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Gaussian blurring is an isotropic smoothing operator that is used to remove noise and
detail from images. In this paper, the effect of Gaussian blurring on the extraction of
peaks and pits from digital elevation models (DEMs) is studied. First, a mathemati-
cal morphological-based algorithm to extract peaks and pits from DEMs is developed.
Gaussian blurring is then implemented on the global digital elevation model (GTOPO30)
of Great Basin using Gaussian kernels of different sizes and standard deviation values. The
number of peaks and pits extracted from the resultant DEMs is computed using con-
nected component labeling and the results are compared. The application of Gaussian
blurring to perform the treatment of spurious peaks and pits in DEMs is also discussed.
This work is aimed at studying the capabilities of Gaussian blurring in the modeling of
objects and processes operating within an environment.

Copyright © 2007 A. Pathmanabhan and S. Dinesh. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

A digital elevation model (DEM) is a set of points defined in a three-dimensional Carte-
sian space (X, Y, Z) that approximates a topographic surface. The X- and Y-axes are
an approximation of geographic coordinates (i.e., longitude and latitude), whereas the
Z-axis represents the altitude above sea level. It is a digital file consisting of the terrain
elevations for ground positions at regularly spaced horizontal intervals. DEMs can be
generated directly through photogrammetric processing of stereo photos or satellite im-
agery such as stereoscopic SPOT images, or indirectly from the interpolation of scattered
point elevation data, of contour lines, or of triangular irregular networks (TINs). DEMs
are essential for many aspects of terrain and environmental modeling because of their
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simple data structure and widespread availability, and they lend themselves to many GIS
processes and operations [1].

The peaks of a terrain refer to the highest points of the mountains of the terrain while
the pits of the terrain are the lowest points of the basins of the terrain. In DEMs, peaks
are connected components that are completely surrounded by pixels of lower elevation
while pits are connected components that are completely surrounded by pixels of higher
elevation. The extraction of peaks and pits from digital elevation models (DEMs) is the
first step in most techniques used to perform DEM characterization, and to describe the
general geomorphometry of a surface.

The objective of this manuscript is to study the effect of Gaussian blurring on the
extraction of peaks and pits from DEMs. In Section 2, a brief introduction to Gaussian
blurring is provided. In Section 3, a mathematical morphological-based algorithm to ex-
tract peaks and pits from DEMs is developed. In Section 4, the effect of Gaussian blurring
on the extraction of peaks and pits from DEMs is studied. In Section 5, the application
of Gaussian blurring to perform DEM smoothening is studied. Concluding remarks and
perspectives for further research are presented in Section 6.

2. Gaussian blurring

Gaussian blurring is an isotropic smoothening operator that is used to remove the ex-
tremities of an image. As shown in Figure 2.1, the kernel used to perform Gaussian blur-
ring, the Gaussian kernel G, represents a circularly symmetrical bell-shaped hump. The
Gaussian kernel is computed using the following function:

1
G(X, Y) _ me—(xbr}ﬂ)ﬂaz) (21)

where x and y are Cartesian distances and o is the standard deviation [2].

This kernel is used as a convoluted point spread function to perform Gaussian blur-
ring. Before performing the convolution operation, a discrete approximation of the
Gaussian kernel needs to be computed as the image is stored as a collection of discrete
pixels, rather than as a continuous function. Figure 2.2 shows the discrete approximation
of the Gaussian kernel shown in Figure 2.1. Using this discrete kernel, Gaussian blurring
can be performed using standard convolution methods [2].

3. The extraction of peaks and pits from DEMs using ultimate erosion

In this section, an algorithm to extract peaks and pits from DEMs is developed using
concepts of mathematical morphology [4-6]. Mathematical morphology deals with the
extraction of image components that are useful in representation and description of re-
gion shape, such as boundaries, skeletons, and convex hulls [7]. Mathematical morphol-
ogy is well suited to the processing of elevation data because in morphology, any im-
age is viewed as a topographic surface, the gray level of a pixel standing for its elevation
[8]. Hence, mathematical morphological operators are extremely useful and important in
DEM analysis. Morphological operators generally require two inputs; the input image A,
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Figure 2.1. A Gaussian kernel, with x = 5, y = 5and o = 1.0. (Source: [2])
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Figure 2.2. The discrete approximation of the Gaussian kernel shown in Figure 2.1.

which can be in binary or gray scale form, and the kernel B, which is used to determine
the precise effect of the operator [5].

Dilation sets the pixel values within the kernel to the maximum value of the pixel
neighborhood. The dilation operation is expressed as

A®B=1{a+b:acA, beB}. (3.1)

Erosion sets the pixels values within the kernel to the minimum value of the kernel.
Erosion is the dual operator of dilation:

(AeB)C (A°@B), (3.2)

where A¢ denotes the complement of A, and B is symmetric with respect to reflection
about the origin.
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Figure 2.3. An example of the ultimate erosion operation. Ultimate erosion is implemented through
the iterative erosion of the image until all objects vanish (images X;), and the reconstruction of each
eroded image using the eroded image, E(X;), as the mask and the erosion of smaller size as the marker.
The reconstructed images (images Y;) are subtracted from the corresponding eroded images to form
the eroded sets (images U;). The final resultant image is known as the ultimate erode set. (Source:
[3].) When a particle disappears after an erosion, it is not reconstructed and thus appears in image
Ui.

Gray scale erosion can be used to remove bright areas in gray scale images. It causes
small peaks in the image to disappear. However, it also causes valley widening which
results in larger peak.

Morphological reconstruction allows for the isolation of certain features within an
image based on the manipulation of a mask image X and a marker image Y. It is founded
on the concept of geodesic transformations, where dilations or erosions of a marker image
are performed until stability is achieved (represented by a mask image) [9].
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The geodesic dilation, 69, used in the reconstruction process is performed through
iteration of elementary geodesic dilations, d(1), until stability is achieved,

89(Y) = 8(1)(Y) 0 8(1)(Y) 0 81)(Y) ... until stability. (3.3)

The elementary dilation process is performed using a standard dilation of size one
followed by an intersection,

S(Y)=Y®BnX. (3.4)

The operation in (3.4) is used for elementary dilation in binary reconstruction. In
gray scale reconstruction, the intersection in the equation is replaced with a pointwise
minimum [9].

Morphological reconstruction can be used to maintain the peak removal effect of ero-
sion while avoiding its valley enlargement effect [9]. The peaks removed by erosion can
be obtained by subtracting the reconstructed eroded image from the original image.

In order to extract the peaks of a DEM, ultimate erosion is performed on the DEM.
Ultimate erosion is implemented by successively eroding an image until all particles van-
ish and performing morphological reconstruction on each eroded image into the erosion
of smaller size [3]. Figure 2.2 demonstrates the operation of ultimate erosion. The gener-
ated ultimate eroded set of the DEM forms the peaks of the DEM. The pits of the DEM
are the peaks of the inverted DEM; pit extraction is implemented by performing ultimate
erosion on the inverted DEM.

The DEM in Figure 3.1 shows the area of Great Basin, Nev, USA. The area is bounded
by latitude 38° 15’ to 42° N and longitude 118° 30" to 115° 30" W. The DEM is a global dig-
ital elevation model (GTOPO30 DEM) and was downloaded from the USGS GTOPO30
web site (http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html). GTOPO30 DEMs
are available at a global scale, providing a digital representation of the Earth’s relief at a
30 arc-seconds sampling interval. The land data used to derive GTOPO30 DEM:s are ob-
tained from digital terrain elevation data (DTED), the 1-degree DEM for USA, and the
digital chart of the world (DCW). The accuracy of GTOPO30 DEM:s varies by location
according to the source data. The DTED and the 1-degree dataset have a vertical accuracy
of +30 m while the absolute accuracy of the DCW vector dataset is +2000 m horizontal
error and +650 vertical error [10].

The proposed peak and pit extraction algorithm is implemented on the DEM of Great
Basin. The number of extracted peaks (Figure 3.2(a)) and pits (Figure 3.2(b)) is com-
puted using the connected component labeling algorithm proposed in Pitas [11]. A total
of 1,315 peaks and 559 pits are extracted from the DEM. A total of 6,010 pixels (6.60%)
are classified as peak pixels, while 1,417 pixels (1.56%) are classified as pit pixels.

In Table 3.1, the study area, the peak regions, and the pit regions are compared in
terms of their area, mean elevation, mean gradient, local relief, and relative massiveness.

(1) Area: the area of the region occupied by the area is computed as the aggregate of
pixels constituting the object region [11].

(2) Mean elevation: it is computed as the average elevation of the pixels that belong
to an object’s region. It is interpreted as a measure of the volume of the object per
unit area.
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Figure 3.1. The DEM of Great Basin. The elevation values of the terrain (minimum 1005 meters and
maximum 3651 meters) were rescaled to the interval of 0 to 255 (the brightest pixel has the highest

elevation).
Table 3.1. Statistics of the study area, peak regions, and the pit regions.

Parameter Study area Peak regions Pit regions
Area (pixels) 91123 6010 1417
Mean elevation (gray level) 85.11 127.58 82.64
Mean gradient (o) 5.94 8.95 3.52
Local relief (gray level) 255 249 202
Relative massiveness 0.33 0.49 0.41

(3) Mean gradient: it is computed as the average value of gradient of pixels constitut-
ing an object’s region.

(4) Local relief: the local relief for a finite area of surface was defined as the difference
between the maximum elevation and minimum elevation occurring within that
area [12]. It indicates the elevation of a feature from its base.

(5) Relative massiveness: hypsometry is used to study the distributions of elevations
across a given area of land. The hypsometric integral (HI) is a process indicator
reflecting the stage of landscape development [13] and measuring the extent to
which a land surface has been opened up by erosion [12]. More specifically, areas
with HI above 0.6 are in the “youthful” stage, areas with HI between 0.35 and 0.6
are in the “equilibrium or mature” stage, and areas with HI below 0.35 are in a
transitory “monadnock” stage [13]. From a mathematical point of view, From a
mathematical point of view, HI equals to the relative massiveness, which is the
difference between the mean elevation and the minimum elevation, divided by
the local relief. The advantage of relative massiveness is that it is easier to com-
pute. Low relative massiveness values occur in terrain characterized by isolated
relief features standing above extensive level surfaces, while high values describe
broad, somewhat level surfaces broken by occasional depressions [10].
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(b)

Figure 3.2. Extraction of peaks and pits from the DEM of Great Basin. (a) The extracted peaks. (b)
The extracted pits.

4. The effect of Gaussian blurring on the extraction of peaks and pits from DEMs

Gaussian blurring is performed on the DEM of Great Basin using square Gaussian ker-
nels of size 1 to 100 and standard deviation values of 1 to 10. The peaks and the pits of
the resultant DEMs are extracted using the proposed peak and pit algorithm. Connected
component labeling is used to compute the number of extracted peaks and pits. The re-
sults obtained are shown in Figures 4.1 and 4.2.

Gaussian blurring causes the merging of small regions into the surrounding gray level
regions, causing removal of fine detail in the DEM. As the Gaussian kernel size and stan-
dard deviation are increased, the level of merging increases, resulting in a further loss of
fine detail. This causes a reduction in the number of peaks and pits extracted from the
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Figure 4.1. The effect of Gaussian blurring on the extraction of peaks from the DEM of Great Basin.
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Figure 4.2. The effect of Gaussian blurring on the extraction of pits from the DEM of Great Basin.
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DEM. As the Gaussian kernel size is increased, the number of extracted peaks and pits
reduces, until a threshold level is reached, whereby an increase in Gaussian kernel size no
longer causes major changes in the number of extracted peaks and pits. This threshold
level indicates that there the Gaussian kernel can cause no further merging of small re-
gions into their surrounding gray levels. This threshold level is reduced by increasing the
standard deviation value of the Gaussian kernel.

5. DEM smoothening using Gaussian blurring

This study provides useful insight into the application of Gaussian blurring in the treat-
ment of spurious peaks and pits in DEMs. Spurious peaks and pits are errors that caused
input data error, interpolation procedures, and the limited horizontal and vertical reso-
lutions of DEMs. Spurious peaks and pits do not correspond to real landscape features
and cause distortions in features extracted from DEMs. Hence, the removal of spurious
peaks and pits from DEMs, known as DEM smoothening, is an important preprocessing
step in DEM analysis.

Gaussian blurring is performed on the DEM of Great Basin using a square Gaussian
kernel of size 3 (o = 1) to obtain a smoothened DEM (Figure 5.1(a)). The mask of pix-
els modified by Gaussian blurring is shown in Figure 5.1(b). The effectiveness of DEM
smoothening using Gaussian blurring is tested by performing drainage network extrac-
tion on the original and smoothened DEMs of Great Basin.

The drainage network extraction algorithm used in this paper is the drainage skele-
tonization algorithm proposed by Meisels et al. [14]. The algorithm extracts pixels that
lie in high curvature contours starting from pixels of maximal elevation, elevation-level
by elevation-level; the selection is based on a condition for an enough large number of
higher elevation pixels in the immediate neighborhood of a pixel belonging to the eleva-
tion being processed currently. Complementary local conditions of connectivity are then
used to connect all the pixels of the flow path.

As shown in Figure 5.2(a), spurious peaks in the original DEM cause the formation
of closed loops in the extracted drainage network. Spurious pits in the DEM cause a
portion of the extracted drainage network to be incomplete and disconnected. As shown
in Figure 5.2(b), drainage network extraction applied to the smoothened DEM allows for
the extraction of drainage networks that are loopless, complete, and connected.

6. Conclusion

In this paper, a geomorphometric case study was employed to demonstrate the capabil-
ities of Gaussian blurring in the modeling of objects and processes operating within an
environment; in this case, the peaks and pits of a terrain. Gaussian blurring causes a re-
duction in the number of peaks and pits extracted from DEMs. As the Gaussian kernel
size is increased, the number of extracted peaks and pits reduces, until a threshold level is
reached, whereby an increase in Gaussian kernel size no longer causes major changes in
the number of extracted peaks and pits. This threshold level is reduced by increasing the
standard deviation value of the Gaussian kernel.
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(b)

Figure 5.1. DEM smoothening using Gaussian blurring. (a) The smoothened DEM. (b) The mask of
pixels modified by Gaussian blurring.

The application of Gaussian blurring to perform DEM smoothening was also demon-
strated. Spurious peaks and pits in the original DEM of Great Basin cause the extracted
drainage network to be incomplete and disconnected and to contain closed loops. The
drainage network of smoothened DEM is loopless, complete, and connected.

Gaussian blurring is the first step in the extraction of various geomorphological fea-
tures, such as watersheds [15] and mountains [15, 16]. In general, it is observed that in
terrain modeling, Gaussian blurring causes the change in variation of spatial extent in a
time sequential mode. Analysis of a feature at varying scales over a duration of time allows
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(b)

Figure 5.2. Extraction of drainage networks from the original and smoothened DEMs of Great Basin.
(a) The drainage network extracted from original DEM. (b) The drainage network extracted from the
smoothened DEM.

for a greater amount of information to be extracted about the spatiotemporal character-
istics of the feature. At present, work is being carried out to perform the modeling of the
spatiotemporal organization of watersheds and mountains using Gaussian blurring.
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