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We study the difference equation xn+1 = xn−1/(p + xn), n = 0,1, . . . , where initial values
x−1,x0 ∈ (0,+∞) and 0 < p < 1, and obtain the set of all initial values (x−1,x0)∈ (0,+∞)×
(0,+∞) such that the positive solution {xn}∞n=−1 is bounded. This answers the Open Prob-
lem 2 proposed by Kulenović and Ladas.
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Kulenović and Ladas in [2] (also see [1]) studied the following difference equation:

xn+1 = xn−1

p+ xn
, n= 0,1, . . . , (1)

where initial values x−1,x0 ∈ (0,+∞) and p ∈ (0,+∞), and obtained the following theo-
rem.

Theorem 1. (i) If p > 1, then the unique equilibrium 0 of (1) is globally asymptotically
stable.

(ii) If p = 1, then every positive solution of (1) converges to a period-two solution.
(iii) If 0 < p < 1, then 0 and x = 1− p are the only equilibrium points of (1), and

every positive solution {xn}∞n=−1 of (1) with (xN − x)(xN+1 − x) < 0 for some N ≥ −1 is
unbounded.

They proposed the following open problem.

Open Problem 2. Assume that 0 < p < 1. Determine the set of initial values x−1,x0 ∈ (0,
+∞) for which the solution {xn}∞n=−1 of (1) is bounded.

In this note, we will answer the above open problem.
Write D = (0,+∞)× (0,+∞) and define f : D→D by, for all (x, y)∈D,

f (x, y)=
(
y,

x

p+ y

)
. (2)
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2 The solutions of a difference equation

It is easy to see that if {xn}∞n=−1 is a solution of (1), then f n(x−1,x0) = (xn−1,xn) for any
n≥ 0. From Theorem 1, we have the following corollary.

Corollary 3. Let 0 < p < 1, (x−1,x0) ∈ D, and (xn−1,xn) = f n(x−1,x0) for any n ≥ 0.
If there exists N ≥ −1 such that (xN − x)(xN+1 − x) < 0, then {xn}∞n=−1 is a unbounded
solution of (1).

Let

A1 = (0,x)× (0,x), A2 = (x,+∞)× (x,+∞),

A3 = (0,x)× (x,+∞), A4 = (x,+∞)× (0,x),

R0 = {x}× (0,x), L0 = {x}× (x,+∞),

R1 = (0,x)×{x}, L1 = (x,+∞)×{x}.

(3)

Then D = (∪4
i=1Ai)∪L0∪L1∪R0∪R1∪{(x,x)}.

Lemma 4. The following statements are true.
(i) f is a homeomorphism.

(ii) f (L1)= L0 and f (L0)⊂A4.
(iii) f (R1)= R0 and f (R0)⊂A3.
(iv) f (A3)⊂A4 and f (A4)⊂A3.
(v) A2∪L1 ⊂ f (A2)⊂ A2∪L1∪A4 and A1∪R1 ⊂ f (A1)⊂A1∪R1∪A3.

Proof. (i) Since f (x1, y1) �= f (x2, y2) for any (x1, y1),(x2, y2) ∈ D with (x1, y1) �= (x2, y2)
and f −1(u,v)= (v(p+u),u) is continuous, f is a homeomorphism.

(ii) Let (x, y)∈ L1 and (u,v)= f (x, y)= (y,x/(p+ y)), then y = x and x > x, it follows

u= y = x, v = x

(p+ y)
>

x

(p+ x)
= x, (4)

which implies f (L1)⊂ L0.
On the other hand, let (u,v)∈ L0 and (x, y)= f −1(u,v)= (v(p+u),u), then u= x and

v > x, it follows

y = u= x, x = v(p+u) > x(p+ x)= x, (5)

which implies f −1(L0)⊂ L1. Thus f (L1)= L0.
Now let (x, y)∈ L0 and (u,v)= f (x, y)= (y,x/(p+ y)), then x = x and y > x, it follows

u= y > x, v = x

(p+ y)
< x, (6)

which implies f (L0)⊂ A4.
The proof of (iii) is similar to that of (ii).
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(iv) Let (x, y)∈A3 and (u,v)= f (x, y)= (y,x/(p+ y)), then x < y and 0 < x < x, from
which it follows

v = x

(p+ y)
<

x

(p+ x)
= x, u > x. (7)

Thus (u,v)∈A4. In a similar fashion, we may show f (A4)⊂ A3.
(v) Let (x, y) ∈ A2 and (u,v) = f (x, y) = (y,x/(p + y)), then y > x and x > x, from

which it follows u > x. Since f is a homeomorphism and L0∪L1∪{(x,x)} is the bound-
ary of A2 with f (L1) = L0 and f (L0) ⊂ A4, we obtain A2 ∪ L1 ⊂ f (A2) ⊂ A2 ∪ L1 ∪A4.
We similarly have A1∪R1 ⊂ f (A1)⊂ A1∪R1∪A3. Lemma 4 is proven. �

Lemma 5. If 0 < p < 1 and {xn}∞n=−1 is a positive solution of (1) with xn ≥ x = 1− p for all
n≥−1 (or xn ≤ x = 1− p for all n≥−1), then limn→∞ xn = x.

Proof. We will prove the lemma for xn ≥ x = 1− p for all n≥−1. The case for xn ≤ x =
1− p for all n≥−1 is similar. From xn ≥ x for all n≥−1 and

xn+1− xn−1 = x− xn
p+ xn

xn−1, (8)

it follows that the sequences {x2n−1} and {x2n} are monotone decreasing. Let limn→∞ x2n =
a and limn→∞ x2n+1 = b. By (8), we have a= b = x. Lemma 5 is proven. �

Set

x = g2(y)= (p+ y)x (y > 0), (9)

then y = h2(x) = g−1
2 (x) = x/x − p is an increasing and differentiable function which

maps (px,+∞) onto (0,+∞). Let

x = g3(y)= (p+ y)h2(y) (y > px), (10)

then y = h3(x)= g−1
3 (x) is an increasing and differentiable function which maps (0,+∞)

onto (px,+∞).
Assume that for some positive integer n we already define increasing and differentiable

functions h2n(x) and h2n+1(x) such that h2n maps (pnx,+∞) onto (0,+∞) and h2n+1 maps
(0,+∞) onto (pnx,+∞). Set

x = g2n+2(y)= (p+ y)h2n+1(y) (y > 0), (11)

then y = h2n+2(x) = g−1
2n+2(x) is an increasing and differentiable function which maps

(pn+1x,+∞) onto (0,+∞). Set

x = g2n+3(y)= (p+ y)h2n+2(y)
(
y > pn+1x

)
, (12)

then y = h2n+3(x) = g−1
2n+3(x) is an increasing and differentiable function which maps

(0,+∞) onto (pn+1x,+∞). In such a way, we construct a family of increasing and dif-
ferentiable functions y = hn(x).



4 The solutions of a difference equation

Let P0 = A2 and Q0 = A1. For any n≥ 1, write

Pn = f −1(Pn−1
)
, Qn = f −1(Qn−1

)
, Ln = f −1(Ln−1

)
, Rn = f −1(Rn−1

)
.
(13)

From Lemma 4 we have that L2 = f −1(L1) ⊂ P0, R2 = f −1(R1) ⊂ Q0, P1 = f −1(P0) ⊂ P0

and Q1 = f −1(Q0)⊂Q0, which implies that for any n≥ 1,

Ln+1 ⊂ Pn−1, Rn+1 ⊂Qn−1, Pn ⊂ Pn−1, Qn ⊂Qn−1. (14)

Let (x, y)∈ L2. Since f (L2)= L1 and (u,v)= f (x, y)= (y,x/(p+ y)), it follows that

x

(p+ y)
= v = x, y = u > x. (15)

Thus x = g2(y) = (p + y)x > x (y > x) and L2 = {(x, y) : y = h2(x), x > x}. In a similar
fashion, we may show R2 = {(x, y) : y = h2(x), px < x < x}.

Since f is a homeomorphism, f (P1)= P0, and L0∪L1∪{(x,x)} is the boundary of P0

with f (L2)= L1 and f (L1)= L0, we have

P1 =
{

(x, y) : x < y < h2(x), x > x
}
. (16)

In a similar fashion, we may show

Q1 =
{

(x, y) : 0 < y < x, 0 < x ≤ px
}∪ {(x, y) : h2(x) < y < x, px < x < x

}
. (17)

Let (x, y) ∈ L3. Since f (L3) = L2 and (u,v) = f (x, y) = (y,x/(p + y)) ∈ L2, it follows
that

x

(p+ y)
= v = h2(u)= h2(y), y = u > x. (18)

Thus x = g3(y)= (p+ y)h2(y) > x (y > x) and L3 = {(x, y) : y = h3(x), x > x}. In a similar
fashion, we may show R3 = {(x, y) : y = h3(x), 0 < x < x}.

Since f is a homeomorphism, f (P2)= P1, and L1∪L2∪{(x,x)} is the boundary of P2

with f (L3)= L2 and f (L2)= L1, we have

P2 =
{

(x, y) : h3(x) < y < h2(x), x > x
}
. (19)

In a similar fashion, we may show

Q2 =
{

(x, y) : 0 < y < h3(x), 0 < x ≤ px
}∪ {(x, y) : h2(x) < y < h3(x), px < x < x

}
.

(20)
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Using induction, one can easily show that for any n≥ 2,

Ln =
{

(x, y) : y = hn(x), x > x
}

, (21)

and for any n≥ 1,

R2n =
{

(x, y) : y = h2n(x), pnx < x < x
}

,

R2n+1 =
{

(x, y) : y = h2n+1(x), 0 < x < x
}

,

Q2n =
{

(x, y) : 0 < y < h2n+1(x), 0 < x ≤ pnx
}

∪ {(x, y) : h2n(x) < y < h2n+1(x), pnx < x < x
}

,

Q2n+1 =
{

(x, y) : 0 < y < h2n+1(x), 0 < x ≤ pn+1x
}

∪ {(x, y) : h2n+2(x) < y < h2n+1(x), pn+1x < x < x
}

,

P2n =
{

(x, y) : h2n+1(x) < y < h2n(x), x > x
}

,

P2n+1 =
{

(x, y) : h2n+1(x) < y < h2n+2(x), x > x
}
.

(22)

By (14), it follows that for x > x,

x < h3(x)≤ h5(x)≤ ··· ≤ h4(x)≤ h2(x) (23)

and for 0 < x ≤ x,

x ≥ h3(x)≥ h5(x)≥ ··· , (24)

and for any n≥ 2 and pnx < x ≤ x

h2n−1(x)≥ h2n(x)≥ h2n−2(x). (25)

From (23), (24), and (25) we may assume that for every x > 0,

F(x)= lim
n→∞h2n+1(x), G(x)= lim

n→∞h2n(x)
(
n > logp

(
x

x

))
. (26)

Then F(x)≤G(x) if x > x and F(x)≥G(x) if 0 < x ≤ x.

Lemma 6. F(x) and G(x) are continuous.

Proof. We first show that F(x) is continuous. Let x,x0 ∈ (0,+∞). Choosing N > 0 such
that x,x0 ∈ (pNx,+∞), then for every n > N + 1, there exists cn between x and x0 such
that

∣∣h2n+1(x)−h2n+1
(
x0
)∣∣= ∣∣h′2n+1

(
cn
)∣∣∣∣x− x0

∣∣. (27)
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Let ξn = h2n+1(cn), then h′2n(ξn)≥ 0 and

h2n
(
ξn
)

+
(
p+ ξn

)
h′2n
(
ξn
)≥ h2n

(
ξn
)= h2n

(
h2n+1

(
cn
))

≥ h2n
(
h2n+1

(
pNx

))≥ h2N
(
h2N+2

(
pNx

))
,

∣∣h2n+1(x)−h2n+1
(
x0
)∣∣=

∣∣∣∣∣
1(

h2n
(
ξn
)

+
(
p+ ξn

)
h′2n
(
ξn
))
∣∣∣∣∣
∣∣x− x0

∣∣

≤
∣∣∣∣∣

1
h2N

(
h2N+2

(
pNx

))
∣∣∣∣∣
∣∣x− x0

∣∣.

(28)

Thus

∣∣F(x)−F
(
x0
)∣∣= lim

n→∞
∣∣h2n+1(x)−h2n+1

(
x0
)∣∣≤

∣∣∣∣∣
1

h2N
(
h2N+2

(
pNx

))
∣∣∣∣∣
∣∣x− x0

∣∣, (29)

which implies F(x) is continuous. In a similar fashion, we may show that G(x) is also
continuous. �

Let S be the set of initial values (x−1,x0)∈D such that the positive solution {xn}∞n=−1

of (1) is bounded. Then we have the following theorem.

Theorem 7. Let 0 < p < 1, then S=W1∪{(x,x)}∪W2, where W1 = {(x, y) : F(x)≤ y ≤
G(x), x < x} and W2 = {(x, y) : G(x)≤ y ≤ F(x), 0 < x < x}. Moreover, every positive so-
lution {xn}∞n=−1 of (1) with initial value (x−1,x0)∈ S converges to x.

Proof. Let (x−1,x0)∈W1∪{(x,x)}∪W2 and {xn}∞n=−1 is a positive solution of (1) with
initial value (x−1,x0).

If (x−1,x0)= (x,x), then {xn}∞n=−1 is a trivial solution of (1), which implies limn→∞ xn =
x and (x−1,x0)∈ S.

If (x−1,x0)∈W1, then (x−1,x0)∈ Pn for any n≥ 0, which implies f n(x−1,x0)= (xn−1,
xn)∈ A2 for any n≥ 0. Thus it follows from Lemma 5 that limn→∞ xn = x and (x−1,x0)∈
S. In a similar fashion, we may show that if (x−1,x0) ∈W2, then limn→∞ xn = x and
(x−1,x0)∈ S.

Now let (x−1,x0)∈ D−W1∪{(x,x)}∪W2 and {xn}∞n=−1 is a positive solution of (1)
with initial value (x−1,x0).

If (x−1,x0) ∈ A3 ∪ A4 ∪ R0 ∪ R1 ∪ L0 ∪ L1, then by Lemma 4 we have f 2(x−1,x0) =
(x1,x2)∈ {(x, y) : (x− x)(y− x) < 0}, it follows from Corollary 3 that (x−1,x0) �∈ S.

If (x−1,x0)∈A2−W1, then there exists n≥ 0 such that
(
x−1,x0

)∈ Pn−Pn+1 = f −n
(
A2
)− f −n−1(A2

)
, (30)

from which it follows

f n
(
x−1,x0

)= (xn−1,xn
)∈A2− f −1(A2

)
. (31)

By Lemma 4, we have f n+1(x−1,x0)∈ A4∪ L1, which implies f n+3(x−1,x0)= (xn+2,xn+3)
∈A4, it follows from Corollary 3 that (x−1,x0) �∈ S. In a similar fashion, we may show that
if (x−1,x0)∈A1−W2, then it follows that (x−1,x0) �∈ S. Theorem 7 is proven. �
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