
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2009, Article ID 315713, 28 pages
doi:10.1155/2009/315713

Research Article
Stability Results of a Class of Hybrid
Systems under Switched Continuous-Time
and Discrete-Time Control

M. De la Sen1 and A. Ibeas2

1 Department of Electricity and Electronics, Faculty of Science and Technology,
University of the Basque Country, Campus of Leioa (Bizkaia), Aptdo, 644-Bilbao, Spain

2 Department of Telecommunication and Systems Engineering, Engineering School,
Autonomous University of Barcelona, Cerdanyola del Vallés, Bellaterra, 08193 Barcelona, Spain

Correspondence should be addressed to M. De la Sen, manuel.delasen@ehu.es

Received 6 November 2008; Revised 5 March 2009; Accepted 24 March 2009

Recommended by Antonia Vecchio

This paper investigates the stability properties of a class of switched systems possessing several
linear time-invariant parameterizations (or configurations) which are governed by a switching
law. It is assumed that the parameterizations are stabilized individually via an appropriate
linear state or output feedback stabilizing controller whose existence is first discussed. A main
novelty with respect to previous research is that the various individual parameterizations
might be continuous-time, discrete-time, or mixed so that the whole switched system is a
hybrid continuous/discrete dynamic system. The switching rule governs the choice of the
parameterization which is active at each time interval in the switched system. Global asymptotic
stability of the switched system is guaranteed for the case when a common Lyapunov function
exists for all the individual parameterizations and the sampling period of the eventual discretized
parameterizations taking part of the switched system is small enough. Some extensions are
also investigated for controlled systems under decentralized or mixed centralized/decentralized
control laws which stabilize each individual active parameterization.

Copyright q 2009 M. De la Sen and A. Ibeas. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The stabilization of dynamic systems is a very important question since it is the first
requirement for most of applications. Powerful techniques for studying the stability of
dynamic systems are Lyapunov stability theory and fixed point theory. Those techniques can
be easily extended from the linear time-invariant case to the time-varying one as well as to
functional differential equations as those arising, for instance, from the presence of internal
delays, and to certain classes of nonlinear systems, [1, 2]. Dynamic systems which are of

mailto:manuel.delasen@ehu.es


2 Discrete Dynamics in Nature and Society

increasing interest are the so-called switched systems which consist of a set of individual
parameterizations and a switching law which selects along time which parameterization is
active. Switched systems are essentially time-varying by nature even if all the individual
parameterizations are time-invariant. The interest of such systems arises from the fact that
some existing systems in the real world modify their parameterizations to better adapt to their
environments. Another important interest relies on the fact that changes of parameterizations
through time can lead to benefits in certain applications [3–13]. The natural way of modelling
these situations lies in the definition of appropriate switched dynamic systems. For instance,
the asymptotic stability of Liénard-type equations with Markovian switching is investigated
in [4, 5]. Also, time-delay dynamic systems are very important in the real life for appropriate
modelling of certain biological and ecology systems and they are present in physical
processes implying diffusion, transmission, teleoperation, population dynamics, war and
peace models, and so forth (see, e.g., [1, 2, 12–18].)

A switched system can also be associated with the use of a multimodel scheme, a
multicontroller scheme, a buffer system or a multiestimation scheme. For instance, a non
exhaustive list of papers with deal with some of these questions related to switched systems
follow.

(1) In [15], the problem of delay-dependent stabilization for singular systems with
multiple internal and external incommensurate delays is focused on. Multiple
memory-less state-feedback controls are designed so that the resulting closed-loop
system is regular independent of delays, impulse-free, and asymptotically stable.

(2) In [19], the problem of the N-buffer switched flow networks is discussed based on
a theorem on positive topological entropy.

(3) In [20], a multimodel scheme is used for the regulation of the transient regime
occurring between stable operation points of a tunnel diode-based triggering
circuit.

(4) In [21, 22], a parallel multiestimation scheme is derived to achieve close-loop
stabilization in robotic manipulators whose parameters are not perfectly known.
The multiestimation scheme allows the improvement of the transient regime
compared to the use of a single estimation scheme while achieving at the same
time closed-loop stability.

(5) In [23], a parallel multiestimation scheme allows the achievement of an order
reduction of the system prior to the controller synthesis so that this one is of
reduced-order (then less complex) while maintaining closed-loop stability.

(6) In [24], the stabilization of switched dynamic systems is discussed through
topologic considerations via graph theory.

(7) The stability of different kinds of switched systems subject to delays has been
investigated in [11–13, 17].

(8) The stability switch and Hopf bifurcation for a diffusive prey-predator system is
discussed in [6] in the presence of delay.

(9) A general theory with discussed examples concerning dynamic switched systems
is provided in [3].
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The main objectives of this manuscript are as follows.

(a) To investigate the validity of Lyapunov functions of continuous-time systems after
their discretization through zero-order holds under a sufficiently small-sampling
period.

(b) To incorporate as individual parameterizations continuous-time and discrete-
time parameterizations, and even discretized versions of certain continuous-time
parameterizations, which remain as valid discrete-time parameterizations of the
whole switched system. If all those parameterizations share a common Lyapunov
function then the switched system is proved to be stable under arbitrary switching.
It turns out that the switched system lies in the class of hybrid switched controlled
systems due to the capability of mixing distinct continuous-time and discrete-
time controlled parameterizations through time while guaranteeing closed-loop
stability. In this context, the configuration of the general switched system is novel
related to previous configurations on the subject dealt with in the literature.

(c) To investigate centralized/decentralized stabilizing control laws for a switched
system of the above class.

The paper is organized as follows. Section 2 discusses the existence of a common
Lyapunov function for a linear continuous-time parameterization and its discretized
counterpart under sufficiently small-sampling period. It is then discussed in Section 3
the global asymptotic stability and stabilization for a switched system consisting of
a set of continuous-time and discrete-time parameterizations which share a common
Lyapunov function. The stabilizing controllers are assumed to be either of linear state-
feedback type or output-feedback type. Firstly, their existence is discussed under standard
assumptions of controllability and either observability or stabilizability for the individual
parameterizations.

The switched system lies in a class of linear hybrid switched systems since the
various individual parameterizations as well as their associate controllers may be either
continuous-time or discrete-time or even mixed, and operating as potentially active, in the
whole switched system. The feedback controller has the form u(t) = Kσ(t)v(t) where the
discrete map σ : R0+ → N governs the selection of the controller matrix values for the
next time interval [tk, tk+1) where the current controller parameterization is active. If the
whole controlled system is hybrid then v : R0+ → Rn is defined by v(t) = z(t) ∨ z(tk)
and z(t) is either the sate or output vectors of the dynamic system. If the controller
parameterization is the discretization of a continuous one then tk+1 = tk + hk, where hk
is a sufficiently small, in general time-varying, sampling period. The sampling period is
required to be sufficiently small in order that the discretized parameterizations would be
able to share a common Lyapunov function with the continuous-time ones according to
previous mathematical proofs in Section 2. Section 4 extends the results of Sections 2 and
3 to the synthesis of decentralized controllers for a switched system composed of coupled
linear subsystems. In general, the decentralized controller is not purely decentralized in the
sense that some couplings between distinct subsystems are allowed to exist and the related
information is used by both controllers to synthesize the control law. At the same time,
the use of centralized controllers for some of the subsystems is also allowed. The case of
synthesizing purely decentralized controllers is also discussed. Some examples are discussed
in Section 5.
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1.1. Notation

C, R, and Z are the sets of complex, real, and integer numbers, respectively.
R+ and Z+ are the sets of positive real and integer numbers, respectively, and C+ is the

set of complex numbers with positive real part.
C0+ := C+

⋃
{iω : ω ∈ R}, where i is the complex unity, R0+ := R+

⋃
{0} and Z0+ :=

Z+
⋃
{0}.

R− and Z− are the sets of negative real and integer numbers, respectively, and C− is the
set of complex numbers with negative real part.

C0− := C−
⋃
{iω : ω ∈ R}, where i is the complex unity, R0− := R−

⋃
{0} and Z0− :=

Z−
⋃
{0}.
N := {1, 2, . . . ,N} ⊂ Z0+, “∨” is the logic disjunction, and “∧” is the logic conjunction.

[t/h] is the integer part of the rational quotient t/h and S \ E := S − (S
⋂
E) for any given sets

S and E.
P > 0, P ≥ 0, P < 0, and P ≤ 0 denote, respectively, that the square matrix P is positive

definite, positive semidefinite, negative definite, and negative semidefinite.
σ(M) denotes the spectrum of a real matrix M (i.e., its set of distinct eigenvalues)

and s(M) =
√
λmax(MTM) and s(M) = s(M−1) if M−1 exists and s(M) = 0, otherwise, are,

respectively, the maximum and minimum singular values of M, where MT is the conjugate
transpose ofM.MT is replaced by the complex conjugate transposeM∗ ofM ifM is complex.
λmax(MTM) is the maximum eigenvalue of MTM.

‖M‖p is the �p-norm of the real or complex matrix M and μp(M) denotes its �p-matrix
measure.

In is the nth identity matrix.
X ⊗ Y := (xijY ) is the Kronecker product of the matrices X = (xij) of entries xij and Y .

If xi(i ∈ n) is the ith column of the matrix XT := (x1, x2, . . . , xn) then the vectorization of the
matrix X is defined by vec (X) := (xT1 , x

T
2 , . . . , x

T
n)

T .
ZOH is an acronym for a zero-order-hold device.
Assume that (Ai, Bi, Ci) are system, control and output matrices of N linear time-

invariant systems. A switching law among the above systems is a piecewise constant function
σ : R0+ → N. The set of switching instants of the switching law σ : R0+ → N is a strictly
ordered sequence SIσ := {ti}i∈Z0+

which verifies σ(t+i )/=σ(t
−
i ) ≡ σ(ti) for the sake of notational

abbreviation. The continuous-time switched system obtained via σ : R0+ → N from the
parameterizations (Ai, Bi, Ci), i ∈N is

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t); y(t) = Cσ(t)x(t), (1.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are, respectively, the state, input and output vectors
and Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×m are the matrices of dynamics, control, and output for the
ith parameterization; for all i ∈ N and Aσ : R0+ → {Ai : i ∈ N}, Bσ : R0+ → {Bi : i ∈ N} and
Cσ : R0+ → {Ci : i ∈N} define the switched system (1.1) for the switching law σ : R0+ → N.

2. Connecting a Class of Lyapunov Functions for Linear Continuous
Time Systems with those of the Discretized Counterparts

The following result establishes that if a symmetric positive definite matrix P defines a
Lyapunov function for a linear and time-invariant system then the same matrix defines a
discrete Lyapunov sequence for the discrete counterpart of such a system.
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Assertion 2.1. Assume that A is a stability matrix so that Vc(t) = xT (t)Px(t) is a Lyapunov
function of the nth continuous-time linear time-invariant differential system ẋ(t) = Ax(t) or
any given real matrix P = PT > 0 satisfying the Lyapunov matrix equation ATP + PA = −Q
for any given real matrix Q = QT > 0. Then, {Vk}∞0 defined with Vk := xTkPxk is a discrete-
Lyapunov sequence for the discrete system xk+1 := x[(k+1)h] = eAhxk for any finite sampling
period h > 0.

Proof. Direct calculus yields

ΔVk := Vk+1 − Vk = xTk+1Pxk+1 − xTkPxk = xTk
(
eA

ThPeAh − P
)
xk = −xTkQdxk. (2.1)

Note that since A is a stability matrix then

P =
∫∞

0
eA

TτQeAτdτ

⇒ eA
ThPeAh =

∫∞

0
eA

T (τ+h)QeA(τ+h)dτ =
∫∞

h

eA
TτQeAτdτ

= P −
∫h

0
eA

TτQeAτdτ

⇒ eA
ThPeAh − P = −Qd = −QT

d = −
∫h

0
eA

TτQeAτdτ < 0.

(2.2)

Then, ΔVk < 0 for all nonzero xk so that {Vk}∞0 is a discrete Lyapunov sequence.

Remark 2.2. The matrix P satisfying uniquely the Lyapunov matrix equation ATP + PA = −Q
may be equivalently calculated through its entries as

vec (P) = −
(
AT ⊗ In + In ⊗AT

)−1
vec (Q). (2.3)

Note that since A is a stability matrix, it is nonsingular implying that the n2-square matrix
(AT ⊗ In + In ⊗ AT ) is also nonsingular. Furthermore, this also implies that (2.3) is uniquely
solvable as expected. Equivalently the matrix P can be also calculated from (2.2) for a

sufficiently small-sampling period h > 0 as vec (P) = −(eATh ⊗ eATh − I2n)
−1

vec (Qd) since
eA

T t = (eAt)T .

The subsequent result establishes that if the linear and time invariant system ẋ(t) =
Ax(t)+Bu(t) is, so-called stabilizable, namely, it is globally asymptotically stabilized by some
state-feedback linear control law u(t) = Kx(t) then it is also globally asymptotically stabilized
by the piecewise constant law u(t) = Kxk = Kx(kh); for all t ∈ [kh, (k+1)h), for all k ∈ Z0+ for
sufficiently small-sampling period h > 0. In other words, the discretized closed-loop system
obtained through a Zero-Order-Hold (ZOH) is also globally asymptotically stable under the
same controller gain for sufficiently small-sampling period.
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Assertion 2.3. Assume that the pair (A,B) is stabilizable. Then, for each stabilizing controller
matrix K (i.e., A + BK is a stability matrix, equivalently all its eigenvalues are in C−) the
following properties hold.

(i) There exists a sufficiently small maximum sampling period h∗ > 0 such that the
discrete pair (eAh,

∫h
0e

A(h−τ)Bdτ) is stabilizable under the same controller matrix K

(i.e., Φ(h) := eAh[In + (
∫h

0e
−Aτdτ)BK] is a convergent matrix, for all h ∈ (0, h∗): that

is, Φk(h) → 0 as Z0+ � k → ∞ and, equivalently, all its eigenvalues lie in the open
unit disk Co(0, 1) := {C � z : |z| < 1}.

(ii) Assume that the pair (A,B) is stabilizable. Then, Φ(h) := eAh[In + (
∫h

0e
−Aτdτ)BK]

is convergent for any controller gain matrix K ∈ Rn×n, such that Ac� :=
A + BK is a stability matrix, and any sampling period h > 0 which satisfies
1 > ‖e−Ac�hΦ(h) − In‖2. Furthermore, it always exists a first sampling period
convergence interval (0, h∗) for Φ(h) in the sense that Φ(h) is a convergent matrix,
for all h ∈ (0, h∗) with h∗ := min(h ∈ R+ : 1 = ‖e−Ac�hΦ(h) − In‖2) provided that the
set {h ∈ R+ : 1 ≤ ‖e−Ac�hΦ(h) − In‖2}/=∅. If {h ∈ R+ : 1 ≤ ‖e−Ac�hΦ(h) − In‖2} = ∅

then h∗ =∞.

Proof. (i) Direct calculation yields

eAh
[

In +

(∫h

0
e−Aτdτ

)

BK

]

= (In +Ah +M1o(h))
[
In +

(
hIn −Ah2/2 +M2o

(
h2

))
BK

]

= In + (A + BK)h +M3o(h),
(2.4)

where Mi (i = 1, 2), depending on the matrices Ak, k ≥ 2, and M3, depending on matrices B,
K, and Ak, k ≥ 1, are both bounded n-real matrices and “o” stands for Landau’s “small-o”
defined in standard way as follows. Given a real function f then f = o(h) if f = O(h), that is
f is Landau’s “big-O” of h (i.e., |f | ≤ k1h + k2 for some real constants ki ∈ R0+ (i = 1, 2) and,
furthermore, ∃ limh→ 0(f/h) = 0. For h = 0, the matrix (2.4) is identity so that it is critically
stable. However, for h > 0, one gets from (2.4) the following inequalities by using the matrix
measure ϑ := μ2(A + BK) = 1/2 max (Reλ(A + BK + (A + BK)T ) : λ(M) ∈ σ(M)):

1 − h‖A + BK‖2 + |o(h)|‖M3‖2 ≤ μ2

(

eAh
[

In +

(∫h

0
e−Aτdτ

)

BK

])

= μ2(In + (A + BK)h +M3o(h))

≤ 1 + hμ2(A + BK) + o(h)μ2(M3)

≤ 1 − h|ϑ| + |o(h)|‖M3‖2

≤ 1 + h‖A + BK‖2 + |o(h)|‖M3‖2,

(2.5)

since (A + BK) being a stability matrix and the properties of the matrix measure imply

−‖A + BK‖2 ≤ ϑ := μ2(A + BK) ≤ ‖A + BK‖2. (2.6)
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Now, for any given real constant ε∗ ∈ (0, 1), it exists h∗ = h∗(ε∗) ∈ R+ such that

|o(h)|‖M3‖2 ≤ |o(h∗)|‖M3‖2 ≤ ε∗; ∀h ∈ (0, h∗), (2.7a)

0 < 1 − h|ϑ| + ε∗ < 1, −1 < 1 − h‖A + BK‖2 − ε∗ < 0; ∀h ∈ (0, h∗). (2.7b)

Then, one gets from (2.5), (2.7a), and (2.7b) that h∗ ∈ (min(ε∗/|ϑ|, (1 − ε∗)/‖A + BK‖2), (1 −
ε∗)/|ϑ|), and Φ(h) := eAh[In + (

∫h
0e
−Aτdτ)BK] is a convergent matrix; for all h ∈ (0, h∗) for

some sufficiently small h∗ > 0 as it is e(A+BK)h for all h ∈ R+, since (A + BK) is a stability
matrix. Property (i) has been proved.

(ii) Since Ac� := A + BK is a stability matrix, e(A+BK)h is a convergent matrix and
then nonsingular, for all h ∈ (0, h∗) with eigenvalues within the open unity disk. By direct
construction, Φ(h) := eAc�h(In + e−Ac�h(Φ(h) − eAc�h)). Thus, Φ(h) is nonsingular and then
convergent for sufficiently small h since eAc�h is convergent for sufficiently small-sampling
period h that satisfies 1 > g(h) := ‖e−Ac�h(Φ(h) − eAc�h)‖2 from Banach Perturbation lemma.
Since the real function g is a continuous function of the sampling period h which satisfies the
above constraint for h = 0 since g(0) = 0, it exists h∗ := min (h ∈ R+ : 1 = ‖e−Ac�hΦ(h) − In‖2),
such that Φ(h) is convergent, for all h ∈ (0, h∗) with h∗ < ∞, provided that {h ∈ R+ : 1 ≤
‖e−Ac�hΦ(h) − In‖2}/=∅. If {h ∈ R+ : 1 ≤ ‖e−Ac�hΦ(h) − In‖2} = ∅ then h∗ = ∞. Property (ii)
has been proved.

Note that the first property of Assertion 2.3 is a local result about the existence of a
minimum sampling period such that a continuous-time system which is closed-loop stable
remains stable if it is discretized under a sufficiently small-sampling period with the same
stabilizing controller. Assertion 2.3(ii) relies on a constraint which is numerically testable very
easily and is useful to calculate a first admissibility interval for the sampling period such
that the stability of the system still holds when using the same continuous-time stabilizing
controller. Assertion 2.3 is now interpreted in practical terms of achievement of closed-loop
stability of a system discretized through a ZOH sampling and hold device and the same
controller gain matrix, as that of the continuous-time counterpart, provided that the sampling
period is sufficiently small.

Assertion 2.4. Assume that the pair (A,B) is stabilizable. Then, there exists a sufficiently
small-sampling period h∗ > 0 such that all the solutions of ẋ(t) = Ax(t) + Bx(kh); for all
t ∈ [kh, (k + 1)h); for all h ∈ [0, h∗); for all k ∈ Z0+ are globally asymptotically stable for each
stabilizing controller matrix K.

Proof. The state trajectory solution at sampling instants t = kh (for all k ∈ Z0+) is given by

x[(k + 1)h] = eAh
(

In +

(∫h

0
e−Aτdτ

)

BK

)

x(kh), (2.8)

for each bounded initial conditions x(0). The pair (eAh,
∫h

0e
A(h−τ)Bdτ) is stabilizable if and

only if it existsK such that Φ(h) = eAh(In+(
∫h

0e
−Aτdτ)BK) is a convergent matrix for some K.

Since (A,B) is stabilizable, it existsK such that (A+BK) is a stability matrix and, equivalently,
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e(A+BK)h is a convergent matrix, for all h ∈ R+. For the same matrix K, some real constants
τij ∈ (0, h); for all i, j ∈ n, for all h ∈ [0, h∗), one gets

∥
∥
∥
∥
∥
eAh

(

In +

(∫h

0
e−Aτdτ

)

BK

)

− e(A+BK)h

∥
∥
∥
∥
∥

2

=
∥
∥
∥In +Ah + h

(
e
Aτij
ij

)
BK − In − (A + BK)h + o(h)

∥
∥
∥

2

=
∥
∥
∥
[(
e
Aτij
ij

)
− In

]
BKh + o(h)

∥
∥
∥

2
=
∥
∥
(
Aijτij + o(h)

)
BKh + o(h)

∥
∥

2

≤
(∥
∥Aijτij

∥
∥

2 + |o(h)|
)
‖BK‖2h + |o(h)| ≤ ka

∥
∥Aijτij

∥
∥

2‖BK‖2h
∗.

(2.9)

Since the convergence abscissa of e(A+BK)h is in (0, 1), for all h ∈ R+ (since (A+BK) is a stability
matrix), μ2(e(A+BK)h) ≤ −ρ ∈ R−. Also, the convergence abscissa of eAh(In + (

∫h
0e
−Aτdτ)BK) is

also in (0, 1) for sufficiently small h∗ ∈ R+ and for all h ∈ [0, h∗). Then, eAh(In+(
∫h

0e
−Aτdτ)BK)

is convergent, so that (eAh,
∫h

0e
A(h−τ)Bdτ) is stabilizable, and the discrete-time system is

globally asymptotically Lyapunov stable.

Time varying sampling periods may be considered as strictly ordered sequences
{hk}k∈Z0+

of positive real numbers. The sampling instants are real sequences of positive real
numbers {tk}k∈Z0+

defined by t0 = 0, tk =
∑k−1

i=0 hi; for all k ∈ Z+. A special case arises when
each sampling period is generated as some real function of preceding sampled states and
preceding sampling instants f : R0+×Z0+ → R+; that is, hk+1 = f(ti, x(ti) : i ∈ k). Assertion 2.3
extends to time-varying sampling periods as follows.

Assertions 2.5. Assume that the pair (A,B) is stabilizable. Then, for each stabilizing controller
matrix K

(i) there exists a sufficiently small maximum sampling period h∗ > 0 such that for any
time-varying sampling period hk ∈ (0, h∗); for all k ∈ Z0+, the time-varying discrete
pair (eAhk ,

∫hk
0 e

A(hk−τ)Bdτ) is stabilizable under the same controller matrix K (i.e., is
a convergent matrix so that Φ(hk) → 0 as Z0+ � k → ∞ and, equivalently, all its
eigenvalues are in Co(0, 1) := {C � z : |z| < 1});

(ii) for any sampling instant tk =
∑k−1

i=0 hi; for all k ∈ Z+, Φ(
∑k−1

i=0 hi) := eA
∑k−1

i=0 hi
[
In +

(
∫∑k−1

i=0 hi
0 e−Aτdτ

)
BK

]
is convergent, that is, Φ�(

∑k−1
i=0 hi) → 0 as Z0+ � � → ∞, for all

k ∈ Z0+ and, equivalently, all the eigenvalues of Φ(
∑k−1

i=0 hi) are in Co(0, 1) := {C �
z : |z| < 1}.

The above results rely on the well-known fact that although e(A+BK)h is a convergent
matrix for any real h > 0 if A + BK is a stability matrix, the property does not hold for any h
if the system is discretized through a ZOH and the same controller gain is used within each
intersample period.
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3. Stability of a Class of Hybrid Switched Systems

This section considers switched hybrid systems which consist of mixed continuous-time
and discrete-time (through ZOH devices and sufficiently small-sampling period) switched
controls for potentially distinct continuous-time parameterizations. The stability of the
hybrid switched systems is investigated by using results of the above section. The potential
application of mixed continuous-time discrete-time control laws is that when discrete controls
are operating, the controller is not required to acquire data at all time but only at the rate
of the sampling period so that the computational costs are reduced. Another advantage
might be that in the case of data validity failure, sampled data at previous time instants can
replace the incorrect data for the controller operation. If hybrid continuous-time/discrete-
time controlled switched systems are designed then a common Lyapunov function exists
for all (continuous-time and discrete-time) parameterizations for sufficiently small-sampling
period. A common Lyapunov function exists if either the matrices of dynamics of the
individual parameterization commute or if the pair-wise commutators are sufficiently close
to zero in terms of norms, [3, 13, 17, 25–27]. If there is no common Lyapunov function,
then a minimum residence time is requested at each individual active parameterization to
guarantee closed-loop stability provided that all such parameterizations are stable, [3, 17, 20–
22, 25–27]. Thus, the existence of a common Lyapunov function is a hypothesis commonly
used for arbitrary switching in the sense that the parameterizations switch arbitrarily (i.e., at
any switching instants). However, if such an assumption does not hold, then the switched
system is still globally asymptotically stable if a minimum residence time is kept at each
parameterization before the next switching occurs.

Theorem 3.1. Assume that the pairs (Ai, Bi), i ∈ N are all stabilizable through linear state-feedback
control gains Ki of appropriate orders so that all the closed-loop systems ẋi(t) = (Ai + BiKi)xi(t),
i ∈N possess a common Lyapunov function. Then, the time-varying control law u(t) = Kσ(t)v(t)with
Kσ(t) : R0+ → {Ki : i ∈ N} where the discrete map σ : R0+ → N is arbitrary and v : R0+ → Rn

is defined by v(t) = x(t) ∨ x(tk) for any t ∈ R0+, subject to t0 = 0 or tk =
∑k−1

i=0 hi ≤ t < tk+1; for all
k ∈ Z+, globally asymptotically stabilizes the switched system:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) (3.1)

for any sampling period sequence {hk}k∈Z0+
with hk ∈ (0, h∗), for all k ∈ Z0+ and some sufficiently

small h∗ > 0 with piecewise constant matrix functions Aσ(t) : R0+ → {Ai : i ∈ N} and Bσ(t) :
R0+ → {Bi : i ∈N} for σ : R0+ → N.

Proof. Note that for each individual of the N parameterizations.

(a) The continuous-time system and its discrete counterpart may be stabilized by a
continuous-time controller or a discrete-time one under a ZOH for any (constant or
time-varying) sufficiently small-sampling period by using the same controller gain
(Assertions 2.3 and 2.4), since

x(t) = Ψ(t, ti)x(ti) = Ψ(t, ti)Ψ(ti, ti−1)Ψ(ti−1, τ)x(τ), Ψ(ti, 0) = Φ

(
k−1∑

i=0

hi

)

. (3.2)
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(b) The continuous time Lyapunov function is also a discrete Lyapunov sequence
with the same matrix P for the continuous-time system for any sampling period
(Assertion 2.1).

(c) There is a common Lyapunov function for all the parameterizations so that the
controller gain may be updated with arbitrary switching. That is, it may be any
of the gains at any time t ∈ R0+ acting on the current state vector or during a
sufficiently small-sampling period acting on the last sampled value of the state
vector at a sampling instant for a sufficiently small, in general time-varying,
sampling period h(t) with the current time t ∈ R+ fulfilling tk =

∑k−1
i=0 hi ≤ t < tk+1;

for all k ∈ Z+.

Remark 3.2. Theorem 3.1 relies on the fact that arbitrary switching related to the gain updating
rule for a switched system may be done with nonconstant sampling periods for the discrete-
time parameterizations. The gain updating process may be made at any time and the
controller might take the current state vector as regressor. Instead the regressor may be
the last sampled value of the state vector for sufficiently small (in general) time-varying
sampling period. Both controller actions, namely, arbitrary controller updating (associated
with arbitrary switching) and either continuous-time or discrete-time (but at sufficiently
small-sampling rate) control actions may be interchanged through time. The closed-loop
stability is preserved.

Theorem 3.1 applies if (Ai + BiKi); for all i ∈ N share a common Lyapunov function.
The subsequent result gives sufficient related conditions.

Theorem 3.3. Assume that the pairs (Ai, Bi), i ∈N are all stabilizable. Assume also that there exist a
stability matrix A∗ ∈ Rn×n and matrices B∗i ∈ Rn×m; for all i ∈ N such that the following constraints
hold:

(1) rank (Ai −A∗ + BiKi) = rank (Ai −A∗ + BiKi, B
∗
i ); for all i ∈N;

(2) A∗
T
P +PA∗+PB∗i K

∗
i +K

∗T
i B

∗T
i P < 0; for all i ∈N for some P = PT > 0 whereK∗i ∈ Rm×n

is any solution satisfying Ai + BiKi = A∗ + B∗i K
∗
i .

Thus, the closed-loop systems ẋi(t) = (Ai + BiKi)xi(t), i ∈ N are all globally asymptotically stable
and share a common Lyapunov function V (t) = xT (t)Px(t). Thus, the arbitrary switching law of
Theorem 3.1 with either v(t) = x(t), or with v(t) = x(t) ∨ x(tk) with the sampling period hk being
sufficiently small for all k ∈ Z0+, globally asymptotically stabilizes the open-loop switched system
(3.1). The result also holds if and Ai + BiKi, for all i ∈ N are all stability matrices and pair-wise
commute.

Proof. If condition (1) holds then controller gains K∗i (being unique if the rank is n); for all
i ∈ N exist from Kronecker-Capelli theorem such that Ai + BiKi = A∗ + B∗i K

∗
i ; for all i ∈ N.

If a Lyapunov function candidate V (t) = xT (t)Px(t) is used, then V̇ (t) = xT (t)(A∗
T
P + PA∗ +

PB∗i K
∗
i +K

∗T
i B

∗T
i P)x(t) < 0 for x(t)/= 0 are condition (2) holds provided that control law u(t) =

Kσ(t)x(t) where the discrete map σ : R0+ → N is arbitrary. If v : R0+ → Rn is defined by
v(t) = x(t) ∨ x(tk), then any two consecutive switching instants, either

ΔV (tk) = V (tk+1) − V (tk)

≤ (tk+1 − tk) min
tk≤t≤tk+1

xT (t)
(
A∗

T

P + PA∗ + PB∗σ(t)K
∗
σ(t) +K

∗T
σ(t)B

∗T
σ(t)P

)
x(t) < 0

(3.3)
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for σ(t) = σ(tk) ∈N; for all t ∈ [tk, tk + hk) if v(t) = x(t)/= 0, or

ΔV (tk) = V (tk+1) − V (tk) ≤ hkxT (tk)

×

⎛

⎝eA
∗T hkP+PeA

∗hk+P

(∫hk

0
eA

∗(hk−τ)B∗σ(t)dτ

)

K∗σ(t) +K
∗T
σ(t)

(∫hk

0
eA

∗(hk−τ)B∗σ(t)dτ

)T

P

⎞

⎠

× x(tk) < 0,
(3.4)

if v(t) = x(tk)/= 0 provided that hk ∈ (0, h∗] for any k ∈ Z0+ and h∗ is sufficiently small from
Assertions 2.3 and 2.4(i). The first part of the result has been proved. The second one is direct
since linear time-invariant systems whose matrices of dynamics are stability matrices which
commute share a common Lyapunov function, [3].

The subsequent technical result is directly applicable for the case when the closed-
loop switched system is generated by a switched linear output-feedback controller acting on
a linear and time-invariant open-loop system.

Theorem 3.4. Consider the linear time-invariant open-loop system:

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t), (3.5)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp, are the state, output, and control vectors, and A, B, C
are matrices of compatible orders with the dimensions of such vectors. Consider also a switched linear
output-feedback control law:

u(t) = Kσ(t)y(t) = Kσ(t)Cx(t), (3.6)

with a switched controllerKσ : R0+ → {K1, K2, . . . , KN},Ki ∈ Rm×p; for all i ∈N. This leads, after
injection of (3.6), to the switched closed-loop system:

ẋ(t) =
(
A + BKσ(t)C

)
x(t) (3.7)

for then, the following properties hold.

(i) The open-loop system (3.5) is output-stabilizable by a control law (3.6) if rank (B ⊗CT ) =
rank (B ⊗ CT , vec (A∗ −A)) for some stability matrix A∗ ∈ Rn×n.

(ii) The open-loop system (3.5) is output-stabilizable by a control law (3.6) if max (m, p) ≥ n,
rank (B) = m, and rank (C) = p and the triple (A,B,C) is controllable and observable.

Proof. (i) If the given rank condition holds with a stability matrixA∗ then there is a solutionK
to the matrix identityA+BKC = A∗ ⇔ (B⊗CT )vec (K) = vec (A∗−A) from Kronecker-Capelli
theorem. Then, the resulting time-invariant closed-loop system is globally asymptotically
stable. Property (i) is proved since there is a constant controller which asymptotically
stabilized the closed-loop system. (ii) If rank (B) = m and rank (C) = p and the triple (A,B,C)
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is controllable and observable then there the spectrum of (A + BKC) may be fixed as closely
as desired to any given set of (possibly repeated) complex numbers in C0−.

A system is said to be output-stabilizable if there is a linear output-feedback law
which makes the closed-loop system to be globally asymptotically stable. An extension
of Theorem 3.4 for the case of linear output feedback under a set of switching controllers
follows.

Theorem 3.5. Consider the linear time-invariant switched open-loop system:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), y(t) = Cσ(t)x(t), (3.8)

where x(t) ∈ Rn, y(t) ∈ Rp, u(t) ∈ Rm are the state, output and control vectors, and σ : R0+ → N is
a switching law andAσ : R0+ → {Ai ∈ Rn×n; for all i ∈N}, Bσ : R0+ → {Bi ∈ Rn×m for all i ∈N},
Cσ : R0+ → {Ci ∈ Rp×n; for all i ∈N} are piecewise constant function matrices of compatible orders
with the dimensions of such vectors. Consider also a switched linear output-feedback control law:

u(t) = Kσ(t)v(t), v(t) = y(t) ∨ y(tk) for tk ∈ SIσ (3.9)

withKσ : R0+ → {Ki ∈ Rm×p; for all i ∈N} yielding after injection of (3.9) into (3.8), the switched
closed-loop system:

ẋ(t) =
(
Aσ(t) + Bσ(t)Kσ(t)Cσ(t)

)
x(t). (3.10)

Then, the following properties hold.

(i) Assume that there exists a set A∗i ∈ Rn×n; for all i ∈N of stability matrices such that:

(1) rank (Bi ⊗ CT
i ) = rank (Bi ⊗ CT

i , vec (A∗i −Ai)); for all i ∈N;

(2) ∃P = PT > 0 such that A∗
T

i P + PA∗i < 0; for all i ∈N.

Thus, the time-invariant closed-loop systems ẋi(t) = (Ai + BiKiCi)xi(t), i ∈ N are all
globally asymptotically stable provided that each Ki is selected such that vec (Ki) is a
solution to the compatible linear algebraic system:

(
Bi ⊗ CT

i

)
vec (Ki) =

(
Bi ⊗ CT

i , vec
(
A∗i −Ai

))
, ∀i ∈N. (3.11)

Furthermore, all those systems share a common Lyapunov function V (t) = xT (t)Px(t).
As a result, the arbitrary switching law σ : R0+ → N of Theorem 3.1 with a control law
(3.9) with the (potentially time-varying sampling periods) hk being sufficiently small for
all k ∈ Z0+, globally asymptotically stabilizes the open-loop switched system (3.1).

(ii) The open-loop system (3.8) is output-stabilizable by a control law (3.9) if max (m, p) ≥ n,
rank (Bi) = m and rank (Ci) = p and the triples(Ai, Bi, Ci)), for all i ∈N are controllable
and observable for any switching law σ : R0+ → N subject to a minimum sufficiently
large residence time at each active parameterization i ∈N.



Discrete Dynamics in Nature and Society 13

Outline of Proof

(i) It is a direct extension of Theorem 3.1 by using Assertions 2.3 and 2.4 since firstly the
controller gains being solutions to (3.11) imply A∗i = Ai + BiKiCi; for all i ∈ N. Furthermore,
A∗

T

i P + PA∗i < 0; for all i ∈ N implies that V (t) = xT (t)Px(t) is a common Lyapunov function
for the N parameterizations so that the closed-loop system obtained from any arbitrary
switching law (3.9) is globally asymptotically stable under arbitrary switching.

(ii) From Theorem 3.3(ii), the closed-loop linear time-invariant systems ẋi(t) = (Ai +
BiKiCi)xi(t); i ∈ N are all stable and with eigenvalues closed to prescribed sets (even if
Ai + BiKiCi does not matchs a prescribed A∗i ; for all i ∈ N) for some existing controller gains
Ki; for all i ∈ N. Thus, the switched closed-loop system is globally asymptotically stable
for any switching laws subject to a minimum sufficiently large residence time at each active
parameterization i ∈N.

4. Stability of Centralized and Decentralized Switched Linear Systems

The results of Section 3 are extended to the following class of composite open-loop switched
systems:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t); y(t) = Cσ(t)x(t), (4.1)

where x(t), u(t), and y(t) are the n-state, m-input, and p-output vectors, σ : R0+ → N and

Aσ(t) ∈
{
Ak ∈ Rn×n : k ∈N

}
, Bσ(t) ∈

{
Bk ∈ Rn×m : k ∈N

}
, Cσ(t) ∈

{
Ck ∈ Rp×n : k ∈N

}
,

(4.2)

in such a way that (4.1) and (4.2) consist of q interconnected composite systems of respective
state, input and output xi(t), ui(t), and yi(t), that is

ẋi(t) =
q∑

j=1

A
(ij)
σ(t)xj(t) + B

(i)
σ(t)ui(t); yi(t) = C

(i)
σ(t)xi(t); ∀i ∈ q, (4.3)

with

x(t) = (xT1 (t), x
T
2 (t), . . . , x

T
q (t))

T
,

u(t) = (uT1 (t), u
T
2 (t), . . . , u

T
q (t))

T
, y(t) = (yT1 (t), y

T
2 (t), . . . , y

T
q (t))

T
,

Ak := Block matrix (A(ij)
k
∈ Rni×nj : i, j ∈ q) ∈ Rn×n; ∀k ∈N

Bk := Block diag (B(i)
k ∈ Rni×mi : i ∈ q) ∈ Rm×n,

Ck := Block row matrix (C(i)
k
∈ Rp×ni : i ∈ q) ∈ Rp×n; ∀k ∈N.

(4.4)

A state (resp., output)-feedback control law for the system (4.1)–(4.4) is said to be
decentralized if ui(t) has the ith state xi(t) (resp., output yi(t)) available for measurement
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but not all xj(t) (j /= i) is available for the ith controller (or, at least, some components of the
xj(t) substate are not available to the i(/= j)th for controller). If the whole x(t) (resp., y(t)) is
available for each ui(t); for all i ∈ q then the control law is said to be a centralized control law.
Decentralized state-feedback (resp., output feedback) control has important applications. The
main reason is that it allows the control of several interconnected subsystems with a partial
state (resp., output) information, [28, 29]. This is very useful when the individual systems are
physically separated. A practical example is a group of separated electric power production
stations operating as a tandem group located in the same river. Another application is the
reduction of computational costs as a result of minimizing the shared information by a
group of local controllers. A new open possibility of switched decentralized control is to
eliminate crossed information for the individual controllers depending on each particular
active parameterization. A linear state-feedback controller for the switched system (4.1)–(4.4)
is

u(t) = Kσ(t)x(t), (4.5)

where the controller gain is piecewise constant governed by the switching law σ : R0+ → N

Kσ(t) ∈
{

Kk := Block matrix
(

K
(ij)
k
∈ Rmi×nj : i, j ∈ q

)

∈ Rm×n : k ∈N
}

. (4.6)

A centralized control law is defined by matrices Kk (k ∈ N) whose entries can be all
nonzero. A decentralized control law is defined by those matrices in such a way that at least a
nondiagonal entry per row is necessarily zero; that is, some component of the substate xj(t) is
not available for the substate xi(t) for each j(/= i) ∈ q; for all i ∈ q. To simplify the subsequent
discussion, any decentralized control law is assumed to be constrained to have at least a
nondiagonal block identically zero, that is, K(ijik)

k
= 0 for at least a jik(/= i) ∈ q, depending in

general on i and k; for all i ∈ q, for all k ∈ N. The substitution of (4.5)-(4.6) into (4.1)–(4.4)
leads to the following closed-loop system:

ẋ(t) =
(
Aσ(t) + Bσ(t)Kσ(t)

)
x(t). (4.7)

To distinguish centralized and decentralized control laws, subscripts “c” and “d” are used in
(4.7) as follows:

ẋ(t) = Acσ(t)x(t); Acσ(t) := Aσ(t) + Bσ(t)Kcσ(t) (4.8)

is the closed-loop system (4.7) under centralized control, and

ẋ(t) = Adσ(t)x(t); Adσ(t) := Aσ(t) + Bσ(t)Kdσ(t) (4.9)
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is the closed-loop system (4.7) under decentralized control, where

Kdσ(t) = Kcσ(t) −Δσ(t), (4.10)

Kcσ(t) ∈
{

Ki := Block matrix
(

K
(ij)
k
∈ Rni×mj : i, j ∈ q

)

∈ Rm×n : Δ(ijik)
k

= 0; ∀i, j(/= i) ∈ q, k ∈N
}

,

(4.11)

Δσ(t) ∈
{

Δk := Block matrix
(

Δ(ijik)
k ∈ Rni×mj : i, j ∈ q

)

∈ Rm×n : Δ(ijik)
k = 0; ∀jik(/= i) ∈ Sik ⊂

(
q \ {i}

)
, k ∈N

}

.

(4.12)

Note from (4.9)-(4.10) that

Adσ(t) := Aσ(t) + Bσ(t)
(
Kcσ(t) −Δσ(t)

)
= Acσ(t) − Bσ(t)Δσ(t) (4.13)

= Acσ(t)(In −A
−1
cσ(t)Bσ(t)Δσ(t)), (4.14)

where (4.14) is well posed if A
−1
cσ(t) exists, and in particular, if it is a stability matrix for all

t ∈ R0+. The small gain theorem [3] yields the following direct result from (4.13).

Proposition 4.1. Assume that the matrices Aci = Ai + BiKci are all stability matrices, for all i ∈ N.

Thus, Adi = Ai + BiKdi are stability matrices, for all i ∈ N if ‖A
−1
ci BiΔi‖2 < 1; for all i ∈ N which

is guaranteed if ‖Δi‖2 < 1/‖A
−1
ci Bi‖2; for all i ∈ N. The last condition is guaranteed in terms of

singular values if s(Δi) < s(Ai)/s(Bi); for all i ∈N.

Proposition 4.1 guarantees the stability of all the individual parameterizations of the
switched system under decentralized control. It is assumed that all of them are stable under
centralized control and the deviation of the decentralized controller gains with respect to
the stabilizing centralized ones are sufficiently small. Such a “smallness” is quantified in
terms of testable conditions obtained by evaluating matrix norms. Note that the “a priori”
necessary condition for the existence of matrices Kci for stabilization of the ith open-loop
system parameterization through some continuous-time centralized controller is that the pair
(Ai, Bi) be stabilizable, namely, rank (sIn−Ai, Bi) = n; for all s ∈ C0+ (Popov-Belevitch-Hautus
rank stabilizability test). Equivalently, all the uncontrollable modes, if any, have to be stable.
The following extension of Proposition 4.1 is direct.

Proposition 4.2. Assume that the matrices Aci = Ai + BiKci are all stability matrices, for all i ∈ N
with common guaranteed stability abscissa (−ρc) ∈ R−, that is, maxi∈N(reλmax(Aci)) ≤ −ρ−c (if the
left-hand side corresponds to an eigenvalue with multiplicity one then ρc := −maxi∈N(reλmax(Aci)).
Thus,Adi = Ai+BiKdi are stability matrices, for all i ∈N with common guaranteed stability abscissa
(−ρd) ∈ R−, that is, maxi∈N(reλmax(Adi)) ≤ −ρd if

‖Δi‖2 <
1 −

∥
∥
∥
(
Aci + ρcIn

)−1
Bi
∥
∥
∥

2

(
ρc − ρd

)

∥
∥
∥
(
Aci + ρcIn

)−1
Bi
∥
∥
∥

2

, (4.15)
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provided that

ρd ∈

⎛

⎜
⎜
⎝ρc −

1

mini∈N

∥
∥
∥
∥

(
Aci + ρcIn

)−1
Bi

∥
∥
∥
∥

2

, ρc

⎞

⎟
⎟
⎠; ∀i ∈N. (4.16)

Proof. It has to be proved that (Adi + ρdIn) is a stability matrix; for all i ∈ N provided that
(Aci + ρcIn) is a stability matrix; for all i ∈N. Direct calculations yield

Adi + ρdIn =
(
Aci + ρcIn

)(

In −
(
Aci + ρcIn

)−1(
BiΔi +

(
ρc − ρd

)
In
)
)

, (4.17)

which is a stability matrix from the small gain theorem if Aci + ρcIn is a stability matrix and

‖(Aci + ρcIn)
−1
(BiΔi + (ρc − ρd)In)‖2 < 1; for all i ∈ N which is guaranteed by (4.15) and

(4.16).

The interpretations of Propositions 4.1-4.2 are directed as follows. Assume that the
centralized control law stabilizes the ith parameterization. Then, a sufficiently small ‖Δi‖2
satisfying (4.15) (or its counterpart in Proposition 4.1) and a tradeoff between stability
abscissas, see (4.16), guarantee that the decentralized controller gain (4.10) stabilizes the ith
parameterization of the switched system. However, it is required for the off-diagonal blocks
of a stabilizing centralized controller gain Kci to have sufficiently small norms. This allows
their removal from the decentralized gain while guaranteeing closed-loop stabilization of
each particular parameterization. An alternative useful approach in practice is to give
conditions for decentralized stabilization and then either to remove the off-diagonal blocks
of the centralized controller gain (then, the controller is a decentralized one) or to use some
of them to increase the robustness against an increasing of the coupling effects between
the various subsystems, evaluated in terms of increasing norms of the corresponding off-
diagonal entries of the matrix of dynamics of the open-loop system. To formulate these issues
more precisely, suppose a block diagonal structure for the decentralized controller gain

Kdi := Block diag
(

K
(jj)
1 , K

(jj)
2 , . . . , K

(jj)
q

)

∈ Rm×n; ∀i ∈Nd ⊂N, j ∈ q, (4.18)

where K
(jj)
i ∈ Rmj×nj ; for all i ∈ Nd ⊂ N, for all j ∈ q. It is now assumed that some of

the N parameterizations of the switched system are stabilizable through a purely diagonal
decentralized controller gain. The following technical assumption is then needed.

Assumption 4.3. The pairs (A(jj)
i + ρijIn, B

(j)
i ) are stabilizable; some ρij ∈ R0+, for all i ∈Nd, for

all j ∈ q.

The following result holds directly from the small gain theorem in a close way to that
used in the proofs of Propositions 4.1 and 4.2.

Proposition 4.4. If Assumption 4.3 holds then there exists a purely decentralized controller, given
by a block diagonal controller gain (4.18), such that the closed-loop ith parameterization is globally
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asymptotically stable. The matrix of the closed-loop dynamics Ai = Ai + BiKdi is a stability matrix
satisfying reλ ≤ −ρi; for all λ ∈ σ(Ai); for all i ∈Nd, provided that

∥
∥
∥Âi

∥
∥
∥

2
<

1
∥
∥
∥
(
A0i + BiKdi + ρiIn

)−1
∥
∥
∥

2

; ∀i ∈Nd, (4.19)

where Âi = Ai − A0i, A0i := Block diag (A(11)
i , A

(22)
i , . . . , A

(qq)
i ) and ρi := minj∈q(ρij); for all

i ∈Nd.

Note that the norm constraint in Proposition 4.4 refers to the sufficiently norm
smallness of the off-diagonal dynamics in order to achieve decentralized stabilization. It
is now assumed that the rest of the parameterizations are stabilizable under a centralized
controller as follows.

Assumption 4.5. The pairs (Ai + ρiIn, Bi) are stabilizable, some ρi ∈ R0+, for all i ∈N \Nd.

The following result follows from Assumption 4.5 and Proposition 4.2 with ρi =
ρc; ρd → ρdi (being parameterization-dependent); for all i ∈N \Nd.

Proposition 4.6. The following properties hold.

(i) If Assumption 4.5 holds then there exists a centralized controller of gain Ki :=
Block matrix (K(jk)

i ∈ Rmj×nk : j, k ∈ q) ∈ Rm×n; for all i ∈ N \ Nd such that the
closed-loop ith parameterization is globally asymptotically stable. The matrix of the closed-
loop dynamics Ai = Ai +BiKi is a stability matrix satisfying reλ ≤ −ρi; for all λ ∈ σ(Ai);
for all i ∈N \Nd,

(ii) Assume that the centralized controller gain Ki is replaced with a (at least partially)
decentralized one Kdi = Ki −Δi such Δi has some zero off-diagonal entries and

‖Δi‖2 <

1 −
∥
∥
∥
∥

(
Aci + ρiIn

)−1
Bi

∥
∥
∥
∥

2

(
ρi − ρdi

)

∥
∥
∥
∥

(
Aci + ρiIn

)−1
Bi

∥
∥
∥
∥

2

; ∀i ∈N \Nd. (4.20)

The matrix of the closed-loop dynamics Ai = Ai + BiKdi is a stability matrix satisfying
reλ ≤ −ρdi; for all λ ∈ σ(Ai); for all i ∈N \Nd.

Controllability Assumptions 4.7 below being stronger than Assumptions 4.3 and 4.5,
together with Propositions 4.4 and 4.6, then lead to the first main result of this section.

Assumptions 4.7. The pairs (A(jj)
i , B

(j)
i ) are controllable for all i ∈Nd, for all j ∈ q and the pairs

(Ai, Bi) are also controllable for all i ∈N \Nd. In other words, ∃A(jj)∗

i such that

rank
(

B
(j)
i ⊗ Inj

)

= rank
(

B
(j)
i ⊗ Inj , vec

(

A
(jj)∗
i −A(jj)

i

))

, (4.21)
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where A(jj)∗

i is a stability matrix with arbitrary finite stability abscissa −ρij < 0; for all i ∈ Nd,
for all j ∈ q; and

∃A∗i such that rank (Bi ⊗ In) = rank
(
Bi ⊗ In, vec

(
A∗i −Ai

))
, (4.22)

where A∗i is a stability matrix with arbitrary stability abscissa −ρi < 0; for all i ∈N \Nd.

Note that, since controllability is equivalent to arbitrary pole-placement via linear
state feedback (and then implies stabilizability) Propositions 4.4–4.6 are also fulfilled under
Assumptions 4.7. The first main result of this section follows.

Theorem 4.8. The following properties hold.

(i) The closed-loop switched system obtained from the open-loop system (4.1)–(4.4) with the
linear state-feedback controller (4.5)-(4.6) is globally asymptotically stable with stability
abscissa equal to or less than (but then arbitrarily close to) (−ρ) := −min(min(ρij : i ∈
Nd, j ∈ q),min(ρi : i ∈N \Nd)) if

(1) Assumptions 4.7 hold,
(2) the switched controller gain (4.6) of the mixed decentralized/centralized switched

system is calculated as a solution of the linear algebraic compatible systems below:

(

B
(j)
i ⊗ Inj

)

vec
(

K
(jj)
i

)

= vec
(

A
(jj)∗
i −A(jj)

i

)

; ∀i ∈Nd, j ∈ q, (4.23)

(Bi ⊗ In)vec (Ki) = vec
(
A∗i −Ai

)
; ∀i ∈N \Nd, (4.24)

(3) the switching law σ : R0+ → N generates a set of switching instants SIσ := {ti}i∈Z0+

subject to a sufficiently large minimum residence time minti∈SIσ (ti+1 − ti) ≥ T ∈ R+

at each current active parameterization σ(t) = k ∈N; for all t ∈ [ti, ti+1), for any two
consecutive ti, ti+1 ∈ SIσ .

If, furthermore, m� ≥ n� , rank (Bk) = m, and rank (B(j)
i ) = mj ; for all �, j ∈ q, for all

k ∈N \Nd, for all i ∈Nd then Assumptions 4.7 hold with full column ranks in both rank
identities so that the controller gains being solutions to (4.23)-(4.24) are then unique.

(ii) If Proposition 4.6(ii) holds then Property (i) is still valid with a purely decentralized
controller for the parameterizations i ∈ Nd and a partly decentralized one for the
parameterizations i ∈N \Nd by replacing the algebraic system of equations (4.24) by

(Bi ⊗ In)vec (Kdi) = vec
(
A∗i −Ai

)
; ∀i ∈N \Nd (4.25)

such that such Δi satisfies (4.20) while having some zero off-diagonal entry(entries); for all
i ∈N \Nd with (4.25) being solved as a companion one to (4.23).

Note that the switching control law used in Theorem is not arbitrary since a minimum
residence time has to be kept at each active parameterization. Note also that the use of
compatible algebraic systems to calculate the controller gain entries exceeds the requirement
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of closed-loop stabilization, under open-loop stabilizability, since in this case it is only
requested to re-allocate the closed-loop poles in the stable region via state feedback.
The statement of an algebraic system is made for illustration purposes with the topic of
centralized/decentralized control for a system decomposed into subsystems. If the problem
were focused for the whole open-loop system (without its decomposition into coupled
subsystems) then the algebraic system (4.24) can be used for all parameterizations i ∈ N (in
a centralized control context) as fully equivalent to the closed-loop stabilizability problem.
In this context, assume that Theorem 4.8 is restricted to a centralized control law with both
the open-loop matrices of dynamics and the controller gains being in companion form
for the N parameterizations. Thus, the algebraic problem solved is equivalent to closed-
loop stabilization with prescribed pole-placement for each parameterization of the switched
system. The closed-loop modes of each parameterization match the eigenvalues of the
corresponding closed-loop matrix of dynamics A∗i ; for all i ∈ N. The second main result of
this section is concerned with arbitrary switching under pair-wise commutation properties of
all the matrices A∗i ; for all i ∈N or its sufficient closeness in terms of sufficiently small norms
of all the pair-wise error matrices.

Theorem 4.9. The following properties hold.

(i) The controller gains calculated from the mixed decentralized/centralized control law (4.23)-
(4.24) globally asymptotically stabilize the switched closed-loop system for any arbitrary
switching law σ : R0+ → N (i.e., without requiring a minimum residence time at each
active parameterization) provided that

(1) the closed-loop matrices of dynamics of all the individual parameterizations are all
stability matrices;

(2) those matrices are sufficiently close to each other in terms of smallness of the
corresponding norm errors.

(ii) Assume that A∗i (for all i ∈ N) are all stability matrices which commute pair-wise; that
is, they have zero commutators [A∗i , A

∗
j ] = A∗i A

∗
j − A

∗
jA
∗
i = 0; for all i, j ∈ N. Thus, the

closed-loop switched system is globally asymptotically Lyapunov’s stable.

Proof. (i) Consider a common Lyapunov function candidate V (t) = xT (t)Px(t) for some
Rn×n � P = PT > 0 for the closed-loop switched system (4.1)–(4.6) whose time derivative
is

V̇ (t) = xT (t)
((
Aσ(t) + Bσ(t)Kσ(t)

)T
P + P

(
Aσ(t) + Bσ(t)Kσ(t)

))
x(t) = −xT (t)Qσ(t)x(t) < 0

(4.26)

for all nonzero x(t) if

(
Aσ(t) + Bσ(t)Kσ(t)

)T
P + P

(
Aσ(t) + Bσ(t)Kσ(t)

)
= −Qσ(t) < 0 (4.27)

for some matrix function Q(= QT > 0) : R0+ → Rn×n. Choose a piecewise constant Qσ(t) =
Qi = QT

i > 0 if σ(t) = i ∈N. Define matrix increments:

ΔAji :=Ai−Aj ; ΔBji :=Bi−Bj ; ΔKji :=Ki−Kj ; ΔQji :=Qi−Qj ; ∀i, j ∈N. (4.28)
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Equation (4.27) holds if Qj > 0 for any j ∈ N and ΔQji > −Qj ; for all i(/= j) ∈ N since
(Qj > 0 ∧ΔQji > −Qj ; for all i(/= j) ∈ N) ⇒ Qi > 0; for all i ∈ N. Thus, (4.27) holds, and then
the switched system is globally asymptotically stable since it possesses a common Lyapunov
function V (t) for all its parameterizations from (4.26), if the constraints below hold:

Qj = −
(
Aj + BjKj

)T
P − P

(
Aj + BjKj

)
> 0 for some j ∈N, (4.29)

Qj > −ΔQji = −
(
ΔAji + ΔBjiKj + BjΔKji + ΔBjΔKji

)T
P

− P
(
ΔAji + ΔBjiKj + BjΔKji + ΔBjΔKji

)
; ∀i

(
/= j

)
∈N

(4.30)

with P =
∫∞

0 e
A∗j

T tQje
A∗j tdtP ; j ∈N since A∗j = Aj +BjKj is a stability matrixv equations (4.29)-

(4.30) imply that A∗i = Ai + BiKi are stability matrices; for all i ∈ N. Equation (4.30) holds
if

λmin
(
Qj

)
>
Kjλmax

(
Qj

)

ρj
max

i(/= j)∈N

(∥
∥ΔAji + ΔBjiKj + BjΔKji

∥
∥

2

)

≥ 2λmax(P) max
i(/= j)∈N

(∥
∥ΔAji + ΔBjiKj + BjΔKji

∥
∥

2

)
,

(4.31)

where λmax(P) = ‖P‖2 ≤ Kjλmax(Qj)/2ρj for some Kj, ρj ∈ R+ such that the C0-semigroup
eA

∗
j t of infinitesimal generator A∗j is exponentially stable satisfying ‖e−A

∗
j t‖2 ≤ Ke−ρj t; for

all t ∈ R0+. Note from (4.23)-(4.24) that if K(kk)
j and Kj are first calculated for one of

the parameterizations j ∈ N then the remaining gains are calculated from Theorem 4.8 as
respective incremental gains from the subsequent nested algebraic sets of systems as follows:

(
B
(k)
j ⊗ Inj

)
vec

(
K

(kk)
j

)
= vec

(
A

(kk)∗

j −A(kk)
j

)
; some j ∈Nd, ∀k ∈ q, (4.32)

((
ΔB(kk)

ji ⊗ Inj
)
+
(
B
(kk)
jj ⊗ Inj

))
vec

(
ΔK(kk)

ji

)

= vec
(
ΔAj(kk)

∗

ji −ΔA(kk)
ji

)
−
(
ΔB(kk)

ji ⊗ Inj
)

vec
(
K

(kk)
jj

) (4.33)

some j ∈Nd, for all i(/= j) ∈Nd, for all k ∈ q; and

(
Bj ⊗ In

)
vec

(
Kj

)
= vec

(
A∗j −Aj

)
; ∀i ∈N \Nd, (4.34)

((
ΔBji ⊗ In

)
+
(
Bji ⊗ In

))
vec

(
ΔKj

)

= vec
(
ΔA∗ji −ΔAji

)
−
(
ΔBji ⊗ In

)
vec

(
Kj

)
; ∀i ∈N \Nd,

(4.35)
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provided that such algebraic systems are algebraically compatible, that is, the following rank
conditions hold (Kronecker-Capelli theorem):

(1) rank (B(k)
j ⊗ Inj ) = rank (B(k)

j ⊗ Inj vec (A(kk)∗

j −A(kk)
j )) for some j ∈Nd, for all k ∈ q,

(2) rank ((ΔB(kk)
ji ⊗ Inj ) + (B(kk)

jj ⊗ Inj )) = rank (ΔB(kk)
ji ⊗ Inj + B

(kk)
jj ⊗ Inj vec (ΔAj(kk)

∗

ji −
ΔA(kk)

ji )− (ΔB(kk)
ji ⊗Inj )vec (K(kk)

jj )) for some j ∈Nd, for all i(/= j) ∈Nd, for all k ∈ q,

(3) rank (Bj ⊗ In) = rank (Bj ⊗ In vec (A∗j −Aj)); for all i ∈N \Nd,

(4) rank (ΔBji ⊗ In + Bji ⊗ In) = rank (ΔBji ⊗ In + Bji ⊗ In vec (ΔA∗ji − ΔAji) − (ΔBji ⊗
In)vec (Kj)); for all i ∈N \Nd.

From (4.32)–(4.34), the solution giving the incremental gains vary continuously with
respect to the increments of the dynamics and control matrices of the open-loop system.
Thus, for any arbitrary δ ∈ R+, there exist constants εa, εb ∈ R+, depending on δ and
which decrease monotonically with δ, such that ‖ΔKji‖2 ≤ εK; for all i(/= j) ∈ N, and
maxi(‖ΔAji + ΔBjiKj + BjΔKji‖2) ≤ δ provided that ‖ΔAji‖2 ≤ εa, ‖ΔBji‖2 ≤ εb; for all
i(/= j) ∈ N. Then, V (t) is a Lyapunov function, since it is a common Lyapunov function
for all its parameterizations, for δ is sufficiently small, so that εa, εb are also sufficiently

small, and P =
∫∞

0 e
A∗j

T tQje
A∗j tdt is subject to λmax(Qj)/λmin(Qj) < ρj/δKj (then implying

that λmax(P) ≤ Kjλmax(Qj)/2ρj ≤ λmin(Qj)/2ρj) for some chosen j ∈ N from (4.31). Property
(i) has been proved. Property (ii) is a known result in the standard literature on switched
systems (see, e.g., [3]).

Remark 4.10. Note that if the deviation in norms of the corresponding matrices of
the parameterizations are small enough the matrices of closed-loop dynamics of such
parameterizations are almost commuting in the sense that the pair-wise commutators
[A∗i , A

∗
j ] are matrices of sufficiently small norms.

Remark 4.11. A more general linear state-feedback controller than (4.5) allows hybrid control
as follows:

u(t) = Kσ(t)v(t); v(t) = x(t) ∨ x(tk); for tk ∈ SIdσ ⊂ SIσ, (4.36)

where SIσ := {ti}i∈R0+
is the whole set of switching instants and SIdσ is some appropriate

subset of SIσ , where the controller switches to some discrete-time parameterization of
sufficiently small-sampling period hk = tk+1 − tk where it takes available fixed data to operate
before the next switching. Theorems 4.8 and 4.9 can be extended to such an extended hybrid
control law in a close way as it has been done in Sections 2 and 3. Also, direct extensions to
the use of output-feedback control laws may be made by extending Theorems 4.8 and 4.9 by
using the “ad hoc” tools of Sections 2 and 3.

5. Simulation Examples

This Section contains some simulation examples illustrating the theoretical results introduced
in the previous Sections. In particular, simulation examples will comprise two different
scenarios.
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Figure 1: Switching map between different parameterizations.

5.1. State-Feedback Switched Hybrid Control

Consider the switched system given by ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) with σ : R0+ → {1, 2, 3},
and

A1 =

[
2 −1

1 0

]

, A2 =

[
−1 −1.5

1 0

]

, A3 =

[
−1.5 0.5

1 0

]

, B1 = B2 = B3 =

[
1

0

]

. (5.1)

For each one of the above pairs (Ai, Bi), i = 1, 2, 3 a stabilizing state-feedback vector
gain can be calculated to place the poles of the closed-loop system at −1 and −2. This can be
performed since all pairs are controllable. This means that all the closed-loop matrices possess
the same location for their poles. Indeed, all the closed-loop matrices turn into the same
matrix under state-feedback. The controller is defined by K1 = [ −5 −1 ], K2 = [ −2 −0.5 ], K1 =
[ −1.5 −2.5 ], and Ai + BiKi =

[ −3 −2
1 0

]
for i = 1, 2, 3.

The hybrid control law is calculated as in Theorem 3.1, u(t) = Kσ(t)v(t) with v(t) =
x(t)∨ x(tk) so that the control law is also switching between the continuous and the sampled
state. While the discrete control law is used, it is not necessary to measure the value of the
state at each time instant. Switching between different parameterizations is characterized by
the arbitrary switching function depicted in the next Figure 1.

Furthermore, the switching between the continuous-time and the sampled control law
is described by the sequence shown in Figure 2.

Thus, the system is hybrid while switching between parameterizations and between
different control laws, continuous and discrete-time respectively. Also, note that since all the
strictly stable closed-loop matrices are the same, they possess a common Lyapunov function.
Then we are in conditions to apply Theorem 3.1 to guarantee the globally asymptotic stability
of the above system. In particular, the evolution of the trajectories of (3.1) under (5.1) and the
switching laws described by Figures 1 and 2 is given for sampling period h = 0.1 second by
Figure 3.
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Figure 2: Type of state-feedback control law.
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Figure 3: State trajectories for h = 0.1 second.

As it can be appreciated from Figure 3 all the state components tend to zero
regardless the arbitrary switching in the state parameterizations and control law according
to Theorem 3.1. Also, since all the closed-loop matrices have been selected to be same,
the evolution of the closed-loop is free of jumps when switching between different
parameterizations occurs. Moreover, as the sampling period increases, the behaviour of the
system degrades as the following Figure 4 shows for a sampling period of 0.9 second.
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Figure 4: State trajectories for h = 0.9 second.

5.2. Decentralized Control for Hybrid Switching Coupled Systems

Consider a coupled system described by (4.1)–(4.4) in the form

ẋ(t) = A(11)σ(t)x(t) + B(1)σ(t)u1(t) + ε(12)σ(t)
[
1 1

]T
z(t),

ż(t) = A(22)σ(t)z(t) + u2(t) + ε(21)σ(t)
[
1 1

]
x(t),

(5.2)

with matrices (A(11)i , B(1)i), i = 1, 2, 3 being the same as in the example of Section 5.1 and
A(22)σ(t) ∈ {2, 3,−2}, ε(12)σ(t) ∈ {0.5, 0.4, 0.4} and ε21σ(t) ∈ {0.45, 0.5, 0.45}. Note that these latter
coefficients describe the coupling between both subsystems. Thus, the complete dynamics
matrices describing the system can be written as

Aσ(t) =

⎡

⎢
⎣

A(11)σ(t) ε(12)σ(t)

[
1
1

]

ε(21)σ(t)
[
1 1

]
A(22)σ(t)

⎤

⎥
⎦, (5.3)

with state vector xa = [ xT z ]T while A0σ(t) =
[
A

(11)
σ(t) 0

0 A
(22)
σ(t)

]
defines the dynamics matrices for the

system without coupling. Our objective is to design a decentralized purely diagonal state-
feedback hybrid control law to globally asymptotically stabilize the system. For the first
subsystem, we design a state feedback control law to place the poles of each parameterization
at −2.3 and −2.4 while for the second subsystem, the pole will be at −2.6 for all
parameterizations. The purely diagonal control matrix reads K = Block Diag (K1σ(t), K2σ(t))
with:

K11 =
[
−2.6 − 3.28

]
,

K12 = [−7.6 − 3.28], K21 = −4.6,

K22 = −0.6, K23 = −5.6.

(5.4)
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Figure 5: Switching map between different parameterizations.
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Figure 6: Switching between continuous-time and discrete control laws.

According to Proposition 4.4, the above block diagonal state-feedback gain stabilize
the coupled system for ρi = 0, i = 1, 2, 3 since the mentioned small-gain-based condition
becomes 0.707 < 0.741, 0.7071 < 0.7464, and 0.6364 < 0.7457, respectively. Furthermore, all
the matrices of the closed-loop dynamics are close to each other in terms of norms for the
coupling effect associated with ε. As a result, the whole system is globally asymptotically
stable for arbitrary switching between parameterizations and switching between continuous
and discrete control laws for small-sampling period according to Theorem 4.9. In particular,
consider the following switching between parameterizations and continuous and discrete
control laws depicted in Figures 5 and 6.
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Figure 7: Evolution of the state-space components for h = 0.1 second.

14121086420

Time (s)

Evolution of the state components

−150

−100

−50

0

50

100

150

St
at

e
tr

aj
ec

to
ri

es x2(t)

x1(t)

x3(t)

Figure 8: Evolution of the state-space components for h = 0.4 second.

As before, while the discrete control law is active, the state does not need to be
measured at each time instant but only at sampling times. The evolution of the state-space
trajectories when a sampling period of 0.1 second is used is described by Figure 7.

As depicted in Figure 7, the state-space trajectories tend to zero regardless the
switching in both, parameterizations and type of control law, continuous or discrete. Also,
there is no jump in the evolution of the components due to switching since the closed-loop
remains unchanged due to an appropriate selection of the state feedback gains. As before, the
behaviour of the state-space trajectories degrades as the sampling period increases as Figure 8
below shows for a sampling period of 0.4 second.
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