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We present a simpler elementary proof on positive topological entropy of the N-buffer
switched flow networks based on a new simple theorem on positive topological entropy
of continuous map on compact metric space.

1. Introduction

Recently, the N-buffer switched flow networks have received intensive investigations due
to its significance in manufacturing systems and other engineering disciplines, as well as
physical problems [1, 2, 3, 4, 6, 7, 8, 10]. Various dynamical behaviours of this model, such
as existence and stability of periodic trajectories, bifurcation and chaos were extensively
investigated. In case of more than three buffers, [7] gave an elegant proof on existence of
chaos in terms of positive entropy. However, to understand the arguments of [7], one has
to know much knowledge about invariant SRB measure, the Markov partition and the
relevant theory on entropy of ergodic Markov shift, this make it difficult to catch on for
readers less of good background of ergodic theory in dynamical systems.

The author presented in [10] an elementary proof on the positivity of the entropy in
the 3-buffer switched flow networks. Motivated by the work [10], the author obtained
in [8] a proof of positive entropy of the N-buffer switched flow networkswhere the ar-
guments are of geometric flavour and easy to understand even for readers who are not
familiar with modern theory of dynamical systems.

However, the proof given in [8] is somewhat tedious. In this paper, we will present
a simpler proof of positive topological entropy of the N-buffer switched flow networks.
The proof is based on a new simple result on positive topological entropy of continuous
map on compact metric space established in this paper.

2. Symbolic dynamics and some preliminaries

First we recall some aspects of dynamical systems and symbolic dynamics.
Let Sm = {1, . . . ,m} be the set of nonnegative successive integer from 1 to m. Let Σmbe

the collection of all one-sided sequences with their elements belonging to Sm, that is,
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every element s of Σm is of the following form

s= {s1, . . . ,sn, . . .
}

, si ∈ Sm. (2.1)

Now consider another sequence s̄∈ Σm

s̄= {s̄1, . . . , s̄n, . . .
}

, s̄i ∈ Sm. (2.2)

The distance between s and s̄ is defined as

d(s, s̄)=
∞∑
i=1

1
2i

∣∣si− s̄i
∣∣

1 +
∣∣si− s̄i

∣∣ . (2.3)

With the distance defined above, Σm is a metric space. In addition, Σm is compact, totally
disconnected and perfect. A set having these properties is often defined as a Cantor set,
such a Cantor set frequently appears in characterization of complex structure of invariant
set in a chaotic dynamical system. For more detailed discussions on Σm, see [5].

Furthermore, define the m-shift map σ : Σm→ Σm as follows

σ(s)i = si+1. (2.4)

Then there are the following facts.
(a) σ(Σm)= Σm and σ is continuous.
(b) The shift map σ as a dynamical system defined on Σm has the following properties:

(i) σ has a countable infinity of periodic orbits consisting of orbits of all periods;
(ii) σ has an uncountable infinity of aperiodic orbits; and

(iii) σ has a dense orbit.
For proofs of the above statements, we refer the reader to [5]. A consequence of statement
(b) is that the dynamics generated by the shift map σ is sensitive to initial conditions
therefore is chaotic.

Next we recall the semi-conjugacy in context of a continuous map and the shift map
σ , which is conventionally defined as follows

Definition 2.1. Let X be a metric space. Consider a continuous map f : X → X . Let Λ be
a compact invariant set of f . If there exists a continuous surjective map

h : Λ−→ Σm (2.5)

such that h ◦ f = σ ◦ h, then the restriction of f to Λ, f | Λ is said to be semi-conjugate
to σ .

The following result is useful for the sequel arguments of the main result of this paper,
we restate a version of it as a lemma for reader’s convenience.
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Lemma 2.2. Let X be a metric space, D is a compact subset of X , and f : D → X is map
satisfying assumption that there exist m mutually disjoint compact subsets D1, . . . , and Dm

of D, the restriction of f to each Di, that is, f |Di is continuous. Suppose that

f
(
Dj
)⊃ m⋃

i=1

Di, j = 1,2, . . . ,m (2.6)

then there exists a compact invariant set Λ ⊂ D, such that f | Λ is semi-conjugate to the
m-shift map.

The proof is very easy, for a proof see [9].

Lemma 2.3 [5]. Let X be a compact metric space, and f : X → X a continuous map. If there
exists an invariant set Λ⊂ X such that f |Λ is semi-conjugate to the m-shift σ , then

h( f )≥ h(σ)= logm, (2.7)

where h( f ) denotes the entropy of the map f . In addition, for every positive integer k,

h
(
f k
)= kh( f ). (2.8)

In the following we recall the concept of topological entropy for reader’s convenience.

Definition 2.4. A set E ⊂ X is called (n,ε)-separated if for every two different points x, y ∈
E, there exists 0≤ j < n such that the distance between f j(x) and f j(y) is greater than ε.
Now let the number s(n,ε) denotes the cardinality of a maximum (n,ε)-separated set:

s(n,ε)=max{cardE : E is (n,ε)-separated}. (2.9)

The topological entropy of the map f is defined as

h( f )= lim
ε→0

limsup
n→∞

1
n

logs(n,ε). (2.10)

For the notions and discussions on entropy of dynamical systems, the reader can refer
[5]. We just recall a result stated in Lemma 2.3, which will be used in this paper.

3. Proof of positive entropy of N-buffer switched flow networks

To give a simpler proof of positive entropy of the N-buffer switched flow network, we
first give the following result that is fundamental for our new proof.

Theorem 3.1. Let X be a metric space, D is a compact subset of X , Di, j = 1,2, . . . ,m, is a
subset of D, and f : D→ X is a continuous map satisfying the following assumptions:

(1) for each pair i 	= j, 1≤ i, j ≤m, f (Di∩Dj)⊆Di∩Dj ;
(2) the intersection D1∩···∩Dm is empty;
(3) f (Dj)⊃

⋃m
i=1Di−Dj , j = 1,2, . . . ,m
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then there exists a compact invariant set Λ ⊂ D, such that f m−1 | Λ is semi-conjugate to
(m− 1)-shift dynamics. And

h( f )≥ 1
m− 1

log(m− 1) (3.1)

Proof. The proof is very easy. Without loss of generality let us consider the subset D1 and
study the dynamics of the restricted map f | D1. We are going to find m− 1 mutually
disjointed subsets contained in D1, such that Lemma 2.2 can be applied.

For this purpose let Ñ = {2,3, . . . ,m}, the set of integers from 2 to m. Consider the
following matrix with elements in Ñ




2 3 ··· m
3 ··· m 2
...

...
...

...
m− 1 m ··· m− 2


 (3.2)

This matrix is obtained as follows.
Let J = i1i2, . . . , im−1 be a row in the above matrix, say, the jth row, then the ( j + 1)th

row is obtained by the permutation map P defined as:

P(I)= i2, . . . , im−2im−1i1. (3.3)

Now consider m− 1 sequences obtained from each column of (3.2)

I1 = 23, . . . ,m− 1,I2 = 3, . . . ,m− 1,m, . . . ,Im−1 =m2, . . . ,m− 2. (3.4)

Consider the following compact subsets of D1;

D1
Ik , k = 1,2, . . . ,m− 1. (3.5)

They are constructed as follows:
Note that in each sequence Ik=k1k2, . . . ,km−2, k=1,2, . . . ,m− 1, there are no two num-

bers that are the same and 1 is not in every such sequence. Clearly, f (Dkm−2 )⊃D1 in view
of assumption (3). Then it is easy to see that there exists a compact subset D̄km−2 ⊂Dkm−2

such that f (D̄km−2 )=D1. Since km−3 	= km−2, f (Dkm−3 )⊃Dkm−2 , this implies that there ex-
ists a compact subset D̄km−3km−2 ⊂ Dkm−3 such that f (D̄km−3km−2 )=Dkm−2 . Continuing this
way, we get a sequence of subsets D̄km−h−2,...,km−2 ⊂ Dkm−h−2 such that f (D̄km−h−2,...,km−2 )=
D̄km−h−1,...,km−2 , h=1, . . . ,m− 3. Finally, consider the compact subset D1

Ik ⊂D1 such that

f
(
D1

Ik

)= D̄Ik = D̄k1,...,km−2 , k = 1,2, . . . ,m− 1. (3.6)

Then it is easy to see that f m−1(D1
Ik )=D1.

Now it remains to show that the intersection of D1
Il with D1

Ik is empty if Ik 	= Il. To this
end, suppose that this is not the case, then consider a point x ∈D1

Ik ∩D1
Il , then

f (x)∈ D̄Ik ∩ D̄lk ⊂Dk1 ∩Dl1 . (3.7)
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Now in view of assumption (1) and the way of constructing sequences (3.4), it follows
that

f m−1(x)∈D1∩···∩Dm, (3.8)

which is in contradiction to assumption (2). Finally, in view of Lemmas 2.2 and 2.3, we
have the inequality (3.1). �

Now we present a simpler proof of positive entropy of the N-buffer switched flow net-
work. Consider a system of N buffers and one server. In such a system, work is removed
from buffer i at a fixed rate of ρi > 0 while the server delivers material to a selected buffer
at a unit rate. The control law is applied to the server so that once a buffer empties, the
server instantaneously starts to fill the empty buffer. The system is assume to be close in
the sense that

N∑
i=1

ρi = 1. (3.9)

Let xi(t) be the amount of work in buffer i at time t ≥ 0, and x(t) = (x1(t), . . . ,xN (t))
denote the state of work of the buffers at time t, then

N∑
i=1

xi(t)= 1 (3.10)

if it is assumed that
∑N

i=1 xi(0)= 1.
Consider the sample sequence at clearing time, {tn}, which are the times when at

least one of these buffers empty. Let x(n)= (x1(tn), . . . ,xN (tn)), then the sequence {x(n)}
evolves on the N − 2 dimensional manifold

X =
{
x :

N∑
i=1

xi = 1, xi ≥ 0, ∃1≤ j ≤N , xj = 0

}
(3.11)

by the following rule G : X → X :

x(n+ 1)=G
(
x(n)

)
(3.12)

G(x) is defined as follows:
(1) G(x)= x, if at least two of the buffers empty at the same time,
(2) x(n+ 1)=G(x(n))= x(n) + mini 	= j(xi(n)/ρi)(1 j − ρ), otherwise,

where 1 j is a vector with all zeros except for one in the jth position and ρ is a vector of
work rates ρj . It is apparent that X defined above can be regarded as the surface of the
standard (N − 1) simplex φ defined by

φ=
{
x ∈ RN : x =

N∑
i=1

xiei, xi ≥ 0,
N∑
i=1

xi = 1

}
, (3.13)

where e1 = (1,0, . . . ,0),e2 = (0,1,0, . . . ,0), . . . ,eN = (0,0, . . . ,1), and they are the vertices of
the piecewise linear manifold X .
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Let Xi ⊂ X be the ith face of X :

Xi = {x ∈ X : xi = 0}, i= 1,2, . . . ,N. (3.14)

It is very easy to see that the map G has the following properties.
The restriction of the map G to every face Xj , that is,

G | Xj : Xj −→ X − X̂ j (3.15)

is a continuous surjective (i.e. onto)map. Here X̂ j = Xj − ∂Xj (∂Xj is the boundary of Xj),
that is, the set consists of interior points of Xj . G(Xi∩Xj)= Xi∩Xj , i 	= j, 1≤ i, j ≤N .

In view of the above theorem (Theorem 3.1) it is easy to prove the following result.

Corollary 3.2. The map G : X → X is chaotic and its entropy, h, satisfies the following
inequality

h(G)≥ 1
N − 1

log(N − 1). (3.16)

Thus (3.12) is chaotic.

4. Conclusion

In this paper, we have discussed the topological entropy of the dynamical system de-
scribed by continuous maps defined on a compact metric space, and obtained a simple
new result. Based on this result we have presented very simple proof of positive topologi-
cal entropy of the so-called N-buffer switched flow networks.
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