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1. Introduction

The Lotka-Volterra system is a rudimentary model on mathematical ecology and has
been studied extensively in [6, 8–16, 19, 24–26] and the references cited therein. But in
the Lotka-Volterra model, the fact that there are upper limits to the rates of increase of
both prey and predator is not recognized. In [17, 18], Leslie introduced a predator-prey
model where the “carrying capacity” of the predator’s environment is proportional to
the number of prey. Leslie stresses the above fact. In the case of continuous time, these
considerations lead to the following autonomous model:

dH

dt
= (r1− b1H

)
H − a1PH ,

dP

dt
=
(
r2− a2

P

H

)
P,

(1.1)

which is known as the Leslie-Gower predator-prey model [20]. If we assume that the
predator consumes the prey according to the functional response f (H), then the system
(1.1) formulates as the following:

dH

dt
= (r1− b1H

)
H − f (H)P,

dP

dt
=
(
r2− a2

P

H

)
P, (1.2)
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which is the so-called semiratio-dependent predator-prey system with the functional
responses. Recently, Wang et al. [23] explored the dynamics of a class of the nonau-
tonomous semiratio-dependent predator-prey systems with the functional responses

dH

dt
= (r1(t)− b1(t)H

)
H − f (t,H)P,

dP

dt
=
(
r2(t)− a2(t)

P

H

)
P,

(1.3)

where H and P stand for the population of the prey and the predator, respectively, f (t,H)
is the so-called predator functional response to prey, which describes the uptake of sub-
strate by the microorganisms in microbial dynamics or chemical kinetics, and ∂ f (t,H)/
∂H > 0 for H > 0, which implies that f (t,H) is monotonic function with respect to H .
However, there are experiments that indicate that nonmonotonic responses occur at the
microbial level: when the nutrient concentration reaches a high level, an inhibitory effect
on the specific growth rate may occur. This is often seen when microorganisms are used
for waste decomposition or for water purification, see Bush and Cook [3]. The so-called
Monod-Haldane function

f (H)= cH

m2 + bH +H2
(1.4)

has been proposed and used to model the inhibitory effect at high concentrations, see
Andrews [1]. Collings [4] also used this response function to model mite predator-prey
interactions and called it a Holling IV function. In experiments on the uptake of phenol
by pure culture of Pseudomonas putida growing on phenol in continuous culture, Sokol
and Howell [22] proposed a simplified Monod-Haldane function of the form

f (H)= cH

m2 +H2
(1.5)

and found that it fits their experimental data significantly better than the Monod-Haldane
function and is simpler since it involves only two parameters. We would like to call this
function a simplified Monod-Haldane or Holling IV response function.

So it is very interesting to study dynamics of a class of the so-called semiratio-depend-
ent predator-prey systems with the nonmonotonic functional responses

dH(t)
dt

=
(
r1(t)− a1(t)

m2 +H2(t)
P(t)− b1(t)H(t)

)
H(t),

dP(t)
dt

=
(
r2(t)− a2(t)

P(t)
H(t)

)
P(t).

(1.6)

For the ecological sense of the system (1.6) we refer to [5, 21, 23, 27] and the references
cited therein.

The plan of this paper is as follows: in Section 2, for general case, we will explore some
basic problems for (1.6), such as positive invariance, permanence, and globally asymp-
totic stability for the system (1.6). In Section 3, for periodic case, sufficient conditions for
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existence, uniqueness, and stability of a positive periodic solution are obtained. Section 4
is devoted to the case when all parameters are almost periodic, sufficient conditions for
existence, uniqueness and stability of an almost periodic solution are also obtained. The
methods used here will be comparison theorems, coincidence degree theory, and Lia-
punov function.

2. General nonautonomous case

In this section, we will address such properties as boundedness of solutions, permanence,
and globally asymptotic stability of system (1.6). In the following discussion, we always
assume that ri(t), i= 1,2, ai(t), i= 1,2, and b1(t) are all continuous and bounded above
and below by positive constants.

LetR2
+ = {(H ,P)∈R2 |H ≥ 0, P ≥ 0}. For a bounded continuous function g(t) onR,

we use the following notations:

gu = sup
t∈R

g(t), gl = inf
t∈R

g(t). (2.1)

Lemma 2.1. Both the nonnegative and positive cones ofR2 are positively invariant for system
(1.6).

Proof. Note that system (1.6) is equivalent to

H(t)=H
(
t0
)

exp
{∫ t

t0

(
r1(s)− a1(s)

m2 +H2(s)
P(s)− b1(s)H(s)

)
ds
}

,

P(t)= P
(
t0
)

exp
{∫ t

t0

(
r2(s)− a2(s)

P(s)
H(s)

)
ds
}
.

(2.2)

The assertion of the lemma follows immediately for all t ≥ t0. The proof is complete. �

In the remainder of this paper, for biological reasons, we only consider solutions (H(t),
P(t)) with H(t0) > 0 and P(t0) > 0.

Definition 2.2. The solution of system (1.6) is said to be ultimately bounded if there exists
B > 0 such that for every solution (H(t),P(t)) of system (1.6), there exists T > 0 such that
‖(H(t),P(t))‖ ≤ B, for all t ≥ t0 +T , where B is independent of particular solution while
T may depend on the solution.

Definition 2.3. System (1.6) is said to be permanent if there exist positive constants δ, Δ
with 0 < δ < Δ such that

min
{

lim
t→+∞ inf H(t), lim

t→+∞ inf P(t)
}
≥ δ,

max
{

lim
t→+∞supH(t), lim

t→+∞supP(t)
}
≤ Δ,

(2.3)

for all solutions of system (1.6) with positive initial values.
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Theorem 2.4. If

rl1−
au1
m2

Mε
2 > 0, (2.4)

then the set Γε defined by

Γε =
{(
H(t),P(t)

)∈R2 |mε
1 ≤H ≤Mε

1 , mε
2 ≤ P ≤Mε

2

}
(2.5)

is positively invariant with respect to system (1.6), where

Mε
1 =

ru1
bl1

+ ε, Mε
2 =

ru2M
ε
1

al2
,

mε
1 =

rl1−
(
au1/m

2
)
Mε

2

bu1
− ε, mε

2 =
rl2m

ε
1

au2
,

(2.6)

and ε ≥ 0 is sufficiently small so that mε
1 > 0.

Proof. Let (H(t),P(t)) be the solution of system (1.6) through (H(t0),P(t0)) with

mε
1 ≤H

(
t0
)≤Mε

1 , mε
2 ≤ P

(
t0
)≤Mε

2 . (2.7)

From the first equation in (1.6) and the positivity of the solutions of (1.6), it follows that

H′(t)≤H(t)
(
r1(t)− b1(t)H(t)

)≤H(t)
(
ru1 − bl1H(t)

)

≤ bl1H(t)

(
ru1
bl1

+ ε−H(t)

)

= bl1H(t)
(
Mε

1 −H(t)
)
, t ≥ t0.

(2.8)

A standard comparison argument shows that

0 <H
(
t0
)≤Mε

1 =⇒H(t)≤Mε
1 , t ≥ t0, (2.9)

which together with the second equation in (1.6) produces

P′(t)≤ P(t)

(

ru2 − al2
P(t)
Mε

1

)

= al2
Mε

1
P(t)

(
ru2M

ε
1

al2
−P(t)

)

= al2
Mε

1
P(t)

(
Mε

2 −P(t)
)
, t ≥ t0,

(2.10)

and hence

0 < P
(
t0
)≤Mε

2 =⇒ P(t)≤Mε
2 , t ≥ t0. (2.11)
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Similarly, the first equation of system (1.6) also yields

H′(t)≥H(t)
(
rl1− au1P(t)− bu1H(t)

)≥H(t)
(
rl1−

au1
m2

Mε
2 −H(t)

)

≥ bu1H(t)

(
rl1−

(
au1/m

2
)
Mε

2

bu1
− ε−H(t)

)

= bu1H(t)
(
mε

1 −H(t)
)
, t ≥ t0,

(2.12)

and therefore,

H
(
t0
)≥mε

1 =⇒H(t)≥mε
1, t ≥ t0. (2.13)

Moreover, by the second equation of system (1.6), we have

P′(t)≥ P(t)

(

rl2− au2
P(t)
mε

1

)

= au2
mε

1
P(t)

(
rl2m

ε
1

au2
−P(t)

)

= au2
mε

1
P(t)

(
mε

2 −P(t)
)
, t ≥ t0,

(2.14)

which implies

P
(
t0
)≥mε

2 =⇒ P(t)≥mε
2, t ≥ t0. (2.15)

Thus, Γε is positive invariant for system (1.6), and the proof is complete. �

Lemma 2.5. Let (H(t),P(t)) be a solution of system (1.6) with H(t0) > 0 and P(t0) > 0.
Then,

limsup
t→∞

H(t)≤M0
1 . (2.16)

Moreover, assume that (2.4) holds, then

liminf
t→∞ H(t)≥m0

1. (2.17)

Proof. Noting that (2.8) and (2.12) are valid, the conclusion follows from a standard com-
parison arguments directly.

For the predator population, we can also have some estimates.

Lemma 2.6. Assume that (2.4) holds, then

liminf
t→∞ P(t)≥m0

2, limsup
t→∞

P(t)≤M0
2 . (2.18)

Proof. Since limsupt→∞H(t) ≤M0
1 , for any sufficient small ε > 0, there is some t1 > t0

such that for t ≥ t1,

H(t)≤M0
1 + ε. (2.19)
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Then, from the second equation of system (1.6), it follows that

P′(t)≤ P(t)

(

ru2 − al2
P(t)
Mε

1

)

= al2
Mε

1
P(t)

(
ru2M

ε
1

al2
−P(t)

)

= al2
Mε

1
P(t)

(
Mε

2 −P(t)
)
, t ≥ t1.

(2.20)

Hence, by using the comparison theorem of ordinary differential equations and the arbi-
trariness of ε, we have

limsup
t→∞

P(t)≤M0
2 . (2.21)

By a similar argument, we can easily show that

liminf
t→∞ P(t)≥m0

2. (2.22)

The proof is complete. �

Lemmas 2.5 and 2.6 immediately lead to the following.

Theorem 2.7. Assume that (2.4) holds, then system (1.6) is permanent.

From the proofs of Lemmas 2.5 and 2.6, we can easily obtain the following ultimate
boundedness of Γε with ε > 0 sufficiently small.

Theorem 2.8. Assume that (2.4) holds, then the set Γε with ε > 0 defined by (2.5) is an
ultimately bounded region of system (1.6).

Definition 2.9. A bounded nonnegative solution (H∗(t),P∗(t)) of (1.6) is said to be glob-
ally asymptotically stable (or globally attractive) if for any other solution (H(t),P(t)) of
(1.6) with positive initial values the following holds:

lim
t→+∞

(∣∣H(t)−H∗(t)
∣
∣+

∣
∣P(t)−P∗(t)

∣
∣)= 0. (2.23)

Remark 2.10. In general, if the above property holds for any two solutions with positive
initial values, then we say system (1.6) is globally asymptotically stable. One can easily
show that if system (1.6) has a bounded positive solution which is globally asymptotically
stable, then system (1.6) is globally asymptotically stable, and vice versa.

The following lemma is from Barbalat [2], and will be employed in establishing the
globally asymptotic stability of system (1.6).

Lemma 2.11. let h be a real number and let f be a nonnegative function defined on [h,+∞)
such that f is integrable on [h,+∞) and is uniformly continuous on [h,+∞), then
limt→+∞ f (t)= 0.
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Theorem 2.12. Let (H∗(t),P∗(t)) be a bounded positive solution of system (1.6). Assume
that (2.4) holds, and

bl1(t) +
2mε

2m
ε
1

(
m2 +

(
Mε

1

)2
)2 −

Mε
2

(
mε

1

)2 > 0,

1
Mε

1
− au1(t)− 1

(
m2 +

(
mε

1

)2
) > 0,

(2.24)

where Mε
i , mε

i , i= 1,2, are defined in (2.6). Then (H∗(t),P∗(t)) is globally asymptotically
stable.

Proof. Let (H(t),P(t)) be any solution of system (1.6) with a positive initial value. Since
Γε is an ultimately bounded region of system (1.6), there exists a T1 > 0, such that (H(t),
P(t))∈ Γε and (H∗(t),P∗(t))∈ Γε for all t ≥ t0 +T1.

Consider a Lyapunov function defined by

V(t)= ∣∣ ln
{
H(t)

}− ln
{
H∗(t)

}∣∣+
∣
∣ ln

{
P(t)

}− ln
{
P∗(t)

}∣∣, t ≥ t0. (2.25)

Calculating the right derivative of V(t) along the solution of system (1.6), we derive
for t ≥ t0 +T1 that

D+V(t)= sgn
(
H(t)−H∗(t)

)

×
(

− a1(t)

(
P(t)

m2 +H2(t)
− P∗(t)

m2 +
(
H∗(t)

)2

)

− b1(t)
(
H(t)−H∗(t)

)
)

+ sgn
(
P(t)−P∗(t)

)(− a2(t)
(
P(t)
H(t)

− P∗(t)
H∗(t)

))

≤−
(

bl1 +
P∗(t)

(
H(t) +H∗(t)

)

(
m2 +H2(t)

)(
m2 +

(
H∗(t)

)2
) − P(t)

H(t)H∗(t)

)
∣
∣H(t)−H∗(t)

∣
∣

−
(

1
H∗(t)

− au1 −
1

(
m2 +H2(t)

)
)∣
∣P(t)−P∗(t)

∣
∣

≤−
(

bl1 +
2mε

2m
ε
1

(
m2 +

(
Mε

1

)2
)2 −

Mε
2

(
mε

1

)2

)
∣
∣H(t)−H∗(t)

∣
∣

−
(

1
Mε

1
− au1 −

1
(
m2 +

(
mε

1

)2
)

)
∣
∣P(t)−P∗(t)

∣
∣.

(2.26)

From (2.24) it follows that there exists a positive constant μ > 0 such that

D+V(t)≤−μ[∣∣H(t)−H∗(t)
∣
∣+

∣
∣P(t)−P∗(t)

∣
∣], t ≥ t0 +T1. (2.27)
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Integrating on both sides of (2.27) from t0 +T1 to t produces

V(t) +μ
∫ t

t0+T1

[∣∣H(s)−H∗(s)
∣
∣+

∣
∣P(s)−P∗(s)

∣
∣]ds

≤V
(
t0 +T1

)
< +∞, t ≥ t0 +T1.

(2.28)

Then
∫ t

t0+T1

[∣∣H(s)−H∗(s)
∣
∣+

∣
∣P(s)−P∗(s)

∣
∣]ds≤ μ−1V

(
t0 +T1

)
< +∞, t ≥ t0 +T1,

(2.29)

and hence, |H(t)−H∗(t)|+ |P(t)−P∗(t)| ∈ L1([t0 +T1,+∞)).
The boundedness of H∗(t) and P∗(t) and the ultimate boundedness of H(t) and P(t)

imply that H(t), P(t), H∗(t), and P∗(t) all have a bounded derivative for t ≥ t0 + T1.
Then, it follows that |H(t)−H∗(t)| + |P(t)− P∗(t)| is uniformly continuous on [t0 +
T1,+∞). By Lemma 2.11, we have

lim
t→+∞

(∣∣H(t)−H∗(t)
∣
∣+

∣
∣P(t)−P∗(t)

∣
∣)= 0. (2.30)

The proof is complete. �

3. Periodic case

Throughout this section, we will assume that ri(t), ai(t), i = 1,2, b1(t), are positive ω-
period functions, that is, system (1.6) is ω-period system and will study the existence and
stability of a positive periodic solution of (1.6).

Lemma 3.1 (Brouwer fixed point theorem). Let σ be a continuous operator that maps a
closed, bounded, convex subset Ω⊂Rn into itself. Then Ω contains at least one fixed point of
the operator σ , that is, there exists an x∗ ∈Ω such that σ(x∗)= x∗.

Theorem 3.2. Assume that (2.4) holds, then system (1.6) has at least one positive periodic
solution of period ω, say (H(t),P(t)) which lies in Γε.

Proof. Define a shift operator, which is also known as a Poincaré mapping σ :R2 →R2 by

σ
((
H0,P0

))= (H(ω, t0,
(
H0,P0

))
,P
(
ω, t0,

(
H0,P0

)))
,
(
H0,P0

)∈R2, (3.1)

where (H(ω, t0, (H0,P0)),P(ω, t0, (H0,P0))) denotes the solution of system (1.6) through
the point (t0, (H0,P0)). Theorem 2.4 tells us that Γε is a positive invariant with respect to
system (1.6), and hence, the operator σ defined above maps Γε into itself, that is, σ(Γε)⊂
Γε. Since the solution of system (1.6) is continuous with respect to the initial value, the
operator σ is continuous. It is easy to show that Γε is a bounded, closed, convex set in R2.
By Lemma 3.1, σ has at least one fixed point in Γε, that is, there exists an (H(t),P(t))∈ Γε
such that

(
H(t),P(t)

)= (H(ω, t0,
(
H ,P

))
,P
(
ω, t0,

(
H ,P

)))
. (3.2)
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Therefore, there exists at least one positive periodic solution, say (H(t),P(t)), and the
invariance of Γε assures that (H(t),P(t))∈ Γε. The proof is complete. �

Next, we will employ an alternative approach, that is, a continuation theorem in coin-
cidence degree theorem, to establish some different criteria for the same problem. To this
end, we need some preparation as follows.

Let X and Z be two Banach spaces. Consider an operator equation

Lx = λNx, λ∈ (0,1), (3.3)

where L : DomL∩X → Z is a linear operator and λ is a parameter. Let P and Q denote
two projectors such that

P : X ∩DomL−→ KerL, Q : Z −→ Z/ ImL. (3.4)

In the sequel, we will use the following result of Gaines and Mawhin [7, page 40].

Lemma 3.3. Let X and Z be two Banach spaces and let L be a Fredholm mapping of index
zero. Assume that N : Ω→ Z is L-compact on Ω with Ω open bounded in X . Furthermore
assume that

(a) for each λ∈ (0,1), x ∈ ∂Ω∩DomL,

Lx 
= λNx; (3.5)

(b) for each x ∈ ∂Ω∩KerL,

QNx 
= 0, deg{QNx, Ω∩KerL,0} 
= 0. (3.6)

Then the equation Lx =Nx has at least one solution in Ω∩DomL.

Recall that a linear mapping L : DomL ∩ X → Z with KerL = L−1(0) and ImL =
L(DomL) will be called a Fredholm mapping if the following two conditions hold:

(i) KerL has a finite dimension;
(ii) ImL is closed and has a finite codimension.

Recall also that the codimension of ImL is the dimension of Z/ ImL, that is, the di-
mension of the cokernel coker L of L.

When L is a Fredholm mapping, its index is the integer IndL= dimkerL− codimImL.
We will say that a mapping N is L-compact on Ω if the mapping QN : Ω→ Z is contin-

uous, QN(Ω) is bounded, and Kp(I −Q)N : Ω→ X is compact, that is, it is continuous
and Kp(I −Q)N(Ω) is relatively compact, where Kp : ImL→ DomL∩KerP is a inverse
of the restriction Lp of L to DomL∩KerP, so that LKp = I and KpL= I −P.

For convenience, we will introduce the notation

u= 1
ω

∫ ω

0
u(t)dt, (3.7)

where u is a periodic continuous function with period ω.
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Theorem 3.4. If the system of algebraic equations

r1− a1

m2 + v2
1
v2− b1v1 = 0,

r2− a2
v2

v1
= 0

(3.8)

has a unique solution (v∗1 ,v∗2 )T ∈ intR2
+ with v∗i > 0, i= 1,2, then system (1.6) has at least

one positive ω-periodic solution.

Proof. Since

H(t)=H(0)exp
{∫ t

0

[
r1(s)− a1(s)

m2 +H2(s)
P(s)− b1(s)H(s)

]
ds
}

,

P(t)= P(0)exp
{∫ t

0

[
r2(s)− a2(s)

P(s)
H(s)

]
ds
}

,

(3.9)

the solution of system (1.6) remains positive for t ≥ 0, we can let

H(t)= exp
{
x1(t)

}
, P(t)= exp

{
x2(t)

}
, (3.10)

and derive that

dx1(t)
dt

= r1(t)− a1(t)
m2 + exp

[
2x1
(
t)
] exp

[
x2(t)

]− b1(t)exp
[
x1(t)

]
,

dx2(t)
dt

= r2(t)− a2(t)
exp

{
x2(t)

}

exp
{
x1(t)

} .

(3.11)

In order to use Lemma 2.1 to system (1.6), we take

X = Z = {x(t)= (x1(t),x2(t)
)T ∈ C

(
R,R2) : x(t+ω)= x(t)

}
(3.12)

and denote

‖x‖ =
∥
∥
∥
(
x1(t),x2(t)

)T∥∥
∥= max

t∈[0,ω]

∣
∣x1(t)

∣
∣+ max

t∈[0,ω]

∣
∣x2(t)

∣
∣. (3.13)

Then X and Z are Banach spaces when they are endowed with the norms ‖ · ‖.
Set

Nx =

⎡

⎢
⎢
⎢
⎣

r1(t)− a1(t)
m2 + exp

[
2x1(t)

] exp
[
x2(t)

]− b1(t)exp
[
x1(t)

]

r2(t)− a2(t)
exp

{
x2(t)

}

exp
[
x1(t)

]

⎤

⎥
⎥
⎥
⎦

,

Lx = x′, Px = 1
ω

∫ ω

0
x(t)dt, x ∈ X , Qz = 1

ω

∫ ω

0
z(t)dt, z ∈ Z.

(3.14)

Evidently, KerL= {x | x ∈ X , x =R2}, ImL= {z | z ∈ Z,
∫ ω

0 z(t)dt = 0} is closed in Z and
dimKerL= codimImL= 2. Hence, L is a Fredholm mapping of index zero. Furthermore,
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the generalized inverse (to L) Kp : ImL→ KerP∩domL has the form

Kp(z)=
∫ t

0
z(s)ds− 1

ω

∫ ω

0

∫ t

0
z(s)dsdt. (3.15)

Thus

QNx =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
ω

∫ ω

0

[
r1(t)− a1(t)

m2 + exp
[
2x1(t)

] exp
{
x2(t)

}− b1(t)exp
{
x1(t)

}]
dt

1
ω

∫ ω

0

[

r2(t)− a2(t)
exp

{
x2(t)

}

exp
{
x1(t)

}

]

dt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Kp(I −Q)N

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫ t

0

[
r1(s)− a1(s)

m2 + exp
[
2x1(s)

] exp
{
x2(s)

}− b1(s)exp
{
x1(s)

}
]
ds

∫ t

0

[

r2(s)− a2(s)
exp

{
x2(s)

}

exp
{
x1(s)

}

]

ds

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
ω

∫ ω

0

∫ t

0

[
r1(s)− a1(s)

m2 + exp
[
2x1(s)

] exp
{
x2(s)

}− b1(s)exp
{
x1(s)

}
]
dsdt

1
ω

∫ ω

0

∫ t

0

[

r2(s)− a2(s)
exp

{
x2(s)

}

exp
{
x1(s)

}

]

dsdt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(
t

ω
− 1

2

)∫ ω

0

[
r1(t)− a1(t)

m2 + exp
[
2x1(t)

] exp
{
x2(t)

}− b1(t)exp
{
x1(t)

}
]
dt

(
t

ω
− 1

2

)∫ ω

0

[

r2(t)− a2(t)
exp

{
x2(t)

}

exp
{
x1(t)

}

]

dt

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

(3.16)

Clearly, QN and Kp(I −Q)N are continuous and, moreover, QN(Ω), Kp(I −Q)N(Ω) are
relatively compact for any open bounded set Ω ⊂ X . Hence, N is L-compact on Ω, here
Ω is any open bounded set in X .

Now we reach the position to search for an appropriate open bounded subset Ω for
the application of Lemma 2.1. Corresponding to equation Lx = λNx, λ∈ (0,1), we have

x′1(t)= λ
[
r1(t)− a1(t)

m2 + exp
[
2x1(t)

] exp
{
x2(t)

}− b1(t)exp
{
x1(t)

}
]

,

x′2(t)= λ

[

r2(t)− a2(t)
exp

{
x2(t)

}

exp
{
x1(t)

}

]

.

(3.17)
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Suppose that x(t)= (x1,x2)∈ X is a solution of system (3.17) for a certain λ∈ (0,1). By
integrating (3.17) over the interval [0,ω], we obtain

∫ ω

0

[
r1(t)− a1(t)

m2 + exp
[
2x1(t)

] exp
{
x2(t)

}− b1(t)exp
{
x1(t)

}
]
dt = 0,

∫ ω

0

[

r2(t)− a2(t)
exp

{
x2(t)

}

exp
{
x1(t)

}

]

dt = 0.

(3.18)

Hence
∫ ω

0

[
a1(t)

m2 + exp
[
2x1(t)

] exp
{
x2(t)

}
+ b1(t)exp

{
x1(t)

}
]
dt = r1ω, (3.19)

∫ ω

0

[

a2(t)
exp

{
x2(t)

}

exp
{
x1(t)

}

]

dt = r2ω. (3.20)

From (3.17), (3.19), and (3.20), we obtain

∫ ω

0

∣
∣x′1(t)

∣
∣dt <

∫ ω

0

[
a1(t)

m2 + exp
[
2x1(t)

] exp
{
x2(t)

}
+ b1(t)exp

{
x1(t)

}
]
dt

+
∫ ω

0

∣
∣r1(t)

∣
∣dt = 2r1ω,

∫ ω

0

∣
∣x′2(t)

∣
∣dt <

∫ ω

0

[

a2(t)
exp

{
x2(t)

}

exp
{
x1(t)

}

]

dt+ r2ω = 2r2ω.

(3.21)

Note that (x1(t),x2(t))T ∈ X , then there exists ξi,ηi ∈ [0,ω], i= 1,2 such that

xi
(
ξi
)= min

t∈[0,ω]
xi(t), xi(ηi)= max

t∈[0,ω]
xi(t), i= 1,2. (3.22)

By (3.19) and (3.22), we obtain

r1ω ≥ b1ωexp
{
x1
(
ξ1
)}

, x1
(
ξ1
)≤ ln

{
r1

b1

}
, (3.23)

x1(t)≤ x1
(
ξ1
)

+
∫ ω

0
|x′1(t)|dt < ln

{
r1

b1

}
+ 2r1ω. (3.24)

In addition, from (3.22) and system (3.17), we obtain

r2
(
ξ2
)− a2

(
ξ2
)exp

{
x2
(
ξ2
)}

exp
{
x1
(
ξ2
)} = 0,

r2
(
ξ2
)− a2

(
ξ2
) 1

exp
{
x1
(
η1
)} ≥ 0,

x1
(
η1
)≥ ln

a2
(
ξ2
)

r2
(
ξ2
) ≥ min

t∈[0,∞]

{
ln
(
a2(t)
r2(t)

)}
.

(3.25)
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Then

x1(t)≥ x1
(
η1
)−

∫ ω

0

∣
∣x′1(t)

∣
∣dt ≥ min

t∈[0,∞]

{
ln
(
a2(t)
r2(t)

)}
− 2r1ω. (3.26)

It follows from (3.24) and (3.26) that

max
t∈[0,ω]

∣
∣x1(t)

∣
∣≤max

{∣∣
∣
∣ ln

{
r1

b1

}
+ 2r1ω

∣
∣
∣
∣,
∣
∣
∣
∣ min
t∈[0,∞]

{
ln
(
a2(t)
r2(t)

)}
− 2r1ω

∣
∣
∣
∣

}
:=M1.

(3.27)

In view of (3.20) and (3.22), we have

r2ω ≤ a2ωexp
{
x2
(
η2
)}

, (3.28)

that is

x2
(
η2
)≥ ln

{
r2

a2

}
. (3.29)

Then

x2(t)≥ x2
(
η2
)−

∫ ω

0

∣
∣x′2(t)

∣
∣dt < ln

{
r2

a2

}
− 2r2ω. (3.30)

By virtue of (3.19), (3.24), and (3.22), we obtain that

r1ω ≥ a1

m2 + exp
[
2M1

]ωexp
{
x2
(
ξ2
)}

, (3.31)

and so

x2
(
ξ2
)≤ ln

{
r1
(
m2 + exp

[
2M1

])

a1

}

. (3.32)

Then

x2(t)≤ x2
(
ξ2
)

+
∫ ω

0

∣
∣x′2(t)

∣
∣dt < ln

{
r1
(
m2 + exp

[
2M1

])

a1

}

+ 2r2ω. (3.33)

It follows from (3.30) and (3.33) that

max
t∈[0,ω]

∣
∣x2(t)

∣
∣≤max

{∣
∣
∣
∣ ln

{
r2

a2

}
− 2r2ω

∣
∣
∣
∣,
∣
∣
∣
∣
r1
(
m2 + exp

[
2M1

])

a1
+ 2r2ω

∣
∣
∣
∣

}

:=M2.

(3.34)

Clearly, Mi, i= 1,2, are independent of λ. Under the assumption in Theorem 3.4, it is easy
to show that the system of algebraic equations

r1− a1

m2 + v2
1
v2− b1v1 = 0, r2− a2

v2

v1
= 0 (3.35)
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has a unique solution (v∗1 ,v∗2 )T ∈ intR2
+ with v∗i > 0, i= 1,2. Denote M =M1 +M2 +M3,

where M3 > 0 is taken sufficiently large such that

∥
∥( ln

{
v∗1
}

, ln
{
v∗2
})∥∥= ∣∣ ln

{
v∗1
}∣∣+

∣
∣ ln

{
v∗2
}∣∣ <M3, (3.36)

and define

Ω= {x(t)∈ X : ‖x‖ <M
}
. (3.37)

It is clear that Ω satisfies the condition (a) of Lemma 2.1. When

x = (x1,x2
)T ∈ ∂Ω∩KerL= ∂Ω∩R2, (3.38)

x is a constant vector in R2 with ‖x‖ =M. Then

QNx =

⎡

⎢
⎢
⎢
⎣

r1− a1

m2 + v2
1

exp
{
x2
}− b1 exp

{
x1
}

r2− a2
exp

{
x2
}

exp
{
x1
}

⎤

⎥
⎥
⎥
⎦

= 0. (3.39)

Furthermore, in view of assumption in Theorem 3.4, it can be easily seen that

deg
{
QNx, Ω∩KerL,0

} 
= 0. (3.40)

By now we know that Ω verifies all the requirements of Lemma 3.3 and then system (3.11)
has at least one ω-periodic solution. By the medium of (3.10), we derive that system (1.6)
has at least one positive ω-periodic solution. The proof is complete. �

4. Almost periodic case

The assumption of almost periodicity of system (1.6) is a way of incorporating the time
dependent variability of the environment, especially when the various components of
the environment are periodic with not necessary commensurate period. Mathematically,
system (1.6) will denote a generation of an autonomous and periodic system. Therefore,
throughout this section, in addition to the assumptions in Section 2, we further assume
that ri(t), ai(t), i = 1,2, b1(t) are almost periodic. Thus, all the theorems in Section 2
remain valid.

Let

H(t)= exp
(
H̃(t)

)
, P(t)= exp

(
P̃(t)

)
, (4.1)

then system (1.6) becomes

dH̃(t)
dt

= r1(t)− a1(t)

m2 + exp2
(
H̃(t)

) exp
(
P̃(t)

)− b1(t)exp
(
H̃(t)

)
,

dP̃(t)
dt

= r2(t)− a2(t)
exp

{
P̃(t)

}

exp
{
H̃(t)

} .

(4.2)
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By Theorem 2.8, it is not difficult to prove the following theorem.

Theorem 4.1. Assume that (2.4) holds, then the set Γε defined by

Γ∗ε =
{(
H(t),P(t)

)∈R2 | ln
(
mε

1

)≤H ≤ ln
(
Mε

1

)
, ln

(
mε

2

)≤ P ≤ ln
(
Mε

2

)}
(4.3)

is positively invariant and ultimately bounded region of system (4.2), where Mε
i , mε

i , i= 1,2,
are defined in (2.6).

In order to prove the main result of this section, we will first introduce a useful lemma.
Consider the ordinary differential equation

x′ = f (t,x), f (t,x)∈ C
(
R×D,Rn

)
, (4.4)

where D is an open set in Rn, f (t,x) is almost periodic in t uniformly with respect to
x ∈D.

To discuss the existence of an almost periodic solution of (4.4), we consider the prod-
uct system of (4.4)

x′ = f (t,x),

y′ = f (t, y).
(4.5)

Lemma 4.2 [28, Theorem 19.1]. Suppose that there exists a Lyapunov function V(t,x, y)
defined on [0,+∞)×D×D which satisfies the following conditions:

(i) α(‖x− y‖)≤V(t,x, y)≤ β(‖x− y‖), where α(γ) and β(γ) are continuous, increas-
ing and positive definite;

(ii) |V(t,x1, y1)−V(t,x2, y2)| ≤ K{‖x1− x2‖+‖y1− y2‖}, where K > 0 is a constant;
(iii) V ′

(4.3)(t,x, y)≤−μV(|x− y|), where μ > 0 is a constant.
Moreover, suppose that system (4.4) has a solution that remains in a compact set S⊂ D

for all t ≥ t0 ≥ 0. Then system (4.4) has an unique almost periodic solution in S, which is
uniformly asymptotically stable in D.

Theorem 4.3. Assume that (2.4) holds, and

bl1(t) +
2mε

2m
ε
1

(
m2 +

(
Mε

1

)2
)2 −

Mε
2

(
mε

1

)2 > 0,

1
Mε

1
− au1(t)− 1

(
m2 +

(
mε

1

)2
) > 0,

(4.6)

where Mε
i , mε

i , i = 1,2, are defined in (2.6). Then system (1.6) has an unique positive al-
most periodic solution, which is globally asymptotically stable, especially uniformly globally
asymptotically stable in Γ∗ε .
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Consider the product system of (4.2)

dH̃1(t)
dt

= r1(t)− a1(t)

m2 + exp
(
2H̃1(t)

) exp
(
P̃1(t)

)− b1(t)exp
(
H̃1(t)

)
,

dP̃1(t)
dt

= r2(t)− a2(t)
exp

{
P̃1(t)

}

exp
{
H̃1(t)

} ,

dH̃2(t)
dt

= r1(t)− a1(t)

m2 + exp
(
2H̃2(t)

) exp
(
P̃2(t)

)− b1(t)exp
(
H̃2(t)

)
,

dP̃2(t)
dt

= r2(t)− a2(t)
exp

{
P̃2(t)

}

exp
{
H̃2(t)

} .

(4.7)

Now we define a Lyapunov function on [0,+∞)×Γ∗ε ×Γ∗ε as follows:

V
(
t,H̃1, P̃1,H̃2, P̃2

)= ∣∣H̃1(t)− H̃2(t)
∣
∣+

∣
∣P̃1(t)− P̃2(t)

∣
∣. (4.8)

Then, condition (i) in Lemma 4.2 is satisfied for α(γ)= β(γ)= γ for γ ≥ 0. In addition,

∣
∣V
(
t,H̃1, P̃1,H̃2, P̃2

)−V
(
t,H̃3, P̃3,H̃4, P̃4

)∣∣

= ∣∣(∣∣H̃1(t)− H̃2(t)
∣
∣+

∣
∣P̃1(t)− P̃2(t)

∣
∣)− (∣∣H̃3(t)− H̃4(t)

∣
∣+

∣
∣P̃3(t)− P̃4(t)

∣
∣)
∣
∣

≤ ∣∣H̃1(t)− H̃3(t)
∣
∣+

∣
∣P̃1(t)− P̃3(t)

∣
∣+

∣
∣H̃2(t)− H̃4(t)

∣
∣+

∣
∣P̃2(t)− P̃4(t)

∣
∣

≤ ∥∥(H̃1(t), P̃1(t)
)− (H̃3(t), P̃3(t)

)∥∥+
∥
∥(H̃2(t), P̃2(t)

)− (H̃4(t), P̃4(t)
)∥∥,

(4.9)

which shows that the condition (ii) of Lemma 4.2 is also satisfied.
Let (H̃i(t), P̃i(t)), i= 1,2, be any two solutions of (4.2) defined on [0,+∞)×Γ∗ε ×Γ∗ε .
Calculating the right derivative D+V(t) of V(t) along the solutions of (4.2), we have

D+V(t)= sgn
(
H̃1(t)− H̃2(t)

)
(

− a1(t)

m2 + exp
(
2H̃1(t)

)
(

exp
(
P̃1(t)

)− exp
(
P̃2(t)

)
)

− b1(t)
(

exp
(
H̃1(t)

)− exp
(
H̃2(t)

)))

+ sgn
(
P̃1(t)− P̃2(t)

)
(

− a2(t)

(
exp

(
P̃1(t)

)

exp
(
H̃1(t)

) − exp
(
P̃2(t)

)

exp
(
H̃2(t)

)

))
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≤−
(

bl1 +
exp

(
P̃2(t)

)(
exp

(
H̃1(t)

)
+ exp

(
H̃2(t)

))

(
m2 + exp

(
2H̃1(t)

))(
m2 + exp

(
2H̃2(t)

)) − P(t)
H(t)H∗(t)

− exp
(
P̃1(t)

)

exp
(
H̃1(t)

)
exp

(
H̃2(t)

)

)

×∣∣exp
(
H̃1(t)

)− exp
(
H̃2(t)

)∣∣

−
(

1

exp
(
H̃2(t)

) − au1 −
1

(
m2 + exp

(
2H̃1(t)

))

)

×∣∣exp
(
P̃1(t)

)− exp
(
P̃2(t)

)∣∣

≤−
(

bl1 +
2mε

2m
ε
1

(
m2 +

(
Mε

1

)2
)2 −

Mε
2

(
mε

1

)2

)
∣
∣exp

(
H̃1(t)

)− exp
(
H̃2(t)

)∣∣

−
(

1
Mε

1
− au1 −

1
(
m2 +

(
mε

1

)2
)

)
∣
∣exp

(
P̃1(t)

)− exp
(
P̃2(t)

)∣∣.
(4.10)

Note that

exp
(
H̃1(t)

)− exp
(
H̃2(t)

)= exp
(
ξ(t)

)(
H̃1(t)− H̃2(t)

)
,

exp
(
P̃1(t)

)− exp
(
P̃2(t)

)= exp
(
η(t)

)(
P̃1(t)− P̃2(t)

)
,

(4.11)

where ξ(t) lies between H̃1(t) and H̃2(t) while η(t) lies between P̃1(t) and P̃2(t). Then we
have

D+V(t)≤−
(

b1(t)− Mε
2

(
mε

1

)2

)

mε
1

∣
∣H̃1(t)− H̃2(t)

∣
∣

−
(

1
Mε

1
− a1(t)

)
mε

2

∣
∣P̃1(t)− P̃2(t)

∣
∣

≤−μ(∣∣H̃1(t)− H̃2(t)
∣
∣+

∣
∣P̃1(t)− P̃2(t)

∣
∣)

=−μ∥∥(H̃1(t), P̃1(t)
)− (H̃2(t), P̃2(t)

)∥∥,

(4.12)

where

μ=min

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
bl1 +

2mε
2m

ε
1

(
m2 +

(
Mε

1

)2
)2 −

Mε
2

(
mε

1

)2

⎫
⎪⎬

⎪⎭
,

⎧
⎪⎨

⎪⎩

1
Mε

1
− au1 −

1
(
m2 +

(
mε

1

)2
)

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
> 0.

(4.13)

Hence, the condition (iii) of Lemma 4.2 is verified as well. Therefore, by Theorem 4.1 and
Lemma 4.2, it follows that system (4.2) has a unique almost periodic solution in Γ∗ε , say
(H̃∗(t), P̃∗(t)), which is uniformly asymptotically stable in Γ∗ε . Hence, system (4.2) has a
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unique positive almost periodic solution (H∗(t),P∗(t)) in Γ∗ε , which is uniformly asymp-
totically stable in Γ∗ε . By Theorem 2.12, we have that (H∗(t),P∗(t)) is globally asymptot-
ically stable. The proof is complete. �

Acknowledgments

The first author was supported by the NSF of Gansu Province of China (3ZS042-B25-
013), the NSF of Bureau of Education of Gansu Province of China (0416B-08), the Key
Research and Development Program for Outstanding Groups of Lanzhou University of
Technology, and the Development Program for Outstanding Young Teachers in Lanzhou
University of Technology. The second author was supported by the NNSF of China
(10571078) and the Teaching and Research Award Program for Outstanding Young
Teachers in Higher Education Institutions of Ministry of Education of China.

References

[1] J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing in-
hibitory substrates, Biotechnology and Bioengineering 10 (1986), no. 6, 707–723.

[2] I. Barbalat, Systems d’equations differentielle d’oscillations nonlineaires, Revue Roumaine de
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