49) with (2.52), then we can see that

∣∣x2(k)
∣∣≤max

{∣∣H21
∣∣,
∣∣H22

∣∣} :=H2. (2.53)

Obviously, H1 and H2 are independent of the choice of λ. By Lemma 2.3, the algebraic
equations

b1− a1u1−α1
u1u2

u2
1 +m2u2

2
= 0,

b2−α2
u2

1

u2
1 +m2u2

2
= 0

(2.54)

have a unique solution (u∗1 ,u∗2 )T with u∗i > 0 (i = 1,2) under the assumptions in
Theorem 2.4.

Let H =H1 +H2 +H3, where H3 > 0 is large enough such that

∥∥∥( ln
{
u∗1
}

, ln
{
u∗2
})T∥∥∥=max

{∣∣ ln
{
u∗1
}∣∣,

∣∣ ln
{
u∗2
}∣∣} <H3, (2.55)

and define

Ω= {x(t)= (x1(t),x2(t)
)T ∈ X : ‖x‖ <H

}
. (2.56)

It is easy to verify that Ω satisfies Theorem 2.1(a). When x ∈ ∂Ω∩KerL= ∂Ω∩R2, x is
a constant vector in R2 with ‖x‖ =H . Then

QNx =



b1− a1 exp

{
x1
}−α1

exp
{
x1 + x2

}
exp

{
2x1

}
+m2 exp

{
2x2

}
−b2 +α2

exp
{

2x1
}

exp
{

2x1
}

+m2 exp
{

2x2
}


 �= 0. (2.57)

Since ImP = KerL, J can be chosen as the identity mapping. In view of the assumptions
in Theorem 2.4, direct calculation yields

deg{JQN ,Ω∩KerL,0} �= 0. (2.58)
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By now we have proved that Ω satisfies all the conditions in Theorem 2.1. Hence (2.23)
has at least one solution (x∗1 (t),x∗2 (t))T in DomL∩Ω. Set N∗

1 (t)= exp{x∗1 (t)}, N∗
2 (t)=

exp{x∗2 (t)}; then N∗(t)= (N∗
1 (t),N∗

2 (t))T is a positive ω-periodic solution of (2.4). This
completes the proof. �

3. Global asymptotic stability

The purpose of this section is to present sufficient conditions for the globally asymptot-
ical stability of system (2.4) when the delays are all zero; the method we used here is to
construct a suitable Lyapunov function.

Theorem 3.1. Assume that (H1) and (H2) hold and, furthermore, suppose that there exist
positive numbers ν, c1, and c2 such that

(i)

c1a1(k) +
c1α1(k)N∗

2 (k)
(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2 − c2α2(k)
2m2N∗

1 (k)N∗2
2 (k)(

N∗2
1 (k) +m2N∗2

2 (k)
)2 ≥ ν,

(3.1)

(ii)

c2α2(k)
2m2N∗2

1 (k)N∗2
2 (k)(

N∗2
1 (k) +m2N∗2

2 (k)
)2 − c1

α1(k)N∗
1 (k)

(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2 ≥ ν, (3.2)

(iii)

a1(k) +
α1(k)N∗

2 (k)
(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2 ≤ 1, (3.3)

(iv)

α2(k)
2m2N∗2

1 (k)N∗2
2 (k)(

N∗2
1 (k) +m2N∗2

2 (k)
)2 ≤ 1. (3.4)

Then the positive solution of system (2.4) is globally asymptotically stable.

Proof. Let {N∗
i (k)} (i= 1,2) be a positive solution of system (2.4). Introduce the change

of variables

u1(k)=N1(k)−N∗
1 (k), u2(k)=N2(k)−N∗

2 (k). (3.5)
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Then, from system (2.4), we can obtain

u1(k+ 1)

=N1(k)exp

{
b1(k)− a1(k)N1(k)− α1(k)N1(k)N2(k)

N2
1 (k) +m2N2

2 (k)

}

−N∗
1 (k)exp

{
b1(k)− a1(k)N∗

1 (k)− α1(k)N∗
1 (k)N∗

2 (k)
N∗2

1 (k) +m2N∗2
2 (k)

}

=
[
N1(k)exp

{
− a1(k)u1(k)−α1(k)

[
N1(k)N2(k)

N2
1 (k) +m2N2

2 (k)
− N∗

1 (k)N∗
2 (k)

N∗2
1 (k) +m2N∗2

2 (k)

]}

−N∗
1 (k)

]
exp

{
b1(k)− a1(k)N∗

1 (k)− α1(k)N∗
1 (k)N∗

2 (k)
N∗2

1 (k) +m2N∗2
2 (k)

}

=
{[

1− a1(k)N∗
1 (k)− α1(k)N∗

1 (k)N∗
2 (k)

(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2

]
u1(k)
N∗

1 (k)

+
α1(k)N∗

1 (k)
(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2 u2(k) + f1

}
N∗

1 (k+ 1),

u2(k+ 1)

=N2(k)exp

{
− b2(k) +

α2(k)N2
1 (k)

N2
1 (k) +m2N2

2 (k)

}

−N∗
2 (k)exp

{
− b2(k) +

α2(k)N∗2
1 (k)

N∗2
1 (k) +m2N∗2

2 (k)

}

=
[
N2(k)exp

{
α2(k)

[
N2

1 (k)
N2

1 (k) +m2N2
2 (k)

− N∗2
1 (k)

N∗2
1 (k) +m2N∗2

2 (k)

]}
−N∗

2 (k)

]

× exp

{
− b2(k) +

α2(k)N∗2
1 (k)

N∗2
1 (k) +m2N∗2

2 (k)

}

=
[(

1−α2(k)
2m2N∗2

1 (k)N∗2
2 (k)(

N∗2
1 (k) +m2N∗2

2 (k)
)2

)
u2(k)
N∗

2 (k)

+α2(k)
2m2N∗

1 (k)N∗2
2 (k)(

N∗2
1 (k) +m2N∗2

2 (k)
)2 u1(k) + f2

]
N∗

2 (k+ 1), (3.6)

where | fi|/‖u‖ converges, uniformly with respect to k ∈N, to zero as ‖u‖→ 0.
Define a function V by

V
(
u(k)

)= c1

∣∣∣∣ u1(k)
N∗

1 (k)

∣∣∣∣+ c2

∣∣∣∣ u2(k)
N∗

2 (k)

∣∣∣∣, (3.7)
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where c1, c2 are positive constants given in (i). Calculating the difference of V along the
solution of the system, we obtain

∆V = c1

(∣∣∣∣ u1(k+ 1)
N∗

1 (k+ 1)

∣∣∣∣−
∣∣∣∣ u1(k)
N∗

1 (k)

∣∣∣∣
)

+ c2

(∣∣∣∣ u2(k+ 1)
N∗

2 (k+ 1)

∣∣∣∣−
∣∣∣∣ u2(k)
N∗

2 (k)

∣∣∣∣
)

≤−c1

{
a1(k) +

α1(k)N∗
2 (k)

(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2

}∣∣u1(k)
∣∣

+ c1
α1(k)N∗

1 (k)
(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2

∣∣u2(k)
∣∣

− c2α2(k)
2m2N∗2

1 (k)N∗2
2 (k)(

N∗2
1 (k) +m2N∗2

2 (k)
)2

∣∣u2(k)
∣∣

+ c2α2(k)
2m2N∗

1 (k)N∗2
2 (k)(

N∗2
1 (k) +m2N∗2

2 (k)
)2

∣∣u1(k)
∣∣+

2∑
i=1

ci
∣∣ fi∣∣

=−
{
c1a1(k) +

c1α1(k)N∗
2 (k)

(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2

− c2α2(k)
2m2N∗

1 (k)N∗2
2 (k)(

N∗2
1 (k) +m2N∗2

2 (k)
)2

}∣∣u1(k)
∣∣

−
{
c2α2(k)

2m2N∗2
1 (k)N∗2

2 (k)(
N∗2

1 (k) +m2N∗2
2 (k)

)2

− c1
α1(k)N∗

1 (k)
(
m2N∗2

2 (k)−N∗2
1 (k)

)
(
N∗2

1 (k) +m2N∗2
2 (k)

)2

}∣∣u2(k)
∣∣+

2∑
i=1

ci
∣∣ fi∣∣.

(3.8)

Since | fi|/‖u‖ converges uniformly to zero as ‖u‖→ 0, it follows from conditions (i) and
(ii) that there is a positive σ such that if k is sufficiently large and ‖u‖ < σ , then

∆V ≤−ν

2

{∣∣u1(k)
∣∣+

∣∣u2(k)
∣∣} <−ν

4
‖u‖; (3.9)

this means that the trivial solution of (3.6) is uniformly asymptotically stable and so is
the solution N∗(k)= (N∗

1 (k),N∗
2 (k)) of (2.4).

Notice that

max
{
p(x),q(x)

}=
(∣∣p(x)− q(x)

∣∣+ p(x) + q(x)
)

2
≤ ∣∣p(x)

∣∣+
∣∣q(x)

∣∣. (3.10)

Define

Φ(x)= 2x
min

{
exp

{
H12

}
, exp

{
H22

}} ,

Ψ(x)= x

max
{

exp
{
H11

}
, exp

{
H21

}} .
(3.11)
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Then

Ψ
(‖u‖)≤V

(
u(k)

)≤Φ
(‖u‖). (3.12)

From the Lyapunov asymptotically stability theorem [1] and in view of the positive def-
inition of V and (3.9), we obtain that the trivial solution of (3.6) is globally asymptoti-
cally stable. By the medium of (3.5), we reach the conclusion that the solution N∗(k)=
(N∗

1 (k),N∗
2 (k)) of (2.4) is globally asymptotically stable. The proof is complete. �

4. Discussion

In the previous two sections, we have obtained sufficient conditions for the existence of
positive periodic solutions and the globally asymptotical stability of system (2.4) in which
the coefficients are periodic. Here we take the response function as the ratio-dependent
one: ϕ(x/y)= cx2/(x2 +m2y2). For the system with the corresponding predator response
function ϕ(x)= cx2/(1 +mx2), in our previous paper [30], we established verifiable crite-
ria for global existence of positive periodic solutions and stability for the discrete periodic
system

N1(k+ 1)=N1(k)exp

{
b1(k)− a1(k)N1

(
k− [τ1

])− α1(k)N1(k)N2
(
k− [σ]

)
1 +mN2

1 (k)

}
,

N2(k+ 1)=N2(k)exp

{
− b2(k)− a2(k)N2(k) +

α2(k)N2
1

(
k− [τ2

])
1 +mN2

1

(
k− [τ2

])
}
.

(4.1)

By comparison, we find that the conditions for the existence of positive periodic solutions
and the globally asymptotical stability of system (2.4) are weaker than that of system
(4.1) when a2(k) = 0, that is, it is more easier to make the system with ratio-dependent
response function have a positive periodic solution than the system with prey-dependent
response function. Therefore, the species in a model like (2.4) could live better than those
in a model like (4.1). This gives an affirmative exemplum for the claim that the ratio-
dependent predator-prey theory is more reasonable than the traditional prey-dependent
predator-prey theory.
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