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1. Introduction

The asymptotic behavior of solutions of nonlinear difference equations is of particular
interest in iterative computational schemes and discrete time dynamic models. Therefore,
it is the subject of many investigations [1, 2, 4, 5, 8–14, 18, 20].

In this paper, we are concerned with a class of two-dimensional second-order nonlin-
ear difference systems of the form

Δ2xn = an f
(
yn
)
,

Δ2yn =−bng
(
xn
)
,

(1.1)

where {an}∞n=n0
and {bn}∞n=n0

are real, nontrivial sequences such that an ≥ 0 and bn ≥ 0
for n ≥ n0, f and g are continuous real-valued and increasing functions on the real line
R and satisfy x f (x) > 0, xg(x) > 0 for x �= 0.

Existence and uniqueness theorem for solutions of (1.1) is easily established. Indeed,
given x0, x1, y0 and y1, we can calculate

x2 = 2x1− x0 + a0 f
(
y0
)
, y2 = 2y1− y0− b0g

(
x0
)
, . . . (1.2)

successively in a unique manner. The corresponding sequence {(xn, yn)}∞n=n0
will be called

a solution of (1.1).
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2 Positive solutions of nonlinear difference systems

A solution {(xn, yn)} of (1.1) is said to be positive if both {xn} and {yn} are positive.
Positive solutions of (1.1) are interesting for many reasons. For instance, when an ≡ 1 and
f (u)= u, we see from (1.1) that

Δ2yn = Δ4xn =−bng
(
xn
)
. (1.3)

Therefore, a positive solution of (1.1) yields a positive and strictly concave solution of the
fourth-order nonlinear difference equation

Δ4xn + bng
(
xn
)= 0. (1.4)

Other difference equations such as

Δ4xn−1 + pn f
(
xn
)= 0, Δ4xn−1 + pn

∣
∣xn
∣
∣γ signxn = 0,

Δ2(rn−1Δ
2xn−1

)
+ pn f

(
xn
)= 0

(1.5)

can also be written in the form (1.1), which have been explored to some extent in a num-
ber of studies [3, 6, 7, 15–17, 19]. We will be concerned with existence criteria as well as
classification schemes for positive solutions of (1.1).

We remark that our system (1.1) is a discrete analog of a second-order differential
system of the form

x′′ = a(t) f (y), y′′ = −b(t)g(x), (1.6)

which can be interpreted as the governing equations of the motion of a particle moving
in a plane under a nonautonomous plane force field. Therefore the study of (1.1) will
also lead to useful complementary information for the differential systems. On the other
hand, (1.1) can also be written as a first-order difference system. For results related to
these systems, the reader can refer to [7]. We remark, however, that our approach here is
more natural and avoids systems with four equations.

Our system (1.1) is naturally classified into four classes: (i)
∑∞

s=n0
as =∞ and

∑∞
s=n0

bs =
∞; (ii)

∑∞
s=n0

as = ∞ and
∑∞

s=n0
bs < ∞; (iii)

∑∞
s=n0

as < ∞ and
∑∞

s=n0
bs = ∞; and

(iv)
∑∞

s=n0
as <∞ and

∑∞
s=n0

bs <∞.
For this reason, we will employ the following notations:

An =
∞∑

s=n
as, Bn =

∞∑

s=n
bs, n≥ n0. (1.7)

In the following section, we will discuss the caseAn0 =∞ and Bn0 =∞. The cases where
An0 =∞ and Bn0 <∞, An0 <∞ and Bn0 <∞, and An0 <∞ and Bn0 =∞ will be studied in
Sections 3, 4, and 5, respectively. In Section 6, we give some examples to illustrate our
results.

2. The case An0 =∞ and Bn0 =∞
In this section, we always assume that An0 =∞ and Bn0 =∞. We assert that there exist no
positive solutions of (1.1).
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Theorem 2.1. Suppose that An0 =∞ and Bn0 =∞. Then there exist no positive solutions of
(1.1).

Proof. Suppose that {(xn, yn)} is a solution of (1.1) such that xn > 0 and yn > 0 for n≥ n0.
Then, from (1.1) we have Δ2yn < 0 for n ≥ n0, which implies that {Δyn} is decreasing.
Therefore, there are two possibilities: (i) Δyn > 0 for n≥ n0 and (ii) Δyn < 0 for n≥ n0.

If Δyn > 0 for n≥ n0, then {yn} is an increasing sequence. Since yn > 0 for n≥ n0, then
yn ≥ yn0 > 0 for n≥ n0. From the first equation of (1.1) we have Δ2xn > 0 for n≥ n0 and
hence

Δxn = Δxn0 +
n−1∑

k=n0

ak f
(
yk
)≥ Δxn0 + f

(
yn0

) n−1∑

k=n0

, ak −→∞ (2.1)

as n→∞, which implies that there exists an integer n1 ≥ n0 such that xn ≥ xn1 > 0 for
n≥ n1. From the second equation of (1.1), we have

Δyn = Δyn1 −
n−1∑

k=n1

bkg
(
xk
)≤ Δyn1 − g

(
xn1

) n−1∑

k=n1

, bk −→−∞ (2.2)

as n→∞, which contradicts the fact that Δyn > 0 for n≥ n0.
If Δyn < 0 for n≥ n0, then from Δ2yn < 0 for n≥ n0, it follows that {Δyn} is decreasing,

and hence there exists a constant c > 0 such that Δyn ≤−c for n≥ n2 ≥ n0, which means
that yn ≤ yn2 −

∑n−1
k=n2

c→−∞ as n→∞, and so there exists an integer n3 ≥ n2 such that
yn < 0 for n≥ n3. This is a contradiction and completes the proof. �

3. The case An0 =∞ and Bn0 <∞
Assume that An0 =∞ and Bn0 <∞. If {(xn, yn)}∞n=n0

is a positive solution of (1.1), that is
to say, xn > 0 and yn > 0 for n≥ n0, then, in view of (1.1), we have Δ2xn > 0 and Δ2yn < 0
for n≥ n0, which imply that {Δxn} is increasing and {Δyn} is decreasing. Hence {xn} and
{yn} are monotonic sequences. By the second equation of (1.1), we have

Δyn = Δyn0 −
n−1∑

k=n0

bkg
(
xk
)
, n≥ n0. (3.1)

If there exists an integer n1 ≥ n0 such that Δyn < Δyn1 < 0 for n≥ n1, then

yn = yn1 +
n−1∑

k=n1

Δyk ≤ yn1 +
n−1∑

k=n1

, Δyn1 −→−∞ (3.2)

as n→∞, which contradicts the assumption yn > 0 for n≥ n0. Hence Δyn > 0 for n≥ n0

and limn→∞Δyn = c ≥ 0, which implies that limn→∞ yn =∞ or limn→∞ yn = β > 0.
By the first equation of (1.1), we have

Δxn = Δxn0 +
n−1∑

k=n0

ak f
(
yk
)≥ Δxn0 + f

(
yn0

) n−1∑

k=n0

, ak −→∞ (3.3)

as n→∞, and so, limn→∞ xn =∞.



4 Positive solutions of nonlinear difference systems

In view of the above discussions, we may now make the following classification. Let C
be the set of all positive solutions of (1.1). Then we have the following result.

Theorem 3.1. Suppose that An0 =∞ and Bn0 <∞. Then any positive solutions of (1.1) must
belong to the following classes:

C(∞,α)=
{(
xn, yn

)∈ C | lim
n→∞xn =∞, lim

n→∞ yn = β > 0
}

,

C(∞,∞)=
{(
xn, yn

)∈ C | lim
n→∞xn =∞, lim

n→∞ yn =∞
}
.

(3.4)

In order to further justify our classification schemes, we derive several sufficient con-
ditions for the existence of each type of positive solutions.

Theorem 3.2. Suppose that An0 =∞ and Bn0 <∞. A sufficient condition for (1.1) to have
a positive solution {(xn, yn)} which belongs to C(∞,α) is that

∞∑

k=n0

∞∑

s=k
bs g

( s−1∑

r=n0

r−1∑

t=n0

at f (c)

)

<∞ (3.5)

for some c > 0 and

∞∑

k=n0

k−1∑

s=n0

as f (d)=∞ (3.6)

for any d > 0.

Proof. Choose N so large that

∞∑

k=N

∞∑

s=k
bs g

( s−1∑

r=N

( r−1∑

t=N
at f (c)

))

<
c

2
. (3.7)

Let X be the set of all bounded real-valued sequences {yn} with norm supn≥N |yn|. Then
X is a Banach space. We define a subset Ω of X as follows:

Ω=
{
yn ∈ X | c

2
≤ yn ≤ c, n≥N

}
. (3.8)

Then Ω is bounded, convex and closed subset of X . Let us further define an operator
F : Ω→ X as follows:

(Fy)n = c−
∞∑

k=n

∞∑

s=k
bs g

( s−1∑

r=N

r−1∑

t=N
at f
(
yt
)
)

, n≥N. (3.9)

The mapping F has the following properties. First of all, F maps Ω into Ω. Indeed,
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if y ∈Ω, then

c ≥ (Fy)n = c−
∞∑

k=n

∞∑

s=k
bs g

( s−1∑

r=N

r−1∑

t=N
at f
(
yt
)
)

≥ c−
∞∑

k=N

∞∑

s=k
bs g

( s−1∑

r=N

r−1∑

t=N
at f (c)

)

≥ c

2
.

(3.10)

Next, we show that F is continuous. Let y(l) ∈Ω such that liml→∞‖y(l)− y‖ = 0. Since Ω
is closed, y ∈Ω. Then by (3.9), we have

∣
∣(Fy(l))

n− (Fy)n
∣
∣=

∣
∣
∣
∣
∣

∞∑

k=n

∞∑

s=k
bs g

( s−1∑

r=N

r−1∑

t=N
at f
(
y(l)
t

))

−
∞∑

k=n

∞∑

s=k
bs g

( s−1∑

r=N

r−1∑

t=N
at f
(
yt
)
)∣∣
∣
∣
∣

≤
∞∑

k=n

∞∑

s=k
bs

∣
∣
∣
∣
∣g

( s−1∑

r=N

r−1∑

t=N
at f
(
y(l)
t

)
)

− g

( s−1∑

r=N

r−1∑

t=N
at f
(
yt
)
)∣∣
∣
∣
∣.

(3.11)

By the continuity of f and g and Lebesgue’s dominated convergence theorem, it follows
that

lim
l→∞

sup
n≥N

∣
∣(Fy(l))

n− (Fy)n
∣
∣= 0. (3.12)

This shows that liml→∞‖Fy(l)−Fy‖ = 0, that is, F is continuous.
Finally, we will show that FΩ is precompact. Let y ∈Ω and m,n≥N . Then, we have,

for m> n,

∣
∣(Fy)m− (Fy)n

∣
∣≤

m−1∑

s=n

∞∑

s=k
bs g

( s−1∑

r=N

r−1∑

t=N
at f
(
yt
)
)

≤
∞∑

s=n

∞∑

s=k
bs g

( s−1∑

r=N

r−1∑

t=N
at f
(
yt
)
)

.

(3.13)

In view of (3.5), this means that FΩ is precompact.
By Schauder’s fixed point theorem, we conclude that there exists a y ∈ Ω such that

y = Fy. Set xn =
∑n−1

r=N
∑r−1

t=N at f (yt). Then

xn ≥
n−1∑

r=N

r−1∑

t=N
at f
(
c

2

)
−→∞ as n→∞, (3.14)

and hence limn→∞ xn =∞. On the other hand,

yn = (Fy)n = c−
∞∑

k=n

∞∑

s=k
bs g
(
xs
)
, (3.15)

which implies that limn→∞ yn = c. The proof is complete. �
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Theorem 3.3. Suppose that An0 =∞ and Bn0 <∞. A sufficient condition for (1.1) to have
a positive solution {(xn, yn)} which belongs to C(∞,∞) is that

∞∑

k=n0

ak f (ck) <∞ (3.16)

for some c > 0 and

∞∑

k=n0

bk g(dk) <∞ (3.17)

for some d > 0.

Proof. Suppose that (3.16) and (3.17) hold. Then there exists N ≥ n0 such that

∞∑

k=N
ak f (2ck) < d,

∞∑

k=N
kg(2dk) < c. (3.18)

Let X be the Banach space of all real-valued sequences {(xn, yn)} endowed with the norm

∥
∥(x, y)

∥
∥=max

{

sup
n≥N

∣
∣
∣
∣
xn
n

∣
∣
∣
∣, sup

n≥N

∣
∣
∣
∣
yn
n

∣
∣
∣
∣

}

(3.19)

and with the usual pointwise ordering ≤. Define a subset Ω of X as follows:

Ω= {(x, y)∈ X | dn≤ xn ≤ 2dn, cn≤ yn ≤ 2cn, n≥N
}
. (3.20)

For any subset B of Ω, it is obvious that inf B ∈Ω and supB ∈Ω. Let us further define an
operator F : Ω→ X as follows: for (x, y)∈ X , F(x, y)= (u,v) and

un = dn+
n−1∑

k=N

k−1∑

s=N
as f (ys), vn = cn+

n−1∑

k=N

∞∑

s=k
bs g
(
xs
)
, n≥N. (3.21)

The mapping F satisfies the assumptions of Knaster’s fixed point theorem [2]: F is in-
creasing and maps into itself. Indeed, if x ∈Ω, then

dn≤ un ≤ dn+n
∞∑

s=N
as f (2cs)≤ 2dn, n≥N ,

cn≤ vn ≤ cn+n
∞∑

s=N
bs g(2ds)≤ 2cn, n≥N.

(3.22)

By Knaster’s fixed point theorem [2], we can conclude that there exists (x, y)∈Ω such
that (x, y)= F(x, y). That is,

xn = dn+
n−1∑

k=N

k−1∑

s=N
as f
(
ys
)
, yn = cn+

n−1∑

k=N

∞∑

s=k
bs g
(
xs
)
, n≥N. (3.23)
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Then limn→∞ xn =∞ and limn→∞ yn =∞. Hence, {(xn, yn)} is a positive solution of (1.1)
which belongs to C(∞,∞). The proof is complete. �

4. The case An0 <∞ and Bn0 <∞
We first give a classification scheme for positive solutions of (1.1) under the assumption
An0 <∞ and Bn0 <∞.

Theorem 4.1. Suppose that An0 <∞ and Bn0 <∞. Then any positive solutions of (1.1) must
belong to the following classes:

C(α,β)=
{(
xn, yn

)∈ C | lim
n→∞xn = α≥ 0, lim

n→∞ yn = β > 0
}

,

C(∞,β)=
{(
xn, yn

)∈ C | lim
n→∞xn =∞, lim

n→∞ yn = β > 0
}

,

C(α,∞)=
{(
xn, yn

)∈ C | lim
n→∞xn = α≥ 0, lim

n→∞ yn =∞
}

,

C(∞,∞)=
{(
xn, yn

)∈ C | lim
n→∞xn =∞, lim

n→∞ yn =∞
}
.

(4.1)

Proof. Let {(xn, yn)} be a positive solution of (1.1). Then Δ2yn =−bng(xn) < 0 for n≥ n0.
Hence {Δyn} is monotonic and either Δyn > 0 for n ≥ n0 or Δyn < 0 for n ≥ n0. If the
later holds, then yn ≤ yn0 for n ≥ n0 and Δyn ≤ Δyn0 < 0 for n ≥ n0, and so yn ≤ yn0 +
∑n−1

n=n0
Δyn0 → −∞ as n→∞, which contradicts the assumption that yn > 0 for n ≥ n0,

and means that limn→∞ yn =∞ or limn→∞ yn = β > 0. On the other hand, it follows from
(1.1) that Δ2xn > 0 for n≥ n0, which implies that {Δxn} is monotonic and either Δxn > 0
for n≥ n0 or Δxn < 0 for n≥ n0. If the later holds, then limn→∞ xn = α≥ 0. If the former
holds, then limn→∞ xn =∞ or limn→∞ xn = α > 0. The proof is complete. �

Again, in order to justify our classification schemes, we derive several necessary and/or
sufficient conditions for the existence of each type of positive solutions.

Theorem 4.2. Suppose that An0 <∞ and Bn0 <∞. A necessary and sufficient condition for
(1.1) to have a positive solution {(xn, yn)} which belongs to C(α,β) is that

∞∑

k=n0

∞∑

s=k
as f (c) <∞,

∞∑

s=k
bs g(d) <∞ (4.2)

for some c > 0 and d > 0.

Proof. Let {(xn, yn)} be a solution of (1.1) such that limn→∞ xn = α > 0 and limn→∞ yn =
β > 0. Then there exist four positive constants c1, c2, c3, c4 and N ≥ n0 such that c1 ≤ xn ≤
c2, c3 ≤ yn ≤ c4 for n≥N . In view of the first equation of (1.1) and limn→∞ xn = α > 0, we
have xn = α+

∑∞
k=n
∑∞

s=k as f (ys), and so

∞∑

k=n0

∞∑

s=k
as f
(
c3
)
<∞. (4.3)



8 Positive solutions of nonlinear difference systems

Furthermore, we see from the second equation of (1.1) that Δyn =
∑∞

k=n bk g(xk), and
yn = β−∑∞

k=n
∑∞

s=k bs g(xs) > 0. Thus,

∞∑

k=n0

∞∑

s=k
bsg
(
c1
)
< β <∞. (4.4)

Conversely, suppose that (4.2) holds. Then there exists N ≥ n0 such that

∞∑

k=N

∞∑

s=k
as f (2c) < d,

∞∑

k=N

∞∑

s=k
bs g(2d) < c. (4.5)

Let X be the Banach space of all real-valued sequences {(xn, yn)} endowed with the norm

∥
∥(x, y)

∥
∥=max

{

sup
n≥N

∣
∣xn
∣
∣, sup

n≥N

∣
∣yn

∣
∣
}

(4.6)

and with the usual pointwise ordering ≤. Define a subset Ω of X as follows:

Ω= {(x, y)∈ X | d ≤ xn ≤ 2d, c ≤ yn ≤ 2c, n≥N
}
. (4.7)

For any subset B of Ω, it is obvious that inf B ∈Ω and supB ∈Ω. Let us further define an
operator F : Ω→ X as follows: for (x, y)∈ X , let F(x, y)= (u,v) and

un = d+
∞∑

k=n

∞∑

s=k
as f
(
ys
)
, vn = c+

n−1∑

k=N

∞∑

s=k
bsg
(
xs
)
, n≥N. (4.8)

The mapping F satisfies the assumptions of Knaster’s fixed point theorem [2]: F is in-
creasing and maps into itself. Indeed, if x ∈Ω, then

d ≤ un = d+
∞∑

k=n

∞∑

s=k
as f
(
ys
)≤ d+

∞∑

k=n

∞∑

s=k
as f (2c)≤ 2d, n≥N ,

c ≤ vn = c+
n−1∑

k=N

∞∑

s=k
bsg
(
xs
)≤ c+

∞∑

k=N

∞∑

s=k
bs g(2d)≤ 2c, n≥N.

(4.9)

By Knaster’s fixed point theorem [2], we can conclude that there exists (x, y)∈Ω such
that (x, y)= F(x, y). That is,

xn = d+
∞∑

k=n

∞∑

s=k
as f
(
ys
)
, yn = c+

n−1∑

k=N

∞∑

s=k
bsg
(
xs
)
, n≥N. (4.10)

Then

lim
n→∞xn = d, lim

n→∞Δyn = lim
n→∞

∞∑

k=n
bk g

(
xk
)= 0, (4.11)
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and so limn→∞ yn = β ≥ 0. In view of Δyn =
∑∞

k=n bs g(xs) > 0, it follows that β > 0. Hence,
{(xn, yn)} is a positive solution of (1.1) which belongs to C(α,β). The proof is complete.

�

By means of similar reasoning used in the proof of Theorems 3.2 and 4.2, we may
prove the following three theorems.

Theorem 4.3. Suppose that An0 <∞ and Bn0 <∞. A sufficient condition for (1.1) to have a
positive solution {(xn, yn)} which belongs to C(∞,β) is that

∞∑

k=n0

k−1∑

s=n0

as f (c)=∞ (4.12)

for any c > 0 and

∞∑

k=n0

∞∑

s=k
bsg

( s−1∑

r=n0

r−1∑

t=n0

as f (d)

)

<∞ (4.13)

for some d > 0.

Theorem 4.4. Suppose that An0 <∞ and Bn0 <∞. A sufficient condition for (1.1) to have a
positive solution {(xn, yn)} which belongs to C(α,∞) is that

∞∑

k=n0

∞∑

s=k
bs g(c)=∞ (4.14)

for any c > 0 and

∞∑

k=n0

∞∑

s=k
as f

( s−1∑

r=n0

r−1∑

t=n0

bs g(d)

)

<∞ (4.15)

for some d > 0.

Theorem 4.5. Suppose that An0 <∞ and Bn0 <∞. A sufficient condition for (1.1) to have a
positive solution {(xn, yn)} which belongs to C(∞,∞) is that

∞∑

k=n0

ak f (ck) <∞ (4.16)

for some c > 0 and

∞∑

k=n0

bk g(dk) <∞ (4.17)

for some d > 0.
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5. The case An0 <∞ and Bn0 =∞
In this section, we consider the classification and existence for positive solutions of (1.1)
under the assumption An0 <∞ and Bn0 =∞.

Theorem 5.1. Suppose that An0 <∞ and Bn0 =∞. Then any positive solutions of (1.1) must
belong to the following classes:

C(0,β)=
{(
xn, yn

)∈ C | lim
n→∞xn = 0, lim

n→∞ yn = β > 0
}

,

C(0,∞)=
{(
xn, yn

)∈ C | lim
n→∞xn = 0, lim

n→∞ yn =∞
}
.

(5.1)

Proof. Let {(xn, yn)} be a positive solution of (1.1). Then Δ2yn =−bng(xn) < 0 for n≥ n0.
Hence {Δyn} is monotonic and either Δyn > 0 for n ≥ n0 or Δyn < 0 for n ≥ n0. If the
later holds, then yn ≤ yn0 for n ≥ n0 and Δyn ≤ Δyn0 < 0 for n ≥ n0, and so yn ≤ yn0 +
∑n−1

n=n0
Δyn0 → −∞ as n→∞, which contradicts the assumption yn > 0 for n ≥ n0, and

means that limn→∞ yn =∞ or limn→∞ yn = β > 0. On the other hand, it follows from (1.1)
that Δ2xn > 0 for n ≥ n0, which implies that {Δxn} is monotonic and either Δxn > 0 for
n≥ n0 or Δxn < 0 for n≥ n0. If the former holds, then xn ≥ xn0 for n≥ n0. By the second
equation of (1.1) we have

Δyn = Δyn0 −
n−1∑

k=n0

bkg
(
xk
)≤ Δyn0 − g

(
xn0

) n−1∑

k=n0

, bk −→−∞ (5.2)

as n→∞, which implies that limn→∞Δyn =−∞ and hence limn→∞ yn =−∞, this contra-
dicts the assumption yn > 0 for n ≥ n0. If the later holds, then limn→∞ xn = α ≥ 0. Since
Δxn < 0 for n≥ n0, then xn ≥ α≥ 0 for n≥ n0. If α > 0, then

Δyn = Δyn0 −
n−1∑

k=n0

bkg
(
xk
)≤ Δyn0 − g(α)

n−1∑

k=n0

, bk −→∞ (5.3)

as n→∞, which also contradicts the assumption yn > 0 for n≥ n0. The proof is complete.
�

In the following, in order to justify our classification schemes, we derive several neces-
sary and/or sufficient conditions for the existence of each type of positive solutions.

Theorem 5.2. Suppose that An0 <∞ and Bn0 =∞. A necessary and sufficient condition for
(1.1) to have a positive solution {(xn, yn)} which belongs to C(0,β) is that

∞∑

k=n0

∞∑

s=k
as f (c) <∞ (5.4)

for some c > 0 and

∞∑

k=n0

k−1∑

s=n0

bs g

( ∞∑

r=s

∞∑

t=r
as f (d)

)

<∞ (5.5)

for some d > 0.



Wan-Tong Li et al. 11

Proof. Let {(xn, yn)} be a solution of (1.1) such that limn→∞ xn = 0 and limn→∞ yn = β > 0.
Then there exist two positive constants c1, c2 and N ≥ n0 such that c1 ≤ yn ≤ c2 for n≥N .
In view of the first equation of (1.1) and limn→∞ xn = 0, we have Δxn = −

∑∞
k=n ak f (yk),

and so

∞ > xn =
∞∑

k=n

∞∑

s=k
as f
(
ys
)≥

∞∑

k=n

∞∑

s=k
as f
(
c1
)
. (5.6)

Furthermore, we see from the second equation of (1.1) that Δyn =
∑∞

k=n bk g(xk), and

∞ > yn = yN +
n−1∑

k=N

∞∑

s=k
bs g
(
xs
)≥

n−1∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

∞∑

t=r
at f
(
yt
)
)

≥
n−1∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

∞∑

t=r
at f (c1)

)

.

(5.7)

Conversely, suppose that (5.4) and (5.5) hold. Then there exists N ≥ n0 such that

∞∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

∞∑

t=r
at f (2c)

)

≤ c. (5.8)

Let X be the Banach space of all real-valued sequences {yn} endowed with the norm
‖y‖ = supn≥N |yn| and with the usual pointwise ordering ≤. Define a subset Ω of X as
follows:

Ω= {y ∈ X | c ≤ yn ≤ 2c, n≥N
}
. (5.9)

For any subset B of Ω, it is obvious that inf B ∈Ω and supB ∈Ω. Let us further define an
operator F : Ω→ X as follows:

(Fy)n = c+
n−1∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

∞∑

t=r
at f
(
yt
)
)

, n≥N. (5.10)

The mapping F satisfies the assumptions of Knaster’s fixed point theorem [2]: F is in-
creasing and maps into itself. Indeed, if y ∈Ω, then

c ≤ (Fy)n = c+
n−1∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

∞∑

t=r
at f
(
yt
)
)

≤ c+
∞∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

∞∑

t=r
at f (2c)

)

≤ 2c, n≥N.

(5.11)

By Knaster’s fixed point theorem [2], we can conclude that there exists a y ∈Ω such
that y = Fy. That is,

yn = c+
n−1∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

∞∑

t=r
at f
(
yt
)
)

, n≥N. (5.12)
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Set xn =
∑∞

r=n
∑∞

t=r at f (yt), then limn→∞ xn = 0 and

yn = c+
n−1∑

k=N

∞∑

s=k
bs g
(
xs
)
, n≥N , (5.13)

and so limn→∞Δyn = limn→∞
∑∞

k=n bk g(xk) = 0. Hence limn→∞ yn = β ≥ c > 0 and {(xn,
yn)} is a positive solution of (1.1) which belongs to C(0,β). The proof is complete. �

Theorem 5.3. Suppose that An0 <∞ and Bn0 =∞. A sufficient condition for (1.1) to have
a positive solution {(xn, yn)} which belongs to C(0,∞) is that

∞∑

k=n0

bk g

( ∞∑

s=k

∞∑

r=s
ar f (cr)

)

<∞ (5.14)

for some c > 0.

Proof. Suppose that (5.14) holds. Then there exists N so large that

∞∑

k=N
bk g

( ∞∑

s=k

∞∑

r=s
ar f (2cr)

)

< c. (5.15)

Let X be the set of all real-valued sequences {yn} with norm supn≥N |yn/n|. Then X is a
Banach space. We define a subset Ω of X as follows:

Ω= {yn ∈ X | cn≤ yn ≤ 2cn, n≥N
}
. (5.16)

Then Ω is a bounded, convex and closed subset of X . Let us further define an operator
F : Ω→ X as follows:

(Fy)n = cn+
n−1∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

( ∞∑

t=r
at f
(
yt
)
))

, n≥N. (5.17)

The mapping F satisfies the assumptions of Knaster’s fixed point theorem [2]: F is in-
creasing and maps into itself. Indeed, if x ∈Ω, then

cn≤ (Fy)n ≤ cn+
n−1∑

k=N

∞∑

s=k
bs g

( ∞∑

r=s

∞∑

t=r
at f (2ct)

)

≤ 2cn, n≥N. (5.18)

By Knaster’s fixed point theorem, we can conclude that there exists a y ∈ Ω such that
y = Fy. Set xn =

∑∞
k=n

∑∞
s=k as f (ys), then

yn = cn+
n−1∑

k=N

∞∑

s=k
bs g
(
xs
)

(5.19)

and limn→∞ xn = 0 and limn→∞ yn =∞. The proof is complete. �
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6. Examples

In this section, we will give some examples to illustrate our results.

Example 6.1. Consider the following system:

Δ2xn = anyn,

Δ2yn =−bnxn, n≥ n0,
(6.1)

where an = 6(n+ 1) and bn = 0. It is easy to see that

An0 =
∞∑

n=n0

an =
∞∑

n=n0

6(n+ 1)=∞, Bn0 =
∞∑

n=n0

bn = 0 <∞,

∞∑

n=n0

∞∑

s=n
bs

( s−1∑

r=n0

r−1∑

t=n0

cat

)

= 0 <∞, for some c > 0,

∞∑

n=n0

n−1∑

s=n0

das =∞, for any d > 0.

(6.2)

By Theorem 3.2, (6.1) has a positive solution {(xn, yn)} which belongs to C(∞,α). In
fact, it is easy to verify that xn = n3 and yn = 1 is such a positive solution, that is to say,
Δ2xn = 6(n+ 1) and Δ2yn = 0.

Example 6.2. Consider the following system:

Δ2xn = 2
(√

n
)3
(

1
yn

)3

,

Δ2yn =−
√
n+ 2−√n

(√
n+ 2 +

√
n+ 1

)(√
n+ 1 +

√
n
)
n2

xn, n≥ n0.

(6.3)

Obviously,

An0 =
∞∑

n=n0

an =
∞∑

n=n0

2
(√

n
)3 =∞,

Bn0 =
∞∑

n=n0

bn =
∞∑

n=n0

√
n+ 2−√n

(√
n+ 2 +

√
n+ 1

)(√
n+ 1 +

√
n
)
n2

<∞.

(6.4)

Furthermore,

∞∑

n=n0

an f (cn)= 2
c3

∞∑

n=n0

(√
n
)3 1
n3
= 2

c3

∞∑

n=n0

n−3/2 <∞, for some c > 0,

∞∑

n=n0

bng(cn)= c
∞∑

n=n0

√
n+ 2−√n

(√
n+ 2 +

√
n+ 1

)(√
n+ 1 +

√
n
)
n
<∞, for some c > 0.

(6.5)
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By Theorem 3.3, (6.3) has a positive solution which belongs to C(∞,∞). In fact, xn = n2

and yn =√n is such a positive solution.

Similarly, we can provide some examples to illustrate our results in Sections 4, 5, and 6.
As a final remark, our results can be extended without too much difficulty to the fol-

lowing two-dimensional delay difference system:

Δ2xn = an f
(
yn−τ

)
,

Δ2yn =−bng
(
xn−δ

)
,

(6.6)

where τ and δ are positive integers.
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