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the feasibility of the main results.

Copyright q 2008 Yaoping Chen et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The aim of this paper is to investigate the dynamic behaviors of the following general discrete
nonautonomous system of plankton allelopathy with delay:

N1(k + 1) =N1(k) exp

[
r1(k) −

m∑
l=0

a1l(k)N1(k − l) −
m∑
l=0

b1l(k)N2(k − l)

−
m∑
l=0

c1l(k)N1(k)N2(k − l)
]
,

N2(k + 1) =N2(k) exp

[
r2(k) −

m∑
l=0

a2l(k)N2(k − l) −
m∑
l=0

b2l(k)N1(k − l)

−
m∑
l=0

c2l(k)N2(k)N1(k − l)
]

(1.1)
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together with the initial condition

Ni(−l) ≥ 0, Ni(0) > 0, i = 1, 2; l = 0, 1, . . . , m, (1.2)

where m is a positive integer, Ni(k) represent the densities of population i at the kth
generation, ri(k) are the intrinsic growth rate of population i at the kth generation, ail(k)
measure the intraspecific influence of the (k − l)th generation of population i on the density
of own population, bil(k) stand for the interspecific influence of the (k − l)th generation
of population i on the density of own population, and cil(k) stand for the effect of toxic
inhibition of population i by population j at the (k − l)th generation, i, j = 1, 2 and i /= j.
Also, {ri(k)}, {ail(k)}, {bil(k)} and {cil(k)} are all bounded nonnegative sequences defined
for k ∈N, denoted by the set of all nonnegative integers, and l ∈ {0, 1, . . . , m} such that

0 < rLi ≤ ri(k) ≤ rMi , 0 < aLil ≤ ail(k) ≤ aMil ,
0 < bLil ≤ bil(k) ≤ bMil , 0 < cLil ≤ cil(k) ≤ cMil ,

(1.3)

here, for any bounded sequence {f(k)}, define

fM = sup
k∈N

f(k), fL = inf
k∈N

f(k). (1.4)

As was pointed out by Chattopadhyay [1] the effects of toxic substances on ecological
communities are an important problem from an environmental point of view. Chattopadhyay
[1] and Maynard-Smith [2] proposed the following two species Lotka-Volterra competition
system, which describes the changes of size and density of phytoplankton:

dx1(t)
dt

= x1(t)
[
r1 − a11x1(t) − a12x2(t) − b1x1(t)x2(t)

]
,

dx2(t)
dt

= x2(t)
[
r2 − a21x1(t) − a22x2(t) − b2x1(t)x2(t)

]
,

(1.5)

where x1(t) and x2(t) denote the population density of two competing species at time t for a
common pool of resources. The terms b1x1(t)x2(t) and b2x1(t)x2(t) denote the effect of toxic
substances. Here, they made the assumption that each species produces a substance toxic to
the other, only when the other is present. Noticing that the production of the toxic substance
allelopathic to the competing species will not be instantaneous, but delayed by different
discrete time lags required for the maturity of both species, thus, Mukhopadhyay et al. [3]
also incorporated the discrete time delay into the above system. Tapaswi and Mukhopadhyay
[4] also studied a two-dimensional system that arises in plankton allelopathy involving
discrete time delays and environmental fluctuations. They assumed that the environmental
parameters are assumed to be perturbed by white noise characterized by a Gaussian
distribution with mean zero and unit spectral density. They focus on the dynamic behavior
of the stochastic system and the fluctuations in population. For more works on system (1.5),
one could refer to [1–3, 5–24] and the references cited therein.

Since the discrete time models governed by difference equations are more appropriate
than the continuous ones when the populations have nonoverlapping generations, and



Yaoping Chen et al. 3

discrete time models can also provide efficient computational models of continuous models
for numerical simulations, corresponding to system (1.5), Huo and Li [25] argued that it is
necessary to study the following discrete two species competition system:

x1(k + 1) = x1(k) exp
[
r1(k) − a11(k)x1(k) − a12(k)x2(k) − b1(k)x1(k)x2(k)

]
,

x2(k + 1) = x2(k) exp
[
r2(k) − a21(k)x1(k) − a22(k)x2(k) − b2(k)x1(k)x2(k)

]
,

(1.6)

where x1(k) and x2(k) are the population sizes of the two competitors at generation k, b1(k)
and b2(k) have respectively, shown that each species produces a toxic substance to the other
but the other only is present. In [25], sufficient conditions were obtained to guarantee the
permanence of the above system, they also investigated the existence and stability property of
the positive periodic solution of system (1.6). Recently, Li and Chen [26] further investigated
the dynamic behaviors of the system (1.6). For general nonatonomous case, they obtain a set
of sufficient conditions which guarantee the extinction of species x2 and the global stability of
species x1 when species x2 is eventually extinct. For periodic case, the other set of sufficient
conditions, which concerned with the average condition of the coefficients of he system, were
obtained to ensure the eventual extinction of species x2 and the global stability of positive
periodic solution of species x1 when species x2 is eventually extinct. For more works on
discrete population dynamics, one could refer to [7, 10, 25–45].

Liu and Chen [32] argued that for a more realistic model, both seasonality of the
changing environment and some of the past states, that is, the effects of time delays,
should be taken into account in a model of multiple species growth. They proposed
and studied the system (1.1), which is more general than system (1.6). By applying the
coincidence degree theory, they obtained a set of sufficient conditions for the existence
of at least one positive periodic solution of system (1.1)-(1.2). Zhang and Fang [46] also
investigated the periodic solution of the system (1.1), they showed that under some suitable
assumption, system (1.1) could admit at least two positive periodic solution. As we can
see, the works [32, 46] are all concerned with the positive periodic solution of the system.
However, since few things in the nature are really periodic, it is nature to study the general
nonautonomous system (1.1), in this case, it is impossible to study the periodic solution
of the system, however, such topics as permanence, extinction, and stability become the
most important things. In this paper, we will further investigate the dynamics behaviors
of the system (1.1). More precisely, by developing the analysis technique of Liu [31] and
Muroya [35, 36], we study the permanence, global attractivity and extinction of system
(1.1)-(1.2).

The organization of this paper is as follows. We study the persistence property of the
system in Section 2 and the stability property in Section 3. Then in Section 4, by constructing
a suitable Lyapunov functional, sufficient conditions which ensure the extinction of species
N2 of system (1.1)-(1.2) are studied. In Section 5, two examples together with their numeric
simulations show the feasibility of main results. For more relevant works, one could refer to
[2, 3, 5–9, 12, 13, 27–30, 33, 34, 37–45] and the references cited therein.

2. Permanence

In this section, we study the persistent property of system (1.1)-(1.2).
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Lemma 2.1. For any positive solution {(N1(k),N2(k))} of system (1.1)-(1.2),

lim sup
k→∞

Ni(k) ≤ Bi, i = 1, 2, (2.1)

where

Bi
def=

exp
(
rMi − 1

)
aLi0

, i = 1, 2. (2.2)

Proof. Let {(N1(k),N2(k))} be any positive solution of system (1.1)-(1.2), in view of the
system (1.1) for all k ∈N, we have

Ni(k + 1) ≤Ni(k) exp
[
ri(k) − ai0(k)Ni(k)

]
, i = 1, 2. (2.3)

Applying Lemma 2.1 of Yang [44] to (2.3), we can obtain

lim sup
k→∞

Ni(k) ≤
exp

(
rMi − 1

)
aLi0

def= Bi, i = 1, 2. (2.4)

This completes the proof of Lemma 2.1.

Lemma 2.2. Assume that

Δ11
def= rL1 −

m∑
l=1

aM1l B1 −
m∑
l=0

[
bM1l + c

M
1l B1

]
B2 > 0,

Δ21
def= rL2 −

m∑
l=1

aM2l B2 −
m∑
l=0

[
bM2l + c

M
2l B2

]
B1 > 0

(2.5)

hold, where B1 and B2 are defined in (2.2). Then for any positive solution {(N1(k),N2(k))} of system
(1.1)-(1.2),

lim inf
k→∞

Ni(k) ≥ Ai, i = 1, 2, (2.6)

where

Ai =
Δi1

aMi0
exp[Δi2], i = 1, 2,

Δ12 = rL1 −
m∑
l=0

aM1l B1 −
m∑
l=0

[
bM1l + c

M
1l B1

]
B2,

Δ22 = rL2 −
m∑
l=0

aM2l B2 −
m∑
l=0

[
bM2l + c

M
2l B2

]
B1.

(2.7)
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Proof. In view of (2.5), we can choose a constant ε > 0 small enough such that

rL1 −
m∑
l=1

aM1l
(
B1 + ε

) − m∑
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
> 0, (2.8)

rL2 −
m∑
l=1

aM2l
(
B2 + ε

) − m∑
l=0

[
bM2l + c

M
2l

(
B2 + ε

)](
B1 + ε

)
> 0. (2.9)

In view of (2.1), for above ε > 0, there exists an integer k0 ∈N such that

Ni(k) ≤ Bi + ε ∀k ≥ k0, i = 1, 2. (2.10)

We consider the following two cases.

Case (i). We assume that there exists an integer l0 ≥ k0 +m such that N1(l0 + 1) ≤N1(l0). Note
that

N1
(
l0 + 1

)
=N1

(
l0
)

exp

[
r1
(
l0
) − m∑

l=0

a1l
(
l0
)
N1

(
l0 − l

) − m∑
l=0

b1l
(
l0
)
N2

(
l0 − l

)

−
m∑
l=0

c1l
(
l0
)
N1

(
l0
)
N2

(
l0 − l

)]

≥N1
(
l0
)

exp

{
rL1 −

m∑
l=1

aM1l
(
B1 + ε

) − m∑
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

) − aM10N1
(
l0
)}

.

(2.11)

So we can obtain

rL1 −
m∑
l=1

aM1l
(
B1 + ε

) − m∑
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

) − aM10N1
(
l0
) ≤ 0. (2.12)

It follows from (2.8) that

N1
(
l0
) ≥ rL1 −∑m

l=1 a
M
1l

(
B1 + ε

) −∑m
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
aM10

> 0. (2.13)

Then we have

N1
(
l0 + 1

) ≥ rL1 −∑m
l=1 a

M
1l

(
B1 + ε

) −∑m
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
aM10

× exp

{
rL1 −

m∑
l=0

aM1l
(
B1 + ε

) − m∑
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)}
.

(2.14)
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Let

N1ε =
rL1 −∑m

l=1 a
M
1l

(
B1 + ε

) −∑m
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
aM10

× exp

{
rL1 −

m∑
l=0

aM1l
(
B1 + ε

) − m∑
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)}
.

(2.15)

Note that

B1 =
exp

(
rM1 − 1

)
aL10

≥ rM1
aL10

≥ rL1
aM10

, (2.16)

thus rL1 − aM10B1 ≤ 0, and so, for above ε > 0,

rL1 −
m∑
l=0

aM1l
(
B1 + ε

) − m∑
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
< rL1 − aM10

(
B1 + ε

)
< rL1 − aM10B1 ≤ 0

(2.17)

or

rL1 −∑m
l=1 a

M
1l

(
B1 + ε

) −∑m
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
aM10

≥N1ε. (2.18)

We can claim that

N1(k) ≥N1ε ∀k ≥ l0. (2.19)

By way of contradiction, assume that there exists an integer p0 ≥ l0 such that N1(p0) < N1ε.
Then p0 ≥ l0 + 2. Let p̃0 ≥ l0 + 2 be the smallest integer such that N1(p̃0) < N1ε. Then N1(p̃0 −
1) > N1(p̃0). The above argument produces that N1(p̃0) ≥ N1ε, a contradiction. Thus (2.19)
proved.

Case (ii). We assume that N1(k + 1) > N1(k) for all k ≥ k0 + m, then limk→∞N1(k) exists,
denoted by N1. We can claim that

N1 ≥ rL1 −∑m
l=1 a

M
1l

(
B1 + ε

) −∑m
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
aM10

. (2.20)

By the way of contradiction, assume that

N1 <
rL1 −∑m

l=1 a
M
1l

(
B1 + ε

) −∑m
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
aM10

. (2.21)
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Taking limit in the first equation of (1.1) gives

lim
k→∞

[
r1(k) −

m∑
l=0

a1l(k)N1(k − l) −
m∑
l=0

b1l(k)N2(k − l) −
m∑
l=0

c1l(k)N1(k)N2(k − l)
]
= 0,

(2.22)

which is a contradiction since

lim
k→∞

[
r1(k) −

m∑
l=0

a1l(k)N1(k − l) −
m∑
l=0

b1l(k)N2(k − l) −
m∑
l=0

c1l(k)N1(k)N2(k − l)
]

≥ rL1 −
m∑
l=1

aM1l
(
B1 + ε

) − aM10N1 −
m∑
l=0

[
bM1l + c

M
1l

(
B1 + ε

)](
B2 + ε

)
> 0.

(2.23)

The claim is thus proved.
From (2.20), we see that

N1 ≥N1ε. (2.24)

Combining Cases (i) and (ii), we see that

lim inf
k→∞

N1(k) ≥N1ε. (2.25)

Setting ε → 0, it follows that

lim
ε→ 0

N1ε =
Δ11

aM10

exp
{
Δ12

} def= A1. (2.26)

So we can easily see that

lim inf
k→∞

N1(k) ≥ A1. (2.27)

From the second equation of (1.1), similar to above analysis, we have

lim inf
k→∞

N2(k) ≥ A2, (2.28)

where A2 is defined in (2.6). This completes the proof of Lemma 2.2.

It immediately follows from Lemmas 2.1 and 2.2 that the following theorem holds.

Theorem 2.3. Assume that (2.5) hold, then system (1.1)-(1.2) is permanent.
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3. Global attractivity

This section devotes to study the stability property of the positive solution of system (1.1)-
(1.2).

Theorem 3.1. Assume that there exists a constant η > 0 such that

min
{
aLi0,

2
Bi

− aMi0
}
−

2∑
j=1, j /= i

[
m∑
l=1

aMil + (m + 1)
(
bMj + 2BjcM

)]
> η, i = 1, 2, (H0)

where, for i, j = 1, 2, i /= j, Bi and Bj are defined in (2.2),

bMj = max
{
bM
jl

: l = 0, 1, . . . , m
}
, cMi = max

{
cM
il

: l = 0, 1, . . . , m
}
,

cM = max
{
cMi : i = 1, 2

}
,

(3.1)

then for any two positive solutions {(N1(k),N2(k))} and {(N∗
1(k),N

∗
2(k))} of system (1.1)-(1.2),

lim
k→∞

(
Ni(k) −N∗

i (k)
)
= 0, i = 1, 2. (3.2)

Proof. First, let

V11(k) =
∣∣ lnN1(k) − lnN∗

1(k)
∣∣. (3.3)

Then from the first equation of (1.1), we have

V11(k + 1) =
∣∣ lnN1(k + 1) − lnN∗

1(k + 1)
∣∣

≤ ∣∣ lnN1(k) − lnN∗
1(k) − a10(k)

[
N1(k) −N∗

1(k)
]∣∣+ m∑

l=1

a1l(k)
∣∣N1(k − l) −N∗

1(k − l)∣∣

+
m∑
l=0

b1l(k)
∣∣N2(k − l) −N∗

2(k − l)∣∣ + m∑
l=0

c1l(k)
∣∣N1(k)N2(k − l) −N∗

1(k)N
∗
2(k − l)∣∣.

(3.4)

Noticing that by mean-value theory

∣∣ lnN1(k) − lnN∗
1(k)

∣∣ = 1
θ1(k)

∣∣N1(k) −N∗
1(k)

∣∣, (3.5)
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where 0 < θ1(k) ≤ max{N1(k),N∗
1(k)}. Then

∣∣ lnN1(k) − lnN∗
1(k) − a10(k)

[
N1(k) −N∗

1(k)
]∣∣

=
∣∣ lnN1(k) − lnN∗

1(k)
∣∣ − ∣∣ lnN1(k) − lnN∗

1(k)
∣∣

+
∣∣ lnN1(k) − lnN∗

1(k) − a10(k)
[
N1(k) −N∗

1(k)
]∣∣

=
∣∣ lnN1(k) − lnN∗

1(k)
∣∣ −(

1
θ1(k)

−
∣∣∣∣ 1
θ1(k)

− a10(k)
∣∣∣∣
)∣∣N1(k) −N∗

1(k)
∣∣.

(3.6)

Substituting (3.6) into (3.4) leads to

V11(k + 1) ≤ ∣∣ lnN1(k) − lnN∗
1(k)

∣∣ −(
1

θ1(k)
−
∣∣∣∣ 1
θ1(k)

− a10(k)
∣∣∣∣
)∣∣N1(k) −N∗

1(k)
∣∣

+
m∑
l=1

a1l(k)
∣∣N1(k − l) −N∗

1(k − l)∣∣ + m∑
l=0

b1l(k)
∣∣N2(k − l) −N∗

2(k − l)∣∣

+
m∑
l=0

c1l(k)
∣∣N1(k)N2(k − l) −N∗

1(k)N
∗
2(k − l)∣∣.

(3.7)

So it follows that

ΔV11 ≤ −
(

1
θ1(k)

−
∣∣∣∣ 1
θ1(k)

− a10(k)
∣∣∣∣
)∣∣N1(k) −N∗

1(k)
∣∣

+
m∑
l=1

a1l(k)
∣∣N1(k − l) −N∗

1(k − l)∣∣ + m∑
l=0

b1l(k)
∣∣N2(k − l) −N∗

2(k − l)∣∣

+
m∑
l=0

c1l(k)
∣∣N1(k)N2(k − l) −N∗

1(k)N
∗
2(k − l)∣∣.

(3.8)

According to (2.1), for any constant ε > 0, there exists an integer k0 ∈N such that

N1(k) ≤ B1 + ε, N2(k) ≤ B2 + ε ∀k ≥ k0. (3.9)

So for all k ≥ k0 +m, l = 0, 1, . . . , m, it follows that

∣∣N1(k)N2(k − l) −N∗
1(k)N

∗
2(k − l)∣∣

=
∣∣N1(k)N2(k − l) −N1(k)N∗

2(k − l) +N1(k)N∗
2(k − l) −N∗

1(k)N
∗
2(k − l)∣∣

=
∣∣N1(k)

[
N2(k − l) −N∗

2(k − l)] +N∗
2(k − l)[N1(k) −N∗

1(k)
]∣∣

≤ (
B1 + ε

)∣∣N2(k − l) −N∗
2(k − l)∣∣ + (

B2 + ε
)∣∣N1(k) −N∗

1(k)
∣∣.

(3.10)
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So for all k ≥ k0 +m, it follows from (3.4) that

ΔV11≤ −
(

1
θ1(k)

−
∣∣∣∣ 1
θ1(k)

− a10(k)
∣∣∣∣ −

m∑
l=0

(
B2 + ε

)
c1l(k)

)∣∣N1(k) −N∗
1(k)

∣∣

+
m∑
l=1

a1l(k)
∣∣N1(k − l) −N∗

1(k − l)∣∣ + m∑
l=0

[
b1l(k) +

(
B1 + ε

)
c1l(k)

]∣∣N2(k − l) −N∗
2(k − l)∣∣.

(3.11)

Next, let

V12(k) =
m∑
l=1

k−1∑
s=k−l

a1l(s + l)
∣∣N1(s) −N∗

1(s)
∣∣

+
m∑
l=0

k−1∑
s=k−l

[
b1l(s + l) +

(
B1 + ε

)
c1l(s + l)

]∣∣N2(s) −N∗
2(s)

∣∣,
(3.12)

and we can obtain

ΔV12 = V12(k + 1) − V12(k)

=
m∑
l=1

k∑
s=k+1−l

a1l(s + l)
∣∣N1(s) −N∗

1(s)
∣∣ − m∑

l=1

k−1∑
s=k−l

a1l(s + l)
∣∣N1(s) −N∗

1(s)
∣∣

+
m∑
l=0

k∑
s=k+1−l

[
b1l(s + l) +

(
B1 + ε

)
c1l(s + l)

]∣∣N2(s) −N∗
2(s)

∣∣

−
m∑
l=0

k−1∑
s=k−l

[
b1l(s + l) +

(
B1 + ε

)
c1l(s + l)

]∣∣N2(s) −N∗
2(s)

∣∣

=
m∑
l=1

a1l(k + l)
∣∣N1(k) −N∗(k)

∣∣ − m∑
l=1

a1l(k)
∣∣N1(k − l) −N∗

1(k − l)∣∣

+
m∑
l=0

[
b1l(k + l) +

(
B1 + ε

)
c1l(k + l)

]∣∣N2(k) −N∗
2(k)

∣∣

−
m∑
l=0

[
b1l(k) +

(
B1 + ε

)
c1l(k)

]∣∣N2(k − l) −N∗
2(k − l)∣∣.

(3.13)

Now, we define V1 by

V1(k) = V11(k) + V12(k). (3.14)
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So for all k ≥ k0 +m, it follows from (3.6) and (3.9) that

ΔV1 = ΔV11 + ΔV12

≤ −
(

1
θ1(k)

−
∣∣∣∣ 1
θ1(k)

− a10(k)
∣∣∣∣ −

m∑
l=0

(
B2 + ε

)
c1l(k) −

m∑
l=1

a1l(k + l)

)∣∣N1(k) −N∗
1(k)

∣∣

+
m∑
l=0

[
b1l(k + l) +

(
B1 + ε

)
c1l(k + l)

]∣∣N2(k) −N∗
2(k)

∣∣.
(3.15)

Similar to above arguments, we can define

V2(k) = V21(k) + V22(k), (3.16)

where

V21(k) =
∣∣ lnN2(k) − lnN∗

2(k)
∣∣,

V22(k) =
m∑
l=1

k−1∑
s=k−l

a2l(s + l)
∣∣N2(s) −N∗

2(s)
∣∣

+
m∑
l=0

k−1∑
s=k−l

[
b2l(s + l) +

(
B2 + ε

)
c2l(s + l)

]∣∣N1(s) −N∗
1(s)

∣∣.
(3.17)

Then for all k ≥ k0 +m, we can obtain

ΔV2 = ΔV21 + ΔV22

≤ −
(

1
θ2(k)

−
∣∣∣∣ 1
θ2(k)

− a20(k)
∣∣∣∣ −

m∑
l=0

(
B1 + ε

)
c2l(k) −

m∑
l=1

a2l(k + l)

)∣∣N2(k) −N∗
2(k)

∣∣

+
m∑
l=0

[
b2l(k + l) +

(
B2 + ε

)
c2l(k + l)

]∣∣N1(k) −N∗
1(k)

∣∣,
(3.18)

where θ2(k) lies between N2(k) and N∗
2(k).

Now, we define V by

V (k) = V1(k) + V2(k). (3.19)
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It is easy to see that V (k) ≥ 0 for all k ∈ Z and V (k0 +m) < +∞. For the arbitrariness of ε > 0
and by (H0), we can choose ε > 0 small enough such that for i = 1, 2,

min
{
aLi0,

2
Bi + ε

− aMi0
}
−

2∑
j=1,j /= i

[
m∑
l=1

ail(k + l) + (m + 1)
(
bMj + 2

(
Bj + ε

)
cM

)]
> η. (3.20)

So for all k ≥ k0 +m, it follows from (3.15) and (3.18) that

ΔV ≤ −
2∑
i=1

{
1

θi(k)
−
∣∣∣∣ 1
θi(k)

− ai0(k)
∣∣∣∣

−
2∑

j=1,j /= i

[
m∑
l=1

ail(k + l) +
m∑
l=0

[
bjl(k + l) +

(
Bj + ε

)(
cil(k) + cjl(k + l)

)]]}

× ∣∣Ni(k) −N∗
i (k)

∣∣
≤ −

2∑
i=1

{
min

{
aLi0,

2
Bi + ε

− aMi0
}
−

2∑
j=1,j /= i

[
m∑
l=1

ail(k + l) + (m + 1)
(
bMj + 2

(
Bj + ε

)
cM

)]}

× ∣∣Ni(k) −N∗
i (k)

∣∣
≤ −η

2∑
i=1

∣∣Ni(k) −N∗
i (k)

∣∣,
(3.21)

So we have

k∑
p=k0+m

[
V (p + 1) − V (p)

] ≤ −η
k∑

p=k0+m

2∑
i=1

∣∣Ni(p) −N∗
i (p)

∣∣, (3.22)

which implies

V (k + 1) + η
k∑

p=k0+m

2∑
i=1

∣∣Ni(p) −N∗
i (p)

∣∣ ≤ V (
k0 +m

)
. (3.23)

It follows that

k∑
p=k0+m

2∑
i=1

∣∣Ni(p) −N∗
i (p)

∣∣ ≤ V
(
k0 +m

)
η

. (3.24)

Then

∞∑
k=k0+m

2∑
i=1

∣∣Ni(k) −N∗
i (k)

∣∣ ≤ V
(
k0 +m

)
η

< +∞, (3.25)
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which implies that limk→∞
∑2

i=1|Ni(k) −N∗
i (k)| = 0, that is,

lim
k→∞

(
Ni(k) −N∗

i (k)
)
= 0, i = 1, 2. (3.26)

This completes the proof of Theorem 3.1.

4. Extinction of species N2

This section devotes to study the extinction of the species N2.

Lemma 4.1. For any positive solution {(N1(k),N2(k))} of system (1.1)-(1.2), there exists a
constant σ > 0 such that

lim inf
k→+∞

[
N1(k) +N2(k)

]
> σ. (4.1)

Proof. By (2.1), there exists a constant B > 0 such that

Ni(k) < B ∀k > k0, i = 1, 2. (4.2)

In view of (1.1) for all k > k0 +m, i = 1, 2, it follows that

Ni(k) ≤Ni(k + 1) exp

{
− rLi +

m∑
l=0

(
aMil + bMil + cMil B

)
B

}
. (4.3)

So we have

Ni(k − l) ≤Ni(k) exp

{
l

[
− rLi +

m∑
l=0

(
aMil + bMil + cMil B

)
B

]}
, l = 0, 1, . . . , m. (4.4)

Let

C1 = max

{
exp

{
l

[
− rLi +

m∑
l=0

(
aMil + bMil + cMil B

)
B

]}
: i = 1, 2, l = 0, 1, . . . , m

}
,

C2 = max
{
dMil C1 : i = 1, 2, l = 0, 1, . . . , m

}
,

(4.5)



14 Discrete Dynamics in Nature and Society

where dMil = max{aMil , bMil + cMil B}, i = 1, 2, l = 0, 1, . . . , m. For all k > k0 +m, i, j = 1, 2, i /= j, it
follows from (1.1) and (4.4) that

Ni(k + 1) ≥Ni(k) exp

{
rLi −

m∑
l=0

aMil C1Ni(k) −
m∑
l=0

(
bMil + cMil B

)
C1Nj(k)

}

≥Ni(k) exp

{
rLi −

m∑
l=0

dMil C1
[
Ni(k) +Nj(k)

]}

≥Ni(k) exp
{

min
{
rL1 , r

L
2
} − (m + 1)C2

[
N1(k) +N2(k)

]}
,

(4.6)

so we have

N1(k + 1) +N2(k + 1) ≥ [
N1(k) +N2(k)

]
exp

{
min

{
rL1 , r

L
2
} − (m + 1)C2

[
N1(k) +N2(k)

]}
.

(4.7)

Let x(k) =N1(k) +N2(k), then we have

x(k + 1) ≥ x(k) exp
{

min
{
rL1 , r

L
2
} − (m + 1)C2x(k)

}

= x(k) exp

{
min

{
rL1 , r

L
2
}[

1 − (m + 1)C2

min
{
rL1 , r

L
2

}x(k)
]}

def= x(k) exp
{
r
[
1 − ax(k)]}.

(4.8)

Note that for all k > k0, x(k) = N1(k) +N2(k) < 2B, so similar to the proof of Lemma 2.2 of
Chen [27], we have

lim inf
k→+∞

x(k) ≥ 1
a

exp
{
r(1 − 2aB)

}
> 0. (4.9)

Then, there is a positive constant σ > 0 such that

lim inf
k→+∞

[
N1(k) +N2(k)

]
= lim inf

k→+∞
x(k) ≥ 1

a
exp

{
r(1 − 2aB)

}
> σ. (4.10)

This completes the proof of Lemma 4.1.

Theorem 4.2. Assume that

m∑
l=0

[
rL1 b

L
2l − rM2 aM1l

]
> 0,

m∑
l=0

[
rL1 a

L
2l − rM2

(
bM1l + c

M
1l B1

)]
> 0, (H1)

where B1 is defined in (2.2). Let {(N1(k),N2(k))} be any positive solution of system (1.1)-(1.2), then
N2(k) → 0 as k → +∞.
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Corollary 4.3. Assume that for all l = 0, 1, . . . , m, the following inequalities

rM2
rL1

− min

{
bL2l

aM1l
,

aL2l

bM1l + c
M
1l B1

}
< 0 (H∗

1)

hold, where B1 is defined in (2.2). Let {(N1(k),N2(k))} be any positive solution of system (1.1)-(1.2),
thenN2(k) → 0 as k → +∞.

Proof of Corollary 4.3. Obviously, if condition (H∗
1) holds, one could easily see that condition

(H1) holds, thus, the conclusion of Corollary 4.3 follows from Theorem 4.2. The proof is
complete.

Proof of Theorem 4.2. It follows from (H1) that we can choose a constant ε > 0 small enough
such that

m∑
l=0

[
rL1 b

L
2l − rM2 aM1l

]
> 0,

m∑
l=0

[
rL1 a

L
2l − rM2

(
bM1l + c

M
1l

(
B1 + ε

))]
> 0. (4.11)

Set

Δε = min

{
m∑
l=0

[
rL1 b

L
2l − rM2 aM1l

]
,
m∑
l=0

[
rL1 a

L
2l − rM2

(
bM1l + c

M
1l

(
B1 + ε

))]}
> 0. (4.12)

For above ε > 0 from (2.1), there is an integer K ∈N such that for i = 1, 2,

Ni(k) ≤ Bi + ε ∀k > K. (4.13)

Lemma 4.1 also implies that there exists K1 > K such that

N1(k) +N2(k) ≥ σ

2
∀k ≥ K1. (4.14)

Set

u(k) =
N

rL1
2 (k)

N
rM2
1 (k)

exp

{
−

m∑
l=0

k−1∑
s=k−l

rL1
[
aL2lN2(s) + bL2lN1(s)

]

+
m∑
l=0

k−1∑
s=k−l

rM2
[
aM1l N1(s) + bM1l N2(s) + cM1l

(
B1 + ε

)
N2(s)

]}
.

(4.15)
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So for all k > K2 > K1 +m, it follows from (1.1), (4.13), and (4.14) that

u(k + 1)
u(k)

= exp

{
rL1 r2(k) −

m∑
l=0

rL1
[
a2l(k)N2(k − l) + b2l(k)N1(k − l) + c2l(k)N2(k)N1(k − l)]

− rM2 r1(k) +
m∑
l=0

rM2
[
a1l(k)N1(k − l) + b1l(k)N2(k − l) + c1l(k)N1(k)N2(k − l)]

−
m∑
l=0

k∑
s=k+1−l

rL1
[
aL2lN2(s) + bL2lN1(s)

]
+

m∑
l=0

k−1∑
s=k−l

rL1
[
aL2lN2(s) + bL2lN1(s)

]

+
m∑
l=0

k∑
s=k+1−l

rM2
[
aM1l N1(s) + bM1l N2(s) + cM1l

(
B1 + ε

)
N2(s)

]

−
m∑
l=0

k−1∑
s=k−l

rM2
[
aM1l N1(s) + bM1l N2(s) + cM1l

(
B1 + ε

)
N2(s)

]}

= exp

{[
rL1 r2(k) − rM2 r1(k)

]

−
m∑
l=0

rL1
[(
a2l(k) − aL2l

)
N2(k − l) + (

b2l(k) − bL2l
)
N1(k − l)]

−
m∑
l=0

rL1 c2l(k)N2(k)N1(k − l)

−
m∑
l=0

rM2
[(
aM1l − a1l(k)

)
N1(k − l) + (

bM1l − b1l(k)
)
N2(k − l)

+
(
cM1l

(
B1 + ε

) − c1l(k)N1(k)
)
N2(k − l)]

−
m∑
l=0

[
rL1 b

L
2l − rM2 aM1l

]
N1(k) −

m∑
l=0

[
rL1 a

L
2l − rM2 bM1l − rM2 cM1l

(
B1 + ε

)]
N2(k)

}

≤ exp

{
−

m∑
l=0

[
rL1 b

L
2l − rM2 aM1l

]
N1(k) −

m∑
l=0

[
rL1 a

L
2l − rM2 bM1l − rM2 cM1l

(
B1 + ε

)]
N2(k)

}
.

≤ exp
{ −Δε(N1(k) +N2(k)

)}
≤ exp

{
−Δε σ

2

}
.

(4.16)

That is, for all k > K2,

u(k) ≤ u(k2) exp
{
−Δε σ

2
(
k −K2

)}
. (4.17)
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So from the definition of u(k) it follows that

N
rL1
2 (k) ≤NrM2

1 (k) exp

{
m∑
l=0

k−1∑
s=k−l

rL1
[
aL2lN2(s) + bL2lN1(s)

]

−
m∑
l=0

k−1∑
s=k−l

rM2
[
aM1l N1(s) + bM1l N2(s) + cM1l

(
B1 + ε

)
N2(s)

]}

× exp
{
−Δε σ

2
(
k −K2

)}

≤ (
2B1

)rM2 exp

{
m∑
l=0

k−1∑
s=k−l

2rL1
[
aL2lB2 + bL2lB1

]

+
m∑
l=0

k−1∑
s=k−l

2rM2
[
aM1l B1 + bM1l B2 + cM1l

(
B1 + ε

)
B2

]}

× exp
{
−Δε σ

2
(
k −K2

)} −→ 0 as k −→ +∞.

(4.18)

The above analysis shows that

lim
k→∞

N2(k) = 0. (4.19)

This completes the proof of Theorem 4.2.

5. Examples

The following two examples show the feasibility of our results.

Example 5.1. Consider the following system

N1(k + 1) =N1(k) exp
[
1.4 − (

2.52 + 0.02 sin(k)
)
N1(k) − 0.5N1(k − 1)

− 0.55N2(k) − 0.3N2(k − 1)

− 0.1N1(k)N2(k) − 0.09N1(k)N2(k − 1)
]
,

N2(k + 1) =N2(k) exp
[
0.7 − (

2.62 + 0.02 sin(k)
)
N2(k) − 1.2N2(k − 1)

− 0.01N1(k) − 0.01N1(k − 1)

− 0.09N1(k)N2(k) − 0.1N2(k)N1(k − 1)
]
.

(5.1)
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Figure 1: Dynamic behaviors of the species N1 of system (5.1) with initial conditions (N1(p),N2(p)) =
(0.42, 0.175), (0.41, 0.178), and (0.4, 0.18), p = −1, 0.

One could easily see that

Δ11 = rL1 − aM11B1 −
1∑
l=0

[
bM1l + c

M
1l B1

]
B2 ≈ 0.8271394917 > 0,

Δ21 = rL2 − aM21B2 −
1∑
l=0

[
bM2l + c

M
2l B2

]
B1 ≈ 0.3138443044 > 0.

(5.2)

Clearly, conditions (2.5) are satisfied. From Theorem 2.3, it follows that system (5.1) is
permanent. Also, by simple computation, we have

min
{
aL10,

2
B1

− aM10

}
− [

aM11 + 2
(
bM2 + 2B2c

M)] ≈ 0.1776281960,

min
{
aL20,

2
B2

− aM20

}
− [

aM21 + 2
(
bM1 + 2B1c

M)] ≈ 0.613080483.

(5.3)

The above inequality shows that (H0) is fulfilled. From Theorem 3.1, it follows that

lim
k→∞

(
Ni(k) −N∗

i (k)
)
= 0, i = 1, 2. (5.4)

Figures 1 and 2 are the numeric simulations of the solution of system (5.1) with initial
condition (N1(k),N2(k)) = (0.42, 0.175), (0.41, 0.178), and (0.4, 0.18), k = −1, 0.
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Figure 2: Dynamic behaviors of the species N2 of system (5.1) with initial conditions (N1(k),N2(k)) =
(0.42, 0.175), (0.41, 0.178), and (0.4, 0.18), k = −1, 0.

Example 5.2. Consider the following system:

N1(k + 1) =N1(k) exp
[
1.4 − (

1.5 + 0.2 sin(k)
)
N1(k) − 0.9N1(k − 1)

− (
0.3 + 0.2 sin(k)

)
N2(k) − 0.5N2(k − 1)

− (
0.4 + 0.1 cos(k)

)
N1(k)N2(k) − 0.4N1(k)N2(k − 1)

]
,

N2(k + 1) =N2(k) exp
[
0.7 − (

1.1 + 0.5 sin(k)
)
N2(k) − 0.5N2(k − 1)

− (
1.1 + 0.2 cos(k)

)
N1(k) − 0.7N1(k − 1)

− 2.3N1(k)N2(k) − 0.4N2(k)N1(k − 1)
]
.

(5.5)

One could easily see that

rM2
rL1

=
0.7
1.4

= 0.5,

bL20

aM10

=
0.9
1.7

≈ 0.5294,
aL20

bM10 + cM10B1
≈ 0.6

0.5 + 0.5 × 1.1476
≈ 0.5588,

bL21

aM11

=
0.7
0.9

≈ 0.7778,
aL21

bM11 + cM11B1
≈ 0.5

0.5 + 0.4 × 1.1476
≈ 0.5214.

(5.6)

Then, for l = 0, 1,

rM2
rL1

− min

{
bL2l

aM1l
,

aL2l

bM1l + c
M
1l B1

}
< 0. (5.7)
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Figure 3: Dynamic behaviors of the species N2 of system (5.5) with initial conditions (N1(k),N2(k)) =
(0.42, 0.6), (k = −1, 0), respectively.

The above inequality shows that (H∗
1) is fulfilled. From Theorem 4.2, it follows that

limk→∞N2(k) = 0. Numeric simulation of the dynamic behaviors of system (5.5) with the
initial conditions (N1(k),N2(k)) = (0.42, 0.6), (k = −1, 0) is presented in Figure 3.

Remark 5.3. In the above two examples, we can take sin(k), cos(k) as the perturbation terms.
Our numeric simulations show that if the perturbation terms are large enough, then those
terms will greatly influence the dynamic behaviors of the system, and in some cases, may
lead to the extinction of the species.
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