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The dynamics of complex cubic polynomials have been studied extensively in the recent
years. The main interest in this work is to focus on the Julia sets in the dynamical plane,
and then is consecrated to the study of several topics in more detail. Newton’s method
is considered since it is the main tool for finding solutions to equations, which leads to
some fantastic images when it is applied to complex functions and gives rise to a chaotic
sequence.
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under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Isaac Newton discovered what we now call Newton’s method around 1670. Although
Newton’s method is an old application of calculus, it was discovered relatively recently
that extending it to the complex plane leads to a very interesting fractal pattern.

We have focused on complex analysis, that is, studying functions holomorphic on a
domain in the complex plane or holomorphic mappings. It is a very exciting field, in
which many new phenomena wait to be discovered (and have been discovered). It is very
closely linked with fractal geometry, as the basins of attraction for Newton’s method have
fractal character in many instances. We are interested in geometric problems, for example,
the boundary behavior of conformal mappings. In mathematics, dynamical systems have
become popular for another reason: beautiful pictures. Principally, we have focused on
Julia sets and the iteration of rational functions. The Newton’s method is one of the most
important iterative algorithms for finding the zeroes of a polynomial or, more generally,
a function meromorphic on the complex plane.

We first discuss some general properties of the method for rational functions with
complex roots, including convergence criteria and rates of convergence, periodic points
and basins of attractions of the roots. Next, we present results of Newton’s method for
one-dimensional and two-dimensional cases. Applying Newton’s method to cubic func-
tion, whose roots are known as the 3th roots of unity, we show that the boundaries of the
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2 Fractal Newton basins

basins of attraction of each root are typically fractal in nature, and that they correspond
to Julia sets in the complex plane. We conclude with a discussion of the implications of
the fractal structure on the utility of Newton’s method as a root-finding algorithm.

A Newton basin is just the set of initial guesses that lead to one solution or root. What
is interesting is that Newton basins are fractals! and have beautifully intricate boundaries.
In fact, they are kinds of Julia sets.

We refer to the surveys [2–4] for the general view of the dynamics of complex maps.
We will use some concepts and facts of this theory without extra explanations.

Recall that one of the most important iteration schemes is Newton’s method for find-
ing the roots of algebraic equations equivalently, solutions to equations of the form

zk+1 =�
(
zk
)
. (1.1)

Not only is the method easy to comprehend, it is a very efficient way and very helpful tool
for finding roots as long as the function converges. In general, Newton’s method works
impressively fast (with quadratic convergence). But it requires a good initial guess, which
normally needs to be close to one of the roots. Otherwise, strange things may happen.
Historically the survey relative to basins of attraction of a map generated by the Newton’s
algorithm related to the quadratic equation resolution with complex variable has been
studied initially by Schroeder (1871). The cubic case

az3 + bz2 + cz+d = 0; (a,b,c,d)∈R4 (1.2)

developed by Cayley in 1879 [2]. Specifically, Cayley wished to characterize the global
basins of attraction for each root, more precisely, these basins of attraction are the initial
conditions that Newton’s method carries to each root. This task of identifying such basins
for complex polynomials is known as “Cayley’s problem.” The works of Cayley have been
reconsidered by Gaston Julia, who creates the Julia theory.

In this work we examine the chaotic behavior of a function of cubic type

z3− 1= 0. (1.3)

First, we study the geometry of the Julia set relative to the map (1.1) and we calculate its
fractal dimension (Figure 1.1).

By construction, the Julia set is the set of points for which Newton’s method fails to
find a root.

2. Notations, definitions and fundamental results

We denote C the complex plane; we define the Riemann sphere C as (C= C∪{∞}).
Let us consider the complex map

zk+1 = g
(
zk
)
. (2.1)

Definition 2.1. We define the set of wandering points by

Dg(∞)= {z : gk(z)−→∞, k −→∞}. (2.2)
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Figure 1.1. Basin boundaries are pictured of the three roots of (1.3).

Definition 2.2. The Fatou set �(g) of nonwandering points is defined by

�(g)= C\Dg(∞). (2.3)

Definition 2.3. The sets Dg(∞) and �(g) have a common boundary which is the Julia set
�(g), then

�( f )= ∂(Dg(∞)
)= ∂(�(g)

)
. (2.4)

Definition 2.4. The basin of attraction �(ω) of an attractive fixed pointω, associated with
a function g is

�(ω)=
{
z ∈ C : gk(z) −→

k→∞
ω
}
. (2.5)

Definition 2.5. A point α is a fixed point of g if g(α)= α, and p-periodic if g p(α)= α, for
all p ∈N. The set {gk(α)}k=0,...,p−1 is called orbit or cycle.

3. The Newton’s method

Isaac Newton devised an algebraic procedure for a rapidly convergent sequence of suc-
cessive approximations to a root of the equation f (z)= 0, z ∈ C. Newton’s derivation is
equivalent to the modern iterative procedure described by the equation.

Solving the polynomial equation with real coefficients in C given here by

f (z)= 0, z ∈ C. (3.1)

Definition 3.1. Let f be a polynomial and let zk be the kth iterate under Newton’s method
of the point z0. Then we say that z0 is an approximate zero of f .



4 Fractal Newton basins

The basic idea is to construct a recurrent sequence {zk}k=0,2,... such as f (zk)→ 0. As-
sume that the image zk is known; (3.1) linearized in zk gives

f (z)= f
(
zk
)

+
(
z− zk

)
f ′
(
zk
)

(3.2)

the solution is the following image zk+1, then

zk+1 = zk − f
(
zk
)

f ′
(
zk
) (3.3)

if

f (z)= zn− 1, n∈N (3.4)

replacing in (3.3) and taking into account that

z = x+ iy (3.5)

we obtain the well-known equation as Newton’s sequence

(n− 1)znk −nzk+1z
n−1
k + 1= 0. (3.6)

4. Convergence property

The Newton’s algorithm converges globally if for all z ∈ C a subsequence of {zk}k∈N∗
which tends to z∗ such that | f (z∗)| � 0. We test the efficiency of the algorithm by the
exam maps that it generated. The notion of convergence speed permits to qualify the
asymptotic behavior of a mapping.

4.1. Order of convergence. We are interested by the following rate

qk =
∣
∣zk+1− z∗

∣
∣

∣
∣zk − z∗

∣
∣ . (4.1)

(i) If limsupqk = 1; the convergence is sublinear.
(ii) If limsupqk = α < 1; the convergence is then linear and α is the associated ratio

of convergence.
(iii) If limqk = 0; the convergence is superlinear.
(iv) If ∃γ > 1 such that limsup(|zk+1− z∗|/|zk − z∗|γ)=M < +∞; the convergence is

superlinear of order γ. In particular for γ = 2 we have a quadratic convergence,
and |zk − z∗|2 is called the residual measure.

Theorem of Newton-Kantorovich [1]. Suppose that f is twice continuously differentiable
and call z∗ a zero of f then if f ′(z∗) 
= 0 and z0 is sufficiently close of z∗. The map
converges to z∗ and we have a quadratic convergence.

The final result that we know on the importance of linking fractal geometry with nu-
merical analysis is probably: “the global convergence pattern of Newton’s method is pre-
dictable and consists of few (four) convergence states,” related to the residual measure. At
least for complex polynomials, we have this description.
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(i) Stationary residual with constant magnitude (usually 1—the exact magnitude
depends on the distance between root of the function and relevant root of the
first derivative).

(ii) A sharp increase in residual when the iterates reach a singularity (root of the first
derivative). Assuming ultimate convergence, this has to be followed by the next
state.

(iii) Linear convergence with a predictable rate (n/(n− 1) for polynomials of degree
n). This is the only type of convergence possible once the residual is larger than
the stationary value. (For residuals slightly larger than the stationary value, lin-
earity is only an approximation.)

(iv) Quadratic convergence once the iterates are sufficiently close to the root (the
residual is smaller than the stationary value)—the well-known Newton-Kanto-
rovich convergence result.

5. Application on the cubic case “Cayley problem”

In 1879, Cayley asked the following question: given an initial input z0, to which root
will Newton’s method converge. The answer was only fully understood recently and leads
to a beautiful fractal pattern. The other good thing about knowing the structure of the
underlying Newton fractal is that we can tell which regions are bad for a starting guess
(namely, the ones that have singular-Julia-points in them).

Next, we discuss Newton’s method applied to the simple cubic equation

f (z)= z3− 1. (5.1)

The Newton’s equation is expressed in the form

2z3
k − 3zk+1z

2
k + 1= 0, (5.2)

more explicitly

zk+1 =�
(
zk
)= 2z3

k + 1

3z2
k

. (5.3)

We note by z+ = x+ + iy+ and z = x + iy instead of zk+1 = xk+1 + iyk+1 and zk = xk + iyk.
If we replace in (5.3), we separate the real part of the imaginary part and after a simple
calculation, we have

x+ = 2x5 + 4x3y2 + 2xy4 + x2− y2

3
(
x2 + y2

)2 ,

y+ = 2y
[(
x2 + y2

)2− x]

3
(
x2 + y2

)2 ,

(5.4)

which is simply the projection of the formula (5.3) on the real and imaginary axes.

5.1. Study of the one-dimensional Newton map. Consider first the restriction of New-
ton’s algorithm in the one-dimensional space, we now specialize to the real case and it
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Table 5.1. Newton algorithm.

x0 −50.00 −0.0001 −1002.754 01.50 100.0
kmax 15 48 — 5 15

suffices to replace in (5.3) z+ and z by x+ and x then

x+ = 2x3 + 1
3x2

. (5.5)

In the following Table 5.1, one summarized results of the algorithm of Newton with dif-
ferent initial points (kmax represents the maximal number of iterations to reach the solu-
tion x∗ = 1.0).

It is clear (from (5.5)) that the algorithm fails only for x = 0, then 0 belongs to Julia set
as well as all x such that x→ 0. Now the idea to construct the Julia set is to take images of
the point at the origin by the inverse algorithm of Newton. Let us come back to (5.5) to
solve this last with regard to x, we obtain that x < 1 there is a unique solution, which is

x =
(
− 2 + x3

+ + 2
(√
−x3

+ + 1
))2/3

+ x2
+

2
(
− 2 + x3

+ + 2
(√
−x3

+ + 1
))1/3 +

x+

2
, (5.6)

where the inverse formula of Newton’s algorithm. Then we can construct the Julia set (see
Figure 5.1) as union of points {χk}k=0,1,2,... defined by

χ0 = 0,

χ1 =− 1
3
√

2
,

χk+1 =
3

√

−2 + χ3
k + 2

√
−χ3

k + 1
2

+ χ2
k

2 3

√

−2 + χ3
k + 2

√
−χ3

k + 1
+
χk
2
.

(5.7)

The map (5.7) does not admit a fixed point because we can verify that for u < 1 we have

3
√
−2 +u3 + 2

√−u3 + 1
2

+u2

2
3
√
−2 +u3 + 2

√−u3 + 1
+
u

2
−u < 0. (5.8)

We remark that this last inequality implies the decrease of the mapping defined in (5.24)
and that {χk}k=0,1,2,... ⊂ R−. Let us examine now the behavior of the map {χk} at the
infinity while calculating the quotient

χk+1

χk
= Φ

(
χk
)2

+ χkΦ
(
χk
)

+ χ2
k

2χkΦ
(
χk
) = 1

2

(
Γ+

1
Γ

)
+

1
2
. (5.9)
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Figure 5.1. The Julia set in R.

Where

Φ(x)= 3
√

−2 + x3 + 2
√

1− x3

Γ= Φ
(
χk
)

χk
.

(5.10)

Solving the extrema points

min
Γ>0

(
Γ+

1
Γ

)
, (5.11)

we verify that

χk+1

χk
>

3
2

(5.12)

and because χk+1/χk > 0 and χk < 0 for all k ≥ 0 then

lim
k→+∞

χk =−∞ (5.13)

the numerical tests (Table 5.2) validate the result (5.13).
If we put l j = χj+1− χj ; j = 0,1,2, . . . we remark that l j+1/l j = 3/2 (see Figure 5.2) and

then we have

χj = 1
3
√

2

(

1−
i= j∑

i=0

(
3
2

)i)

, j = 0,1,2, . . . . (5.14)
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Table 5.2. Algorithm of Newton and its inverse.

k Newton algorithm Inverse Newton algorithm
0 −26.08362 0
1 −17.38859 −0.7937005
2 −11.59129 −1.433775
3 −7.725046 −2.249475
4 −5.144445 −3.417035
5 −3.417035 −5.144445
6 −2.249475 −7.725045
7 −1.433776 −17.38859
8 −0.7937006 −11.59129
9 −7.7054578E− 08 −17.38859

10 — −26.08362

10

8

6

4

2

5 10 15 20 25

l j

j

Figure 5.2. The successive gaps of the sequence generated by formula (5.7).

5.2. Modification of Newton algorithm and global convergence. Notice that the algo-
rithm

x+ = x+
1− x3

3x2
(5.15)

converges only for any x close of the root, otherwise one does not have a global con-
vergence. For that we can interpret the quantity (1− x3)/3x2 as a direction, the long of
which we do a displacement λ to force the global convergence. A new algorithm is pro-
posed therefore

x+ =�(x,λ)= x+ λ
1− x3

3x2
, λ > 0. (5.16)
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Figure 5.3. Modified Newton algorithm with different values of λ for a chosen x =−3.417034624.
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Figure 5.4. Modified Newton algorithm with different values of λ for x = 2.88418640× 108.

The numerical tests (Figures 5.3, 5.4 and 5.5) prove that for some values of λ; we can give
back a no-converging point (which belongs to Julia set) in a convergent point (then in
Fatou set).

Besides, the bifurcation diagram (see Figure 5.6) permits us to affirm that in the inter-
val ]0,2] there is convergence, on the other hand in the interval ]2,7] there is divergence
of cyclic type due to a succession of period doubling and apparition of chaos.

5.3. The two-dimensional map. It is easy to calculate the three roots of (1.3):

zk = e(2/3)(k−1)πi, k = 1,2,3, (5.17)
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Figure 5.5. Modified Newton algorithm for different values of λ with x =−2.88418640× 10−8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 > 15
x1 = 6

0

x0 = −6
λ0 = 0 λ1 = 7

Figure 5.6. Bifurcation diagram of the �(x,λ) algorithm.

then

z1 = 1, z2,3 =−1
2
± i1

2

√
3. (5.18)

So one can consider couples (1,0),(−1/2,(1/2)
√

3),(−1/2,−(1/2)
√

3) as solutions of the
nonlinear system

f (x, y)=
(
f1(x, y)
f2(x, y)

)

=
(
x3− 3xy2− 1

3x2y− y3

)

= 0 (5.19)

obtained by considering z = x+ iy and f (z)= f1(x, y) + i f2(x, y). Let us pass now to the
crucial construction of f schematized in Figure 5.7.
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Figure 5.7. Solutions of the cubic equation.

Apply now to the map (5.17) the Newton algorithm by the following form

X+ = X − J−1(X) f (X), (5.20)

where X = (x, y), and J−1(X) is the Jacobian inverse f evaluated in X .
Such that the Jacobian is given by

J(x, y)=
(

3x2− 3y2 −6xy
6xy 3x2− 3y2

)

(5.21)

which is invertible, the algorithm (5.18) is well defined and converges locally to the solu-
tion of (5.17), its eigenvalues are then

λ1 = 3(x+ iy)2, λ2 = 3(x− iy)2, (5.22)

then J(x, y) is singular for (x, y)= (0,0), elsewhere it does not have a definite sign and its
inverse is expressed by

J−1(x, y)= 1

9
(
x2 + y2

)2

(
3x2− 3y2 6xy
−6xy 3x2− 3y2

)

. (5.23)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 > 15

0

y1 = 2

0
y0 = −2

x0 = −2 x1 = 2

Figure 5.8. The figure shows the basins of attraction for Newton’s method applied to the equation
z3− 1= 0.

If we replace in (5.18) we obtain the formula

x+ = 2x5 + 4x3y2 + 2xy4 + x2− y2

3
(
x2 + y2

)2 ,

y+ = 2y
[(
x2 + y2

)2− x]

3
(
x2 + y2

)2 .

(5.24)

Remarks 5.1. We show three sets A1, A2, A3 and their boundaries, such that Ai =
{z; f n(z)→ zi} with some properties (see Figure 5.8).

(1) Symmetry: if you rotate the z-plane by 120◦, then A1 becomes A2, A2 becomes A3,
and A3 becomes A1.

(2) The closure of A1 ∪A2 ∪A3 is equal to the whole z-plane. Thus any point z is
either in A1, A2, A3 or their boundaries.

(3) The boundaries of A1, A2, and A3 are the same and very exotic. If we denote ∂A=
boundary of the set A, then ∂A1∪ ∂A2∪ ∂A3 is called the Julia set and denote it as
�(�).

(4) 0 and its preimages are in �(�). Notice that f (0)=∞. Hence, 0 is the hole leading
to infinity. Clearly 0 /∈ ∂A1∪ ∂A2∪ ∂A3. Thus 0∈�(�). We then conclude that all
the preimages of 0 are also in �(�). Note that these preimages of 0 are countable.

(5) Other aperiodic points which wander about in �(�) forever must also be in �(�).
These points are uncountable and make up the majority of �(�).

(6) There is a dense orbit in �(�), the map (5.3) is chaotic on �(�).

It is clear the first element of the Julia set �(�) relative to the map (5.3) is the point
(0,0), we can obtain the others elements by solving with regard to z the equation of
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Newton

2z3− 3z+z
2 + 1= 0. (5.25)

This last admits three complex solutions given by

z1 = 1
2

[
ϕ
(
z+
)

+ z+
]
,

z2 = 1
4

[−ϕ(z+
)

+ 2z+ + I
√

3ψ
(
z+
)]

,

z3 = 1
4

[−ϕ(z+
)

+ 2z− I√3ψ
(
z+
)]

,

(5.26)

where

ϕ(z)= 3
√

−2 + z3 + 2
√

1− z3 +
z2

3
√
−2 + z3 + 2

√
1− z3

,

ψ(z)= 3
√

−2 + z3 + 2
√

1− z3− z2

3
√
−2 + z3 + 2

√
1− z3

.

(5.27)

While projecting on real and imaginary axes, we have the following formulas in R2:

x1 = 1
2

[
η+ x+ +

2x+y+η−βξ
α

]
,

y1 = 1
2

[
η+ y+ +

βη+ 2x+y+ξ

α

]
,

(5.28)

x2 = 1
4α

[
α
(
2x+− ξ −

√
3η
)

+β
(
ξ +
√

3η
)

+ 2x+y+
(√

3ξ −η)],

y2 = 1
4α

[
α
(
2y+−η+

√
3ξ
)

+β
(√

3ξ −η)− 2x+y+
(√

3η+ ξ
)]

,
(5.29)

x3 = 1
4α

[
α
(
2x+− ξ +

√
3η
)

+β
(
ξ −√3η

)− 2x+y+
(√

3ξ +η
)]

,

y3 = 1
4α

[
α
(
2y+−η−

√
3ξ
)−β(√3ξ +η

)
+ 2x+y+

(√
3η− ξ)],

(5.30)

with

ϕ
(
z+
)= ξ + Iη,

α= ξ2 +η2,

β = y2
+− x2

+.

(5.31)

In Table 5.3, we remark the behavior of the Newton algorithm with an initial condition
in the Julia set (case of nonconvergence) whereas for a neighboring point the qualitative
behavior changes.

We now show how to construct the Julia set with the help of the inverse Newton algo-
rithm defined by formulas (5.28), (5.29), and (5.30).
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Table 5.3. Cases of convergence and of nonconvergence for Newton algorithm.

x0 kmax

(−5.1444445,0) —
(−5.1444,0) 59
(3.862522716,−6.690085583) —
(3.8625,−6.6900) 59
(29.34438653,−50.82596840) —
(29.344,−50.825) 61
(8.694293987,15.05895892) —
(8.6942,15.0589) 69

3E17

2E17

1E17

0

−1E17

−2E17

−3E17

−4E17 −3E17 −2E17 −1E17 0 1E17 2E17

Figure 6.1. First generation of Julia set.

6. Julia set by the inverse algorithm

Let T1, T2, T3 be three maps (5.28), (5.29), and (5.30) such that

(
x1, y1

)= T1(x, y),
(
x2, y2

)= T2(x, y),
(
x3, y3

)= T3(x, y).

(6.1)

We define the first generation of Julia set by

�1 =
{
T
j
1 (0,0),T

j
2 (0,0),T

j
3 (0,0), j = 0,1,2,3, . . .

}
, (6.2)

it is clear that the set �1 is included in the Julia set �(�) (see Figure 6.1).
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y1 = 2

0

y0 = −2
x0 = −2 x1 = 20

x = −1.940000 y = −1.513333

Figure 6.2. Second generation of Julia set.

y1 = 2

0

y0 = −2
x0 = −2 x1 = 20

Figure 6.3. Third generation of Julia set.

Since every point of �(�) admits three preimages by T1, T2, T3; we can define so the
second generation of Julia set is defined by

�2 =
{
T
j
1 (u),T

j
2 (u),T

j
2 (u); u∈�1, j = 0,1,2, . . .

}
(6.3)
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and thus, the Julia set of kth generation is given by

�k =
{
T
j
1 (u),T

j
2 (u),T

j
3 (u); u∈�k−1, j = 0,1,2,3, . . .

}
. (6.4)

It is obvious if we consider �0 = {(0,0)}, we have then a relation in this following scheme

�0 ⊂�1 ⊂�2 ⊂ ··· ⊂�k ⊂ ··· . (6.5)

Since the point (0,0) is not a fixed point for the three applications T1, T2, T3 (see Figures
6.2, 6.3), then the Julia set �(�) is well determined by (5.28), (5.29), and (5.30).

Proposition 6.1. Let (�k)k=1,2,..., the sets defined previously; then

�∞ =�(�). (6.6)

An immediate and important consequence is that the Fatou set �(�) (the set of conver-
gent points) is the complementary in C of �∞, and then

�(�)= C\�∞. (6.7)
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