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We study that the q-Bernoulli polynomials, which were constructed by Kim, are analytic
continued to βs(z). A new formula for the q-Riemann zeta function ζq(s) due to Kim in
terms of nested series of ζq(n) is derived. The new concept of dynamics of the zeros of
analytic continued polynomials is introduced, and an interesting phenomenon of “scat-
tering” of the zeros of βs(z) is observed. Following the idea of q-zeta function due to Kim,
we are going to use “Mathematica” to explore a formula for ζq(n).

1. Introduction

Throughout this paper, Z, R, and C will denote the ring of integers, the field of real num-
bers, and the complex numbers, respectively.

When one talks of q-extension, q is variously considered as an indeterminate, a com-
plex number, or a p-adic number. In the complex number field, we will assume that
|q| < 1 or |q| > 1. The q-symbol [x]q denotes [x]q = (1− qx)/(1− q).

In this paper, we study that the q-Bernoulli polynomials due to Kim (see [2, 8]) are
analytic continued to βs(z). By those results, we give a new formula for the q-Riemann
zeta function due to Kim (cf. [4, 6, 8]) and investigate the new concept of dynamics of the
zeros of analytic continued polynomials. Also, we observe an interesting phenomenon of
“scattering” of the zeros of βs(z). Finally, we are going to use a software package called
“Mathematica” to explore dynamics of the zeros from analytic continuation for q-zeta
function due to Kim.

2. Generating q-Bernoulli polynomials and numbers

For h∈ Z, the q-Bernoulli polynomials due to Kim were defined as

∞∑
n=0

βn
(
x,h | q)
n!

tn =−t
∞∑
l=0

ql(h+1)+xe[l+x]qt + (1− q)h
∞∑
l=0

qlhe[l+x]qt, (2.1)

for x,q ∈ C (cf. [6, 8]).
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In the special case x = 0, βn(0,h | q) = βn(h | q) are called q-Bernoulli numbers (cf.
[1, 5, 7, 8]).

By (2.1), we easily see that

βn
(
x,h | q)= 1

(1− q)n

n∑
j=0

(
n

j

)
(−1) j

j +h

[ j +h]q
q jx, (cf. [2, 6]), (2.2)

where
(
n
j

)
is a binomial coefficient.

In (2.1), it is easy to see that

qh
(
qβ
(
h | q)+ 1

)n−βn
(
h | q)=




1 if n= 1,

0 if n > 1,
(2.3)

with the usual convention of replacing βn(h | q) by βn(h | q).
By differentiating both sides with respect to t in (2.1), we have

βm
(
h | q)=−m ∞∑

n=0

qhn[n]m−1
q − (q− 1)(m+h)

∞∑
n=0

qhn[n]mq . (2.4)

Expanding (2.1) as a series and matching the coefficients on both sides give

β0
(
2 | q)= 2

[2]q
, β1

(
2 | q)= 2q+ 1

[2]q[3]q
, β2

(
2 | q)= 2q2

[3]q[4]q
,

β3
(
2 | q)=−q2(q− 1)

(
2[3]q + q

)
[3]q[4]q[5]q

, . . . , β0
(
h | q)= h

[h]q
,

β1
(
h | q)=−

(
1 + q+ ···+ qh−1

)
+ q
(
1 + q+ ···+ qh−2

)
+ ···+ qh−1

[h]q[h+ 1]q
, . . . .

(2.5)

By (2.1), the q-Bernoulli polynomials can be written as

βm
(
x,h | q)= m∑

j=0

(
m

j

)
[x]

n− j
q q jxβj

(
h | q). (2.6)
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Figure 3.1. The curve of βm(x,1 | 1/2), 1≤m≤ 10, −1≤ x ≤ 1.

In the case h= 0, βm(x,0 | q) will be symbolically written as βm,q(x). Let Gq(x, t) be the
generating function of q-Bernoulli polynomials as follows:

Gq(x, t)=
∞∑
n=0

βn,q(x)
tn

n!
. (2.7)

Then we easily see that

Gq(x, t)= q− 1
logq

et/(1−q)− t
∞∑
n=0

qh+xe[n+x]qt, |t| < 1, (cf. [2, 3, 4, 6]). (2.8)

For x = 0, βn,q = βn,q(0) will be called q-Bernoulli numbers.
By (2.8), we easily see that

βm,q(n)−βm,q =m
n−1∑
l=0

ql[l]m−1
q . (2.9)

Thus, we have

n−1∑
l=0

ql[l]m−1
q = 1

m

m−1∑
l=0

(
m

l

)
qnlβl,q[n]m−lq +

1
m

(
1− qmn

)
βm,q. (2.10)

3. Beautiful shape of q-Bernoulli polynomials

In this section, we display the shapes of the q-Bernoulli polynomials βm(x,1|1/2). For
m= 1,2, . . . ,10, we can draw a plot of βm(x,1|1/2), respectively. This shows the ten plots
combined into one. For m= 1, . . . ,10,q, Figure 3.1 displays the shapes of the q-Bernoulli
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Figure 3.2. Zeros of q-Bernoulli polynomials βm(x,1 | 1/2), m= 40,60, and x ∈ C.
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Figure 3.3. Zeros of q-Bernoulli polynomials βm(x,1 | −1/2), m= 40,60, and x ∈ C.

polynomials βm(x,1|1/2). We plot the zeros of βm(x,1|1/2), m = 40, m = 60, and x ∈ C
(Figure 3.2). We plot the zeros of βm(x,1|− 1/2), m= 40, m= 60, and x ∈ C (Figure 3.3).
We plot the zeros of βm(x,1|11/10), m = 40, m = 60, and x ∈ C (Figure 3.4). We plot
the zeros of βm(x,1| − 11/10), m = 40, m = 60, and x ∈ C (Figure 3.5). Stacks of zeros
of βn(x,1|1/2), 1 ≤ n ≤ 60, from a 3D structure are presented in Figure 3.6. The curve
β(s) runs through the points β−n(n|1/2) (Figure 3.7). We draw the curve of β−n(n|q) and
limn→∞ = nζq(n+ 1), q = 3/10, 5/10, 7/10, 9/10, 99/100, 999/1000 (Figures 3.8, 3.9, and
3.10).
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Figure 3.4. Zeros of q-Bernoulli polynomials βm(x,1 | 11/10), m= 40,60, and x ∈ C.
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Figure 3.5. Zeros of q-Bernoulli polynomials βm(x,1 | −11/10), m= 40,60, and x ∈ C.

4. q-Riemann zeta function

We display the plot of βq(s), 0.1 ≤ s ≤ 0.9, 1.1 ≤ q ≤ 2 (Figure 4.1). We display the plot
of βq(s), 1.03 ≤ s ≤ 2, 0.1 ≤ q ≤ 2 (Figure 4.2). We draw the curve of ζq(n), q = 7/10,
9/10 (Figure 4.3). We draw the curve of β−q(s,w), 2 ≤ s ≤ 3, −0.5 ≤ w ≤ 0.5, q = 11/10
(Figure 4.4).

The q-Riemann zeta function due to Kim was defined as

ζ (h)
q (s)= 1− s+h

1− s
(q− 1)

∞∑
n=1

qnh

[n]s−1
q

+
∞∑
n=1

qnh

[n]sq
, for s,h∈ C, (cf. [6, 8]). (4.1)
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Figure 3.6. Stacks of zeros of q-Bernoulli polynomials βn(x,1 | 1/2), 1≤ n≤ 60, from a 3D structure.
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Figure 3.7. The curve β(s) runs through the points β−n(n | 1/2).

For k ∈N, h∈ Z, it was known that

ζ (h)
q (1− k)=−βk

(
h | q)
k

, (cf. [6, 8]). (4.2)

In the special case h= s− 1, ζ (s−1)
q (s) will be written as ζq(s). For s∈ C, we note that

ζq(s)=
∞∑
n=1

qn(s−1)

[n]sq
, (cf. [6, 8]). (4.3)
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Figure 3.8. The curve of β−n(n | q) and limn→∞ β−n = nζq(n+ 1)= 0, q = 3/10, 5/10
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Figure 3.9. The curve of β−n(n | q) and limn→∞ β−n = nζq(n+ 1)= 0, q = 7/10, 9/10

.

By (4.1), (4.2), and (4.3), we easily see that

ζq(1− k)=−βk
(− k | q)

k
, for k ∈N, (cf. [3, 4, 6]). (4.4)

From the above analytic continuation of q-Bernoulli numbers, we consider

βn = βn
(−n | q) �−→ β(s),

ζq(−n)=−βn+1
(−n+ 1 | q)
n+ 1

�−→ ζq(−s)=−β(s+ 1)
s+ 1

=⇒ ζq(1− s)=− ζ(s)
s

.
(4.5)
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Figure 3.10. The curve of β−n(n | q), q = 99/100,999/1000.
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Figure 4.1. The plot of βq(s), 0.1≤ s≤ 0.9, 1.1≤ q ≤ 2.

From relation (4.5), we can define the other analytic continued half of q-Bernoulli
numbers,

β(s)=−sζq(1− s), β(−s)= sζq(1 + s)

=⇒ β−n = β−n
(
n | q)= β(−n)= nζq(n+ 1), n∈N. (4.6)

The curve β(s) runs through the points β−n and limn→∞β−n = nζq(n+ 1)= 0.
However, the curve β−n(n | q) grows ∼ n asymptotically as q→ 1, (−n)→−∞.

ζq(m)=
∞∑
n=1

qn(m−1)

[n]mq
=⇒ lim

m→∞ζq(m)= 0. (4.7)
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Figure 4.2. The plot of βq(s), 1.03≤ s≤ 2, 0.1≤ q ≤ 2.
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Figure 4.3. The curve of ζq(n), q = 7/10,9/10.
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5. Analytic continuation of q-Bernoulli polynomials

For consistency with the redefinition of βn = β(n) in (4.5) and (4.6),

βn(x)= βn
(
x,−n | q)= n∑

k=0

(
n

k

)
βkq

kx[x]n−kq . (5.1)

The analytic continuation can be then obtained as

n �−→ s∈R, x �−→w ∈ C,

βk �−→ β
(
k+ s− [s] | q)=−(k+

(
s− [s]

))
ζq
(
1− (k+

(
s− [s]

)))
,

(
n

k

)
�−→ Γ(1 + s)

Γ
(
1 + k+

(
s− [s]

))
Γ
(
1 + [s]− k

)

=⇒ βn(s) �−→ β
(
s,w | q)= [s]∑

k=−1

Γ(1 + s)β
(
k+ s− [s]

)
q(k+s−[s])w[w][s]−k

q

Γ
(
1 + k+

(
s− [s]

))
Γ
(
1 + [s]− k

)

=
[s]+1∑
k=0

Γ(1 + s)β
(
(k− 1) + s− [s]

)
q((k−1)+s−[s])w[w][s]+1−k

q

Γ
(
k+

(
s− [s]

))
Γ
(
2 + [s]− k

) ,

(5.2)

where [s] gives the integer part of s, and so s− [s] gives the fractional part.
Deformation of the curve β(2,w) into the curve β(3,w) via the real analytic continua-

tion β(s,w), 2≤ s≤ 3, −0.5≤w ≤ 0.5.
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