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Robust adaptive tracking problems for a class of Markovian jump parametric-strict-feed-
back systems with both parametric uncertainty and unknown nonlinearity are investi-
gated. The unknown nonlinearities considered herein lie within some “bounding
functions,” which are assumed to be partially known. By using a stochastic Lyapunov
method and backstepping techniques, a parameter adaptive law and a control law were
obtained, which guarantee that the tracking error could be within a small neighborhood
around the origin in the sense of the fourth moment. Moreover, all signals of the closed-
loop system could be globally uniformly ultimately bounded.

Copyright © 2006 Jin Zhu et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The passed decades have witnessed substantial research activities in the development of
Markovian jump systems, and much effort is directed towards jump linear systems [6].
With many linear problems (Kalman filtering [4, 10] and LQG [2, 3], etc.) solved, more
attention is focused on the study of Markovian jump nonlinear systems. Some results
can be found in the works of Aliyu and Boukas [1] and Sathananthan and Keel [9]. And,
moreover, Markovian jump nonlinear systems disturbed by Wiener noises (or Brown mo-
tion) are becoming the subject of numerous studies in recent years. For this class of jump
systems, Mao [5] presents the sufficient condition to ensure existence and uniqueness of
the solution; Yuan and Mao [11, 12] introduce the notions of stochastic stability. How-
ever, at the knowledge of the authors, the practical control design for Markovian jump
nonlinear systems has received very little attention in literature.

In this paper, we are interested in the robust adaptive tracking problem for a class
of Markovian jump parametric-strict-feedback systems with unknown nonlinearity. The
unknown nonlinearity is assumed to satisfy some growth conditions [8]. And the mar-
tingale process caused by Markovian jump could be converted to Wiener noises. With the
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control law and the parameter adaptive law designed, the tracking error could be within a
small neighborhood around the origin in the sense of the fourth moment. And all signals
of the closed-loop system are globally uniformly ultimately bounded.

The rest of this paper is organized as follows. Section 2 briefly introduces some math-
ematic notions and the Markovian jump nonlinear system model. The robust adaptive
controller for the system is then proposed in Section 3. In Section 4, an example is shown
to illustrate the validity of the design. Finally, conclusions are drawn in Section 5.

2. Problem and preliminaries

2.1. Notation. Throughout the paper, unless otherwise specified, we denote by (Ω,�,
{�t}t≥0, P) a complete probability space with a filtration {�t}t≥0 satisfying the usual
conditions (i.e., it is right continuous and �0 contains all p-null sets). Let | · |p stand for
the pth Euclidean norm for vectors. The superscript T will denote transpose and we refer
to Tr(·) as the trace for matrix. In addition, we use L2(P) to denote the space of Lebesgue
square integrable vector.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking
values in finite state space S = {1,2, . . . ,N}, and we introduce Φt = [Φt1,Φt2, . . . ,ΦtN ]T ,
the indicator process for the regime (or mode) r(t), as

Φt j =
⎧
⎨

⎩

1, r(t)= j,

0, r(t) �= j, j ∈ S.
(2.1)

And Φt satisfies the following equation:

Φt =Φ0 +Π

∫ t

0
Φs ds+Mt (2.2)

with Mt = [Mt1,Mt2, . . . ,MtN ]T an �t-martingale satisfying Mt ∈ L2(P) and Π = [πk j],
the chain generator, an N ×N matrix. The entries πk j , k, j = 1,2, . . . ,N , are interpreted as
transition rates such that

P
(
r(t+dt)= j|r(t)= k)=

⎧
⎨

⎩

πk j dt+ o(dt) if k �= j,

1 +πk j dt+ o(dt) if k = j,
(2.3)

where dt > 0. Here πk j > 0 (k �= j) is the transition rate from k to j. Notice that the total
probability axiom imposes πkk negative and

N∑

j=1

πk j = 0, ∀k ∈ S. (2.4)
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Consider a stochastic differential equation with Markovian switching of the form

dx = f
(
x, t,r(t)

)
dt+ g

(
x, t,r(t)

)
dw (2.5)

on t ≥ 0 with initial data x(0)= x0 ∈ Rn and r(0) = k0 ∈ S, where f : Rn×R+× S→ Rn

and g :Rn×R+× S→Rn×m. ω(t)= (ωt1,ωt2, . . . ,ωtm)T is an independent m-dimensional
standard Wiener noise defined on the probability space. Furthermore, we assume that
the Wiener noise ω(t) is independent of the Markov chain r(t). For the existence and
uniqueness of the solution, we will impose a hypothesis (see [5]).

(H) Both f and g satisfy the local Lipschitz condition and the linear growth condition.
That is, for each h= 1,2, . . . , there is an Lh > 0 such that

∣
∣ f (x, t,k)− f (y, t,k)

∣
∣∨∣∣g(x, t,k)− g(y, t,k)

∣
∣≤ Lh|x− y| (2.6)

for all (t,k) ∈ R+× S and those x, y ∈ Rn with |x| ∨ |y| ≤ h. Moreover, there is an ν > 0
such that

∣
∣ f (x, t,k)

∣
∣∨∣∣g(x, t,k)

∣
∣≤ ν

(
1 + |x|) (2.7)

for all (x, t,k)∈Rn×R+× S.
In general, the hypothesis (H) will guarantee a unique local solution to (2.5).
LetC2,1(Rn×R+× S) denote the family of all functions F(x, t,k) onRn×R+× Swhich

are continuously twice differentiable in x and once in t. Furthermore, we will give the
stochastic differentiable equation of F(x, t,k):

Fix any (x0, t0,k) ∈ Rn ×R+ × S and suppose x(t) is the unique solution to (2.5). By
the generalized Ito formula, we have

F
(
x, t,r(t)

)= F(x0, t0,k
)

+
∫ t

t0

∂F
(
x,s,r(s)

)

∂s
ds+

∫ t

t0

∂F
(
x,s,r(s)

)

∂x
f
(
x,s,r(s)

)
ds

+
∫ t

t0

1
2

Tr
[

gT
(
x,s,r(s)

)∂2F
(
x,s,r(s)

)

∂x2
g
(
x,s,r(s)

)
]

ds

+
∫ t

t0

∂F
(
x,s,r(s)

)

∂x
g
(
x,s,r(s)

)
dω

+
∫ t

t0

N∑

j=1

[
F(x,s, j)−F(x,s,k)

]
dΦs j .

(2.8)

According to (2.2), the differential equation of the indicator Φt is as follows:

dΦt =ΠΦt dt+dMt. (2.9)
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Submit (2.9) into (2.8) and notice that

N∑

j=1

πk jF(x, t,k)= 0. ∀ k ∈ S. (2.10)

So

F
(
x, t,r(t)

)= F(x0, t0,k
)

+
∫ t

t0

∂F
(
x,s,r(s)

)

∂s
ds+

∫ t

t0

∂F
(
x,s,r(s)

)

∂x
f
(
x,s,r(s)

)
ds

+
∫ t

t0

1
2

Tr
[

gT
(
x,s,r(s)

)∂2F
(
x,s,r(s)

)

∂x2
g
(
x,s,r(s)

)
]

ds

+
∫ t

t0

∂F
(
x,s,r(s)

)

∂x
g
(
x,s,r(s)

)
dω+

∫ t

t0

N∑

j=1

πk jF(x,s, j)ds

+
∫ t

t0

N∑

j=1

[
F(x,s, j)−F(x,s,k)

]
dMsj .

(2.11)

Therefore, the stochastic differentiable equation of F(x, t,k) is given by the following:

dF(x, t,k)= ∂F(x, t,k)
∂t

dt+
∂F(x, t,k)

∂x
f (x, t,k)dt

+
1
2

Tr
[

ΥTgT(x, t,k)
∂2F(x, t,k)

∂x2
g(x, t,k)Υ

]

dt

+
N∑

j=1

πk jF(x, t, j)dt+
∂F(x, t,k)

∂x
g(x, t,k)dω

+
N∑

j=1

[
F(x, t, j)−F(x, t,k)

]
dMt j .

(2.12)

We take the expectation in (2.12), so that the the infinitesimal generator produces [5]

�F(x, t,k)= ∂F(x, t,k)
∂t

+
∂F(x, t,k)

∂x
f (x, t,k)

+
1
2

Tr
[

gT(x, t,k)
∂2F(x, t,k)

∂x2
g(x, t,k)

]

+
N∑

j=1

πk jF(x, t, j).

(2.13)
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Lemma 2.1 (Martingale representation [7]). Let B(t) = [B1(t),B2(t), . . . ,BN (t)] be N-
dimensional standard Wiener noise. Suppose Mt is an �N

t -martingale (with respect to P)
and that Mt ∈ L2(P) for all t ≥ 0. Then there exists a stochastic process Ψ∈ L2(�t,P), such
that

dMt =Ψ ·dB(t). (2.14)

Lemma 2.2 (Young’s inequality). For any two vectors x, y ∈Rn, the following holds:

xT y ≤ ε
p

p
|x|p +

1
qεq

|y|q, (2.15)

where ε > 0 and the constants p > 1, q > 1 satisfy (p− 1)(q− 1)= 1.

2.2. Problem description. Consider the following Markovian jump uncertain nonlinear
systems with Wiener noises:

dxi = xi+1dt+ϕi
(
x̄i, t,r(t)

)T
θ∗dt+Δi

(
x̄i, t,r(t)

)
dt,

dxn = udt+ϕn
(
x, t,r(t)

)T
θ∗dt+Δn

(
x, t,r(t)

)
dt,

y = x1, i= 1,2, . . . ,n− 1,

(2.16)

where x = (x1,x2, . . . ,xn)T ∈ Rn is the state vector, here x̄i � (x1,x2, . . . ,xi)T , u ∈ R is the
input, and y ∈ R is the output of the system. θ∗ ∈ RP is a vector of unknown constant
parameters; The Markov chain r(t) is as defined in Section 2.1. ϕi(x̄i, t,r(t)) is a vector-
valued smooth function. Δi(x̄i, t,r(t)) is an unknown function which could be due to
modelling errors, parametric uncertainty, time variations in the systems, or a combina-
tion of these. And it may be different with each regime r(t) ∈ S. It is assumed that the
control designer has, at least, partial knowledge of bounds for the function uncertainty
Δi(x̄i, t,r(t)). In particular, we assume that

∣
∣Δi

(
x̄i, t,r(t)= k

)∣
∣≤ ψ∗i pi

(
x̄i,r(t)= k

) ∀x̄i ∈Ri, ∀t ∈R+, ∀k ∈ S, (2.17)

where pi(x̄i,r(t))∈ C1(Ri× S,R+) is a known smooth function and ψ∗i ≥ 0 is a constant
parameter, which is not necessarily known. Note that ψ∗i is not unique, since any ψ̄∗i > ψ

∗
i

satisfies inequality (2.17). To avoid confusion, we define ψ∗i to be the smallest (nonneg-
ative) constant such that (2.17) is satisfied. In this paper, the equilibrium x = 0 is as-
sumed to be a common one for all regimes, which means ϕi(0, t,k) = 0, for all k ∈ S.
With ϕi(x̄i, t,r(t)), Δi(x̄i, t,r(t)) satisfying hypothesis (H), Markovian jump system (2.19)
has a unique solution.
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Our purpose is to design the controller such that the output y could track a given
signal yr(t) (which is supposed to be sufficiently smooth), and moreover all the signals of
the closed-loop system could be bounded. We denote the tracking error by

ei = xi− y
( j−1)
r , j = 1,2, . . . ,n. (2.18)

Here y
( j)
r means the jth derivative of yr , and we have y(0)

r = yr . Therefore, the tracking
error equations are drawn as

dei = ei+1dt+ϕi
(
x̄i, t,r(t)

)T
θ∗dt+Δi

(
x̄i, t,r(t)

)
dt,

den =
(
u− y(n)

r

)
dt+ϕn

(
x, t,r(t)

)T
θ∗dt+Δn

(
x, t,r(t)

)
dt,

i= 1,2, . . . ,n− 1.

(2.19)

3. Control design

Now we begin to design a robust adaptive controller for system (2.19) where the param-
eter θ∗ and ψ∗i are all needed to be estimated. Denote the estimation of θ∗ with θ, and
the estimation of ψ∗i with ψi.

First we employ a coordinate transformation:

zi = ei−αi−1
(
x̄i−1,θ,ψi, t,r(t)= k

)
, (3.1)

where α0 = 0, for all k ∈ S, and the new coordinate is Z = (z1,z2, . . . ,zn). For simplicity,
we denote αi−1(x̄i−1,θ,ψi, t,k), ϕi(x̄i, t,k), and Δi(x̄i, t,k) by αi−1(k), ϕi(k), and Δi(k).

According to (2.12), (3.1) can be written as

dzi =
[
ei+1 +ϕTi (k)θ∗ +Δi(k)

]
dt−dαi−1(k)

= {zi+1 +αi(k) +ϕTi (k)θ∗ +Δi(k)
}
dt− ∂αi−1(k)

∂t
dt− ∂αi−1(k)

∂θ
θ̇ dt

−
i−1∑

j=1

∂αi−1(k)
∂ψj

ψ̇ j dt−
i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 +ϕTj (k)θ∗ +Δ j(k)

]
dt

−
N∑

j=1

πk jαi−1( j)dt+
N∑

j=1

[
αi−1(k)−αi−1( j)

]
dMj.

(3.2)

By Lemma 2.1, there exist a Ψ∈ L2(�t,P) and an N-dimensional standard Wiener noise
B(t), such that dMt = ΨdB(t), where E{ΨΨT} = φφT ≤ Q < ∞ and Q is a positive
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bounded constant. Moreover, we define a vector Γi(k) � [αi−1(k) − αi−1(1),αi−1(k) −
αi−1(2), . . . ,αi−1(k)−αi−1(N)]. Therefore, (3.2) is as follows:

dzi =
[
zi+1 +αi(k) +ϕTi (k)θ∗ +Λi(k)

]
dt− ∂αi−1(k)

∂t
dt− ∂αi−1(k)

∂θ
θ̇ dt

−
i−1∑

j=1

∂αi−1(k)
∂ψj

ψ̇ j dt−
i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 +ϕTj (k)θ∗

]
dt

−
N∑

j=1

πk jαi−1( j)dt+Γi(k)ΨdB,

(3.3)

where Λi(k) is

Λi(k) � Δi(k)−
i−1∑

j=1

∂αi−1(k)
∂xj

Δ j(k) (3.4)

and, according to inequality (2.17), it is easily seen that there exists a series of continuous
functions p̄i(x̄i,k)∈ C(Ri× S,R+), such that

∣
∣Λi(k)

∣
∣≤ ψ∗i p̄i

(
x̄i,k

)
, ∀x̄i ∈Ri, ∀t ∈R+, ∀k ∈ S. (3.5)

Choose a Lyapunov function of the form

V = 1
4

n∑

i=1

z4
i +

1
2γ
θ̃T θ̃ +

n∑

i=1

1
2σi

χ2
i , (3.6)

where γ > 0, σi > 0 are constants. θ̃ = θ∗ − θ and χi = ψMi −ψi are the parameter estima-
tion errors, where ψMi � max{ψ∗i ,ψ0

i }, and ψ0
i are given positive constants.

We set out to choose the function αi−1(x̄i−1, θ, ψi, t, k) and adaptive functions to make
�V nonpositive. Along the solutions of (3.3), we have

�V =
n∑

i=1

z3
i

{

zi+1 +αi(k) +ϕTi (k)θ∗ − ∂αi−1(k)
∂t

− ∂αi−1(k)
∂θ

θ̇−
i−1∑

j=1

∂αi−1(k)
∂ψj

ψ̇ j

−
N∑

j=1

πk jαi−1( j)−
i−1∑

j=1

∂αi−1(k)
∂xj

[
xj+1 +ϕTj (k)θ∗

]
+Λi(k)

}

+
3
2

N∑

i=1

z2
i Γi(k)φφTΓTi (k)− 1

γ
θ̃T θ̇−

n∑

i=1

1
σi
χiψ̇i
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≤
N∑

i=1

z3
i

{(
3
4
δ4/3
i +

1
4δ4

i−1

)

zi +αi(k)− ∂αi−1(k)
∂t

− ∂αi−1(k)
∂θ

θ̇−
i−1∑

j=1

∂αi−1(k)
∂ψj

ψ̇ j

+ τTi (k)θ−
i−1∑

j=1

∂αi−1(k)
∂xj

xj+1−
N∑

j=1

πk jαi−1( j) +
n∑

i=1

μzi
[
Γi(k)ΓTi (k)

]2
}

+
n∑

i=1

9
16μ

Q2− θ̃T
[

1
γ
θ̇−

n∑

i=1

z3
i τi(k)

]

−
n∑

i=1

[
1
σi
χiψ̇i− z3

i Λi(k)
]

(3.7)

with

τi(k)= ϕi(k)−
i−1∑

j=1

∂αi−1(k)
∂xj

ϕj(k). (3.8)

In (3.7), the following inequalities are used, which can be reduced from Young’s in-
equalities and norm inequalities with the help of changing the order of summations or
exchanging the indices of the summations:

n∑

i=1

z3
i zi+1 ≤ 3

4

n−1∑

i=1

δ4/3z4
i +

1
4

n−1∑

i=1

1
δ4
i

z4
i+1 =

n∑

i=1

(
3
4
δ4/3
i +

1
4δ4

i−1

)

z4
i , (3.9)

where δ0 =∞, δn = 0, and δi > 0, i= 1,2, . . . ,n− 1,

3
2

n∑

i=1

z2
i Γi(k)φφTΓTi (k)≤ 3

2

n∑

i=1

z2
i Γi(k)QΓTi (k)

≤
n∑

i=1

μz4
i

[
Γi(k)ΓTi (k)

]2
+

n∑

i=1

9
16μ

Q2,

(3.10)

where λ > 0, μ > 0 are design parameters.
According to [8], we suggest the following adaptive laws:

θ̇ = γ
[ n∑

i=1

z3
i τi(k)− l(θ− θ0)

]

, (3.11)

ψ̇i = σi
[
z3
i �i(k)−mi

(
ψi−ψ0

i

)]
, (3.12)

�i(k)= p̄i(k) · tanh
[
z3
i p̄i(k)
εi

]

. (3.13)
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Here l > 0, mi > 0, εi > 0, θ0 ∈Rp are given constants. Denote

βi(k)= ψi ·�i(k). (3.14)

Substituting (3.11), (3.12), and (3.14) into (3.7), we suggest the virtual control as

αi(k)=−cizi−
(

3
4
δ4/3
i +

1
4δ4

i−1

)

zi +
∂αi−1(k)

∂t
−μzi

[
Γi(k)ΓTi (k)

]2
+
∂αi−1(k)
∂θ

θ̇

+
i−1∑

j=1

∂αi−1(k)
∂ψj

ψ̇ j(k)− τTi (k)θ +
i−1∑

j=1

∂αi−1(k)
∂xj

xj+1 +
N∑

j=1

πk jαi−1( j)−βi(k).

(3.15)

However, if adaptive law (3.11) is adopted, θ̇ concerning with z1, . . . ,zn exists in (3.15).
Therefore, it is impossible to get αi(k) directly. For this reason, the following transitions
are necessary:

n∑

i=1

z3
i
∂αi−1(k)
∂θ

θ̇ =
n∑

i=1

z3
i
∂αi−1(k)
∂θ

γ

[ i∑

j=1

z3
j τ j(k) +

n∑

j=i+1

z3
j τ j(k)− l(θ− θ0)

]

=
n∑

i=1

z3
i
∂αi−1(k)
∂θ

i∑

j=1

z3
j τ j(k) +

n∑

j=1

j−1
∑

i=1

z3
i
∂αi−1(k)
∂θ

γz3
j τ j(k)

−
n∑

i=1

z3
i
∂αi−1(k)
∂θ

γl
(
θ− θ0)

= γ
n∑

i=1

z3
i

[
∂αi−1(k)
∂θ

i∑

j=1

z3
j τ j(k) +

( i−1∑

j=1

z3
j

∂αj−1(k)

∂θ

)

τi(k)− l(θ− θ0)
]

.

(3.16)

Substituting (3.16) into (3.15), the virtual control design is

αi(k)=−cizi−
(

3
4
δ4/3
i +

1
4δ4

i−1

)

zi +
∂αi−1(k)

∂t
+ γ

∂αi−1(k)
∂θ

i∑

j=1

z3
j τ j(k)

+ γ
i−1∑

j=1

z3
j

∂αj−1(k)

∂θ
τi(k)− γl ∂αi−1(k)

∂θ

(
θ− θ0)+

i−1∑

j=1

∂αi−1(k)
∂ψj

ψ̇ j

− τTi (k)θ−μzi
[
Γi(k)ΓTi (k)

]2
+
i−1∑

j=1

∂αi−1(k)
∂xj

xj+1 +
N∑

j=1

πk jαi−1( j)−βi(k),

(3.17)
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where α0(k)= 0, zi = xi− y(i−1)
r −αi−1(k), ci > 0, i= 1,2, . . . ,n, with the actual control

u(k)= αn(k) + y(n)
r , (3.18)

then the infinitesimal generator of V becomes

�V ≤−
n∑

i=1

ciz
4
i −

n∑

i=1

[
z3
i βi(k) + z3

i χi�i(k)− z3
i Λi(k)− χimi

(
ψi−ψ0

i

)]

+ lθ̃T
(
θ− θ0)+

9n
16μ

Q2

=−
n∑

i=1

ciz
4
i + lθ̃T

(
θ− θ0)+

9n
16μ

Q2 +
n∑

i=1

[
z3
i Λi(k)− (ψi + χi

)
z3
i �i(k)

]

+
n∑

i=1

miχi
(
ψi−ψ0

i

)

=−
n∑

i=1

ciz
4
i + lθ̃T

(
θ− θ0)+

9n
16μ

Q2 +
n∑

i=1

(
z3
i Λi(k)−ψMi z3

i �i(k)
)

+
n∑

i=1

miχi
(
ψi−ψ0

i

)
.

(3.19)

Considering (3.5) and (3.13), we get

z3
i Λi(k)−ψMi z3

i �i(k)

≤ ψ∗i
∣
∣z3

i p̄i(k)
∣
∣−ψMi z3

i �i(k)

≤ ψMi
∣
∣z3

i p̄i(k)
∣
∣−ψMi z3

i p̄i(k)tanh
[
z3
i p̄i(k)
εi

]
(3.20)

according to

0≤ |η|−η tanh
(
η

ε

)

≤ 0.2785ε <
1
2
ε (3.21)

such that

z3
i Λi(k)−ψMi z3

i �i(k)≤ 1
2
ψMi εi. (3.22)



Jin Zhu et al. 11

By using the inequalities

lθ̃T
(
θ− θ0)=−1

2
lθ̃T θ̃− 1

2
l
(
θ− θ0)T(θ− θ0)+

1
2
l
(
θ∗ − θ0)T(θ∗ − θ0)

≤−1
2
lθ̃T θ̃ +

1
2
l
(
θ∗ − θ0)T(θ∗ − θ0),

miχi
(
ψi−ψ0

i

)=−1
2
miχ

2
i −

1
2
mi
(
ψi−ψ0

i

)2
+

1
2
mi
(
ψMi −ψ0

i

)2

≤−1
2
miχ

2
i +

1
2
mi
(
ψMi −ψ0

i

)2
,

(3.23)

therefore

�V ≤−
n∑

i=1

ciz
4
i −

1
2
lθ̃T θ̃ +

1
2
l
(
θ∗ − θ0)T(θ∗ − θ0)

+
1
2

n∑

i=1

εiψ
M
i −

1
2
m

n∑

i=1

χ2
i +

1
2

n∑

i=1

mi
(
ψMi −ψ0

i

)2
+

9n
16μ

Q2 ≤−cV + κ,

(3.24)

where

m=min
(
mi
)
,

c =min
(
4ci, lγ,mσi

)
,

κ= 1
2

n∑

i=1

εiψ
M
i +

1
2

n∑

i=1

mi
(
ψMi −ψ0

i

)2

+
1
2
l
(
θ∗ − θ0)T(θ∗ − θ0)+

9n
16μ

Q2.

(3.25)

Theorem 3.1. The equilibrium of the closed-loop Markovian jump system (2.19), (3.1),
(3.11), (3.12), (3.18) is globally uniformly ultimately bounded in the fourth moment. Fur-
thermore, for any given ε > 0, there is

lim
t→∞E

(|Z|44
)
< ε. (3.26)
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Proof. According to the conclusion in [12], we have

EV ≤ e−ct
[

V
(
x0, t0,r0

)− κ

c

]

+
κ

c
, (3.27)

and there is

V = 1
4

n∑

i=1

z4
i +

1
2γ
θ̃T θ̃ +

n∑

i=1

1
2σi

χ2
i ≥

1
4

n∑

i=1

z4
i . (3.28)

Taking expectation in the above equation,

E
(|Z|44

)≤ 4EV ≤ 4e−ct
[

V
(
x0, t0,r0

)− κ

c

]

+
4κ
c

, (3.29)

which means that Z = (z1,z2, . . . ,zn) is globally uniformly bounded in the fourth moment,
thus e = (e1,e2, . . . ,en) is globally uniformly bounded in the fourth moment.

Moreover, there exists T > 0, if t ≥ T , there is 4e−ct[V(x0, t0,r0)− κ/c] ≤ 4κ/c, and
E|Z|44 ≤ 8κ/c. So, for any given ε > 0, appropriate control design parameters ci, l, mi can
be chosen to guarantee 8κ/c < ε.

Therefore, when t ≥ T ,

E
∣
∣e1
∣
∣4

4 = E
∣
∣y− yr

∣
∣4

4 ≤ E|Z|44 ≤
8κ
c
< ε, (3.30)

which means all the signals of the closed-loop system are globally uniformly ultimately
bounded in the fourth moment, and we achieve regulation of the tracking error to any
prescribed accuracy. �

4. Example

Consider a two-order Markovian jump nonlinear system with the regime transition space
S= {1,2}, and the transition rate matrix is

Π=
[−2 2

5 −5

]

. (4.1)

The system is as follows:

dx1 = x2dt+ ξ1
(
x1, t,r(t)

)
θ∗dt+Δ

(
x1, t,r(t)

)
dt,

dx2 = udt+ ξ2
(
x, t,r(t)

)
θ∗dt,

y = x1.

(4.2)



Jin Zhu et al. 13

Here

ξ1
(
x1, t,1

)= x2
1, ξ1

(
x1, t,2

)= x1,

ξ2(x, t,1)= x1, ξ2(x, t,2)= x1 sinx2,
(4.3)

where θ∗ is an unknown parameter and Δ(x1, t,r(t)) is an unknown bounded distur-
bance. For simulation purposes, we let θ∗ = 2, Δ(x1, t,1)= 0.6sin2t, Δ(x1, t,2)= cos4t.

The control law and the adaptive law are taken as follows (here δ1 = 1).

Case 1. The system regime is 1:

α1(1)=−
(

c1 +
3
4

)

z1− τ1(1)θ−β1(1),

α2(1)=−
(

c2 +
1
4

)

z2− τ2(1)θ− x2
1γ
[
z3

1τ1(1) + z3
2τ2(1)

]
+ γl

(
θ− θ0)x2

1 −β2(1)

− ∂α1(1)
∂x1

x2−�1(1)ψ̇1 +π11α1(1) +π12α1(2)−μz2
[
α1(1)−α1(2)

]4
,

θ̇ = γ[z3
1τ1(1) + z3

2τ2(1)− l(θ− θ0)],

ψ̇1 = σ1
[
z3

1w1(1)−m1
(
ψ1−ψ0

1

)]
,

ψ̇2 = σ2
[
z3

2w2(1)−m2
(
ψ2−ψ0

2

)]
,

(4.4)

where

z1 = x1− yr , z2 = x2− ẏr −α1(1), τ1(1)= x2
1, p̄1(1)= 1,

�1(1)= p̄1(1)tanh
(
z3

1 p̄1(1)
ε1

)

, β1(1)= ψ1�1(1),

p̄2(1)=
∣
∣
∣
∣
∂α1(1)
∂x1

∣
∣
∣
∣=

∣
∣
∣
∣c1 +

3
4

+ 2θx1 +
3z2

1ψ1

ε1

[
1−�2

1(1)
]
∣
∣
∣
∣, τ2(1)= x1− ∂α1(1)

∂x1
x2

1,

�2(1)= p̄2(1)tanh
(
z3

2 p̄2(1)
ε2

)

, β2(1)= ψ2�2(1).

(4.5)

Case 2. The system regime is 2:

α1(2)=−
(

c1 +
3
4

)

z1− τ1(2)θ−β1(2),

α2(2)=−
(

c2 +
1
4

)

z2− τ2(2)θ− x1γ
[
z3

1τ1(2) + z3
2τ2(2)

]
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+ γl
(
θ− θ0)x1−β2(2)− ∂α1(2)

∂x1
x2−�1(2)ψ̇1

+π21α1(1) +π22α1(2)−μz2
[
α1(1)−α1(2)

]4
,

θ̇ = γ[z3
1τ1(2) + z3

2τ2(2)− l(θ− θ0)],

ψ̇1 = σ1
[
z3

1w1(2)−m1
(
ψ1−ψ0

1

)]
,

ψ̇2 = σ2
[
z3

2w2(2)−m2
(
ψ2−ψ0

2

)]
,

(4.6)

where

z1 = x1− yr , z2 = x2− ẏr −α1(2),

τ1(2)= x1, p̄1(2)= 1,

�1(2)= p̄1(2)tanh
(
z3

1 p̄1(2)
ε1

)

, β1(2)= ψ1�1(2),

p̄2(2)=
∣
∣
∣
∣
∂α1(2)
∂x1

∣
∣
∣
∣=

∣
∣
∣
∣c1 +

3
4

+ θ +
3z2

1ψ1

ε1

[
1−�2

1(2)
]
∣
∣
∣
∣,

τ2(2)= x1 sinx2− ∂α1(2)
∂x1

x1,

�2(2)= p̄2(2)tanh
(
z3

2 p̄2(2)
ε2

)

, β2(2)= ψ2�2(2).

(4.7)

In computation, we take design constants c1 = c2 = 5, θ0 = 1, ψ0
1 = ψ0

2 = 1, σ1 = σ2 =
γ = 1, m1 =m2 = l = 1, μ= 25, ε1 = ε2 = 0.4, choose the initial values to be x1 = 0, x2 = 0,
θ(0)= 0, ψ1(0)= ψ2(0)= 0.

When the the given signal to be tracked is yr = 1, Figure 4.1 shows the regime transi-
tion in set-point tracking, Figure 4.2 shows the corresponding control in set-point track-
ing, and Figure 4.3 shows the time responses of the output variable in set-point tracking
(dashed line for output y, and solid line for given signal).

When the given signal to be tracked is yr = 0.5 + 0.2sin5t, Figure 4.4 shows the regime
transition in periodic-signal tracking, Figure 4.5 shows the corresponding control in peri-
odic-signal tracking, and Figure 4.6 shows the time responses of the output variable in
periodic signal tracking. (dashed line for output y, and solid line for given signal).
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Figure 4.1. Regime transition in set-point tracking.
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Figure 4.3. Output in set-point tracking.
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Figure 4.4. Regime transition in periodic-signal tracking.
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Figure 4.6. Output in periodic-signal tracking.



Jin Zhu et al. 17

The simulation results illustrate the global uniform ultimate boundedness of the
closed-loop system.

5. Conclusion

The robust adaptive tracking problems of Markovian jump uncertain nonlinear paramet-
ric-strict-feedback systems with both parametric uncertainty and unknown nonlinearity
are investigated. A robust adaptive control scheme was obtained by using a stochastic Lya-
punov method and backstepping techniques, which guarantees that the closed-loop sys-
tem is globally uniformly ultimately bounded. And the tracking error could be achieved
to any prescribed accuracy. This work extends the class of Markovian jump nonlinear sys-
tems for which tracking problems are available and proposes a practical control design.

Acknowledgment

This work was supported by the Specialized Research Fund for the Doctoral Program of
Higher Education of China under Grant 20050358044.

References

[1] M. D. S. Aliyu and E.-K. Boukas, H∞ control for Markovian jump nonlinear systems, 37th CDC,
1998, pp. 766–771.

[2] M. D. Fragoso, Discrete-time jump LQG problem, International Journal of Systems Science 20
(1989), no. 12, 2539–2545.

[3] Y. D. Ji and H. J. Chizeck, Jump linear quadratic Gaussian control in continuous time, IEEE Trans-
actions on Automatic Control 37 (1992), no. 12, 1884–1892.

[4] M. S. Mahmoud, P. Shi, and A. Ismail, Robust Kalman filtering for discrete-time Markovian jump
systems with parameter uncertainty, Journal of Computational and Applied Mathematics 169
(2004), no. 1, 53–69.

[5] X. Mao, Stability of stochastic differential equations with Markovian switching, Stochastic Pro-
cesses and Their Applications 79 (1999), no. 1, 45–67.

[6] M. Mariton, Jump Linear Systems in Automatic Control, Marcel-Dekker, New York, 1990.

[7] B. Øksendal, Stochastic Differential Equations, Springer, New York, 2000.

[8] M. M. Polycarpou and P. A. Ioannou, A robust adaptive nonlinear control design, Automatica 32
(1996), no. 3, 423–427.

[9] S. Sathananthan and L. H. Keel, Optimal practical stabilization and controllability of systems with
Markovian jumps, Nonlinear Analysis 54 (2003), no. 6, 1011–1027.

[10] P. Shi, E.-K. Boukas, and R. K. Agarwal, Kalman filtering for continuous-time uncertain systems
with Markovian jumping parameters, IEEE Transactions on Automatic Control 44 (1999), no. 8,
1592–1597.

[11] C. Yuan and X. Mao, Asymptotic stability in distribution of stochastic differential equations with
Markovian switching, Stochastic Processes and Their Applications 103 (2003), no. 2, 277–291.



18 Tracking problems of Markovian jump nonlinear systems

[12] , Robust stability and controllability of stochastic differential delay equations with Markov-
ian switching, Automatica 40 (2004), no. 3, 343–354.

Jin Zhu: Department of Automation, University of Science and Technology of China (USTC), Hefei,
Anhui 230027, China
E-mail address: zhujin@ustc.edu

Hong-Sheng Xi: Department of Automation, University of Science and Technology of China
(USTC), Hefei, Anhui 230027, China
E-mail address: xihs@ustc.edu.cn

Hai-Bo Ji: Department of Automation, University of Science and Technology of China (USTC),
Hefei, Anhui 230027, China
E-mail address: jihb@ustc.edu.cn

Bing Wang: Department of Automation, University of Science and Technology of China (USTC),
Hefei, Anhui 230027, China
E-mail address: iceking@ustc.edu

mailto:zhujin@ustc.edu
mailto:xihs@ustc.edu.cn
mailto:jihb@ustc.edu.cn
mailto:iceking@ustc.edu

	1. Introduction
	2. Problem and preliminaries
	2.1. Notation
	2.2. Problem description

	3. Control design
	4. Example
	5. Conclusion
	Acknowledgment
	References

