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1. Introduction

In this paper, we further consider the global dynamics of discrete Lotka-Volterra model

x1(n + 1) = x1(n) exp(r1 − a11x1(n) − a12x2(n)),

x2(n + 1) = x2(n) exp(r2 − a21x1(n) − a22x2(n)),
(1.1)

with positive initial conditions x1(0), x2(0) > 0. Here xi(n) (i = 1, 2) is the density of
population i at nth generation, ri (i = 1, 2) is the intrinsic growth rate of population i.
aij (i, j = 1, 2) represents the intensity of intraspecific competition or interspecific action of
the two species. It is assumed that ri and aij (i, j = 1, 2) are positive constants throughout this
paper.

The discrete Lotka-Volterra models have wide applications in applied mathematics.
They were first established in biomathematical background and then have proved to be a rich
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source in analysis for the dynamical systems in different research fields such as physics,
chemistry, and economy [1].

Model (1.1) was first introduced in May [2] then was investigated by many authors
[3–14]. The difference system (1.1) is autonomous, some of the works mentioned above are
the nonautonomous case of (1.1). Many results about the global dynamics of (1.1) such
as permanence, global attractivity, global asymptotical stability have been obtained. For
example, it is shown in [10] that (1.1) can be globally asymptotically stable when ri ≤ 1 (i =
1, 2). And from [3] we know that (1.1) can be globally attractive under the assumption that
ri < 1 + ln 2 (i = 1, 2).

It is well known that for the single-species Logistic model

x(n + 1) = x(n) exp[r − ax(n)], (1.2)

the positive equilibrium x∗ = r/a is globally asymptotically stable if and only if r ≤ 2 and
there exists periodic cycles when r > 2. When r ≥ 3.13, (1.2) exhibits chaotic behavior (e.g.,
see [15]). That is, the global dynamics of (1.2) is very complex when the intrinsic growth
rate r is large. It is clear that (1.1) is a coupling of two equations described by (1.2). And it is
proved in [16] that (1.1) also exhibits chaotic behavior when ri = r ≥ 3.13 (i = 1, 2). Therefore,
questions can be proposed naturally: how to investigate the global dynamics of (1.1) when
1 + ln 2 < ri < 3.13 (i = 1, 2)? Can model (1.1) be also globally asymptotically stable when
ri > 1 (i = 1, 2)? Can model (1.1) be globally attractive when ri > 1 + ln 2 (i = 1, 2)?

Our aim of this paper is to obtain some global dynamics of (1.1) when the intrinsic
growth rate ri (i = 1, 2) is large (ri ≥ 1, i = 1, 2) and give answers to the above questions.
First we obtain permanent result of (1.1), then global attractivity of (1.1) is obtained through
geometrical properties of (1.1). Last, we obtain the global asymptotical stability of (1.1)
by applying a theorem in [10]. After these theoretical results for (1.1) obtained, we give
numerical examples to confirm these theoretical results and show that our theoretical results
imply that (1.1) can be globally attractive when ri > 1 + ln 2 (i = 1, 2) and (1.1) can also be
globally asymptotically stable when ri > 1 (i = 1, 2).

The paper is organized as follows. We give some preliminaries in Section 2. In
Section 3, we discuss permanence, global attractivity, and global asymptotical stability of
(1.1) theoretically. Numerical examples are given in Section 4 to show the feasibility of the
assumptions of the main results and on the other hand, to show that our main results can
be applied to larger intrinsic growth rates than earlier works. Brief conclusion is given in
Section 5.

2. Preliminaries

A pair of sequences of real positive numbers {x1(n), x2(n)}∞n=1 that satisfies (1.1) is a positive
solution of (1.1). It is clear that the solutions of system (1.1) with initial values x1(0) >
0, x2(0) > 0 are positive ones, which is accordant with the biological background of (1.1).
That is, we only need to investigate the dynamics of system (1.1) in the plane domain

G =
{(
x, y

) | x ≥ 0, y ≥ 0
}
. (2.1)

If a solution of (1.1) is a pair of real constants {x1, x2}, then it is an equilibrium of (1.1).
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Lemma 2.1. Assume that

D � a11a22 − a12a21 /= 0, (2.2)

then system (1.1) has four equilibria.

Proof. Solving the following scalar equation system:

x1 = x1 exp(r1 − a11x1 − a12x2), x2 = x2 exp(r2 − a21x1 − a22x2). (2.3)

We obtain that the four equilibria of system (1.1) are

(0, 0),
(
r1

a11
, 0
)
,

(
0,

r2

a22

)
,
(
x∗

1, x
∗
2
)
, (2.4)

respectively. Here and the following, we denote

x∗
1 � D1

D
, x∗

2 � D2

D
,

D1 � r1a22 − r2a12, D2 � r2a11 − r1a21.

(2.5)

The equilibria (0, 0), (r1/a11, 0) and (0, r2/a22) are the so-called “boundary equilib-
rium.” If we further assume that

D1 > 0, D2 > 0, (2.6)

which implies that D > 0, then (x∗
1, x

∗
2) is the unique positive equilibrium of (1.1).

Lemma 2.2. Denote f(x, y) = x exp(r1 − a11x − a12y), r1 ≥ 1, then the maximum M̂1 of f(x, y) in
the domain

G1 �
{(
x, y

) | x ≥ 0, y ≥ 0, r1 − a11x − a12y ≤ 0, r2 − a21x − a22y ≤ 0
}

(2.7)

is

(1) if a22 ≤ D1 or a22/D ≥ r1/a21, then M̂1 = max{(r2/a21) exp(r1 − a11(r2/a21)),
D1/D},

(2) ifD1/D < a22/D < r1/a21, then M̂1 = (a22/D) exp((D1/a22) − 1).

Denote g(x, y) = y exp(r2 − a21x − a22y), r2 ≥ 1, then the maximum M̂2 of g(x, y) in domain G1 is

(1) if a11 ≤ D2 or a11/D ≥ r2/a12, then M̂2 = max{(r1/a12) exp(r2 − a22(r1/a12)),
D2/D},

(2) if D2/D < a11/D < r2/a12, then M̂2 = (a11/D) exp((D2/a11) − 1).
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Proof. For any fixed x (or y), let y → +∞ (or x → +∞) we get f(x, y) → 0. Note that

lim
x→+∞,y→+∞

f
(
x, y

)
= 0, (2.8)

therefore, the maximum of f(x, y) in domain G1 exists. Direct computation gives M̂1, we
omit the details. Similarly, M̂2 exists and its value can be obtained directly.

Lemma 2.3. (1) If F: R+ = [0,+∞) → R is monotonously increasing, then for each positive
sequence {y(n)}∞n=1,

lim sup
n→∞

F
(
y(n)

)
= F

(
lim sup
n→∞

y(n)
)
, lim inf

n→∞
F
(
y(n)

)
= F

(
lim inf
n→∞

y(n)
)
. (2.9)

If F: R+ = [0,+∞) → Ris monotonously decreasing, then for each positive sequence {y(n)}∞n=1,

lim sup
n→∞

F
(
y(n)

)
= F

(
lim inf
n→∞

y(n)
)
, lim inf

n→∞
F
(
y(n)

)
= F

(
lim sup
n→∞

y(n)
)
. (2.10)

(2) For any positive sequences {y(n)}∞n=1, {z(n)}∞n=1 one has

lim sup
n→∞

[
y(n)z(n)

] ≤ lim sup
n→∞

y(n)lim sup
n→∞

z(n),

lim inf
n→∞

[
y(n)z(n)

] ≥ lim inf
n→∞

y(n)lim inf
n→∞

z(n).
(2.11)

Proof. One can refer to [17] for the proof of this lemma.

Next we give some definitions that will be used in this paper.

Definition 2.4. System (1.1) is permanent if there exist positive constants m and M such that

m ≤ lim inf
n→∞

xi(n) ≤ lim sup
n→∞

xi(n) ≤M, i = 1, 2. (2.12)

Definition 2.5. System (1.1) is strongly persistent if each positive solution of (1.1) satisfies

lim inf
n→∞

xi(n) > 0, i = 1, 2. (2.13)

Definition 2.6. The solution {x1(n), x2(n)} of system (1.1) with initial values x1(0) > 0, x2(0) >
0 is said to be stable if for any ε > 0, there is a δ > 0 such that if max{|x1(0) − x1(0)|, |x2(0) −
x2(0)|} < δ, we have |x1(n) − x1(n)| + |x2(n) − x2(n)| < ε for all positive integers n, where
{x1(n), x2(n)} is the solution of (1.1) with initial values x1(0) > 0, x2(0) > 0.

Definition 2.7. Suppose that {x∗
1, x

∗
2} is the positive equilibrium solution of (1.1). If for each

positive solution {x1(n), x2(n)} of system (1.1), we have max{|x∗
1 − x1(n)|, |x∗

2 − x2(n)|} →
0 as n → ∞, we say (1.1) is globally attractive or the equilibrium {x∗

1, x
∗
2} of (1.1) is

globally attractive.
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Definition 2.8. The positive equilibrium solution {x∗
1, x

∗
2} of (1.1) or system (1.1) is said to be

globally asymptotically stable if this equilibrium is stable and globally attractive.
The following lemma can be found in [10].

Lemma 2.9. Consider the following difference system:

xi(n + 1) = xi(n) exp

⎛

⎝ri(n) −
n∑

j=1

aij(n)xj(n)

⎞

⎠, i = 1, 2, . . . , l. (2.14)

Assume that

(i) there exist positive constant ν and positive constants ci such that

ciaii(n) >
l∑

j=1,j /= i

cj
∣
∣aji(n)

∣
∣ + ν, i = 1, 2, . . . , l, (2.15)

for all large n;

(ii) system (2.14) is strongly persistent;

(iii) for any positive solution {x1(n), x2(n), . . . , xl(k)} of system (2.14),

aii(n)xi(n) ≤ 1, i = 1, 2, . . . , l, (2.16)

for all large n.

Then system (2.14) is globally asymptotically stable.

3. Main Results

In this section, we will obtain the permanence, global attractivity, and global asymptotical
stability of system (1.1) when ri ≥ 1 (i = 1, 2).

Lemma 3.1. For every positive solution {x1(n), x2(n)} of system (1.1) with initial values x1(0) > 0,
x2(0) > 0, one has

lim sup
n→∞

x1(n) ≤ s1, lim sup
n→∞

x2(n) ≤ s2, (3.1)

where

s1 =
1
a11

exp(r1 − 1), s2 =
1
a22

exp(r2 − 1). (3.2)

Proof. Note that

x1(n + 1) = x1(n) exp(r1 − a11x1(n) − a12x2(n))

= x1(n) exp(r1 − a11x1(n)) exp(−a12x2(n)), exp(−a12x2(n)) ≤ 1
(3.3)
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for all n, therefore

x1(n + 1) ≤ x1(n) exp(r1 − a11x1(n)) ≤ 1
a11

exp(r1 − 1). (3.4)

Here we used

max
x≥0

x exp(r − ax) = 1
a

exp(r − 1) (3.5)

for a > 0. Then

lim sup
n→∞

x1(n) ≤ 1
a11

exp(r1 − 1). (3.6)

The proof of

lim sup
n→∞

x2(n) ≤ 1
a22

exp(r2 − 1) (3.7)

is similar.

Lemma 3.2. Assume that {x1(n), x2(n)} is the solution of (1.1) with initial values x1(0) >
0, x2(0) > 0 and

1
a11

exp(r1 − 1) <
r2

a21
,

1
a22

exp(r2 − 1) <
r1

a12
, (3.8)

then

lim inf
n→∞

x1(n) ≥ t1 > 0, lim inf
n→∞

x2(n) ≥ t2 > 0, (3.9)

where

t1 =
r1

a11

(
1 − a12

r1
s2

)
exp

(
r1 − a12s2 − a11

r1
s1

)
,

t2 =
r2

a22

(
1 − a21

r2
s1

)
exp

(
r2 − a21s1 − a22

r2
s2

)
,

(3.10)

and s1, s2 are the same as in Lemma 3.1.

Proof. The proof of this lemma is similar to that of [3, Proposition 2].

Note that t1 > 0, t2 > 0, therefore, system (1.1) is permanent from Lemmas 3.1 and 3.2
under the assumption (3.8).
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Theorem 3.3. Assume that (3.8) is satisfied then system (1.1) with initial values x1(0) > 0, x2(0) >
0 is permanent.

Theorem 3.4. Assume that (2.6), and (3.8) hold. The coefficients of (1.1) satisfy ri ≥ 1 (i = 1, 2) and

(1) a22 ≤ D1 or a22/D ≥ r1/a21,

(2) a11 ≤ D2 or a11/D ≥ r2/a12.

Further, assume that

M̂1 ≤ D1

D
/=

1
a11

, M̂2 ≤ D2

D
/=

1
a22

, (3.11)

where M̂1 and M̂2 are defined in Lemma 2.2. Then the unique positive equilibrium (x∗
1, x

∗
2) of (1.1)

is globally attractive.

Proof. If we denote

l1 = lim inf
n→∞

x1(n), l2 = lim inf
n→∞

x2(n),

L1 = lim sup
n→∞

x1(n), L2 = lim sup
n→∞

x2(n)
(3.12)

for any positive solution {x1(n), x2(n)} of system (1.1) with initial conditions x1(0) >
0, x2(0) > 0, we have

0 < l1 ≤ L1 < +∞, 0 < l2 ≤ L2 < +∞ (3.13)

from Theorem 3.3 and Definition 2.4. Moreover,

l1 ≥ l1 exp(r1 − a11L1 − a12L2), (3.14)

l2 ≥ l2 exp(r2 − a21L1 − a22L2), (3.15)

L1 ≤ L1 exp(r1 − a11l1 − a12l2), (3.16)

L2 ≤ L2 exp(r2 − a21l1 − a22l2) (3.17)

from (2) of Lemma 2.3.
Note (3.13), the inequalities (3.14)–(3.17) can be written as follows:

r1 − a11l1 − a12l2 ≥ 0, (3.18)

r2 − a21l1 − a22l2 ≥ 0, (3.19)

r1 − a11L1 − a12L2 ≤ 0, (3.20)

r2 − a21L1 − a22L2 ≤ 0. (3.21)
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From (3.18)–(3.21), it is clear that (l1, l2) lies in the domain

G2 =
{(
x, y

) | x ≥ 0, y ≥ 0, r1 − a11x − a12y ≥ 0, r2 − a21x − a22y ≥ 0
}
, (3.22)

while (L1, L2) lies in the domain G1 (see (2.7)). Therefore, from (3.11) and Lemma 2.2, the
maximum of f(x, y) = x exp(r1−a11x−a12y) in domainG1 isD1/D, the maximum of g(x, y) =
y exp(r2 − a21x − a22y) in domain G1 is D2/D. Then

L1 ≤ D1

D
, L2 ≤ D2

D
. (3.23)

But in domain G1, only the point (x∗
1, x

∗
2) = (D1/D,D2/D) satisfies these two inequalities,

then

L1 =
D1

D
= x∗

1, L2 =
D2

D
= x∗

2. (3.24)

At this point, we claim that

l1 =
D1

D
= x∗

1, l2 =
D2

D
= x∗

2. (3.25)

Note (3.11), we must consider the following four cases to prove claim (3.25):

Case (i): D1/D < 1/a11, D2/D < 1/a22,

Case (ii): D1/D < 1/a11, D2/D > 1/a22,

Case (iii): D1/D > 1/a11, D2/D < 1/a22,

Case (iv): D1/D > 1/a11, D2/D > 1/a22.

It is easy to verify that the function h(x) = x exp(r − ax), a > 0 is monotonously
increasing when 0 < x < 1/a and monotonously decreasing when x > 1/a. With this fact
and Lemma 2.3, the proof of the claim is given as below.

Case (i)

We rearrange the two equations of (1.1) as

x1(n + 1) = x1(n) exp(r1 − a11x1(n)) exp(−a12x2(n)),

x2(n + 1) = x2(n) exp(r2 − a22x2(n)) exp(−a21x1(n)).
(3.26)

Note that

L1 = x∗
1 =

D1

D
<

1
a11

, L2 = x∗
2 =

D2

D
<

1
a22

, (3.27)
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we have x1(n) < 1/a11, x2(n) < 1/a22 for n sufficiently large. Then

l1 ≥ l1 exp(r1 − a11l1 − a12L2),

l2 ≥ l2 exp(r2 − a21L1 − a22l2).
(3.28)

That is

r1 − a11l1 − a12L2 ≤ 0, (3.29)

r2 − a21L1 − a22l2 ≤ 0. (3.30)

The inequalities (3.24), (3.29) together with (3.30) imply that

l1 ≥ D1

D
= x∗

1, l2 ≥ D2

D
= x∗

2. (3.31)

From (3.13) and (3.24), we get

l1 =
D1

D
= x∗

1, l2 =
D2

D
= x∗

2. (3.32)

Case (ii)

Similarly, we have

l1 ≥ l1 exp(r1 − a11l1 − a12L2), (3.33)

l2 ≥ L2 exp(r2 − a21L1 − a22L2). (3.34)

From (3.13), (3.24), and (3.33), we get l1 = D1/D = x∗
1. And from (3.13), (3.24), and (3.34),

l2 = L2 = D2/D = x∗
2 follows.

The proof of Case (iii) is similar to that of Case (ii).

Case (iv)

We have

l1 ≥ L1 exp(r1 − a11L1 − a12L2),

l2 ≥ L2 exp(r2 − a21L1 − a22L2).
(3.35)

Therefore,

l1 =
D1

D
= x∗

1, l2 =
D2

D
= x∗

2 (3.36)

are consequent from (3.13), (3.24), and (3.35).
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The proof of claim (3.25) is completed. Note (3.24) and (3.25),

lim
n→∞

x1(n) = x∗
1, lim

n→∞
x2(n) = x∗

2 (3.37)

for any positive solution {x1(n), x2(n)} of system (1.1). That is, (1.1) is globally attractive
according to Definition 2.7.

Theorem 3.5. Assume that the assumptions of Theorem 3.4 are satisfied, moreover,

D1

D
<

1
a11

,
D2

D
<

1
a22

, (3.38)

then the unique positive equilibrium of system (1.1) is globally asymptotically stable.

Proof. From Theorem 3.3, system (1.1) is strongly persistent. That is, condition (ii) of
Lemma 2.9 is satisfied.

Di > 0, i, j = 1, 2 implies that r1a22 − r2a12 > 0, r2a11 − r1a21 > 0. Set c1 = r2, c2 = r1, it is
clear that c1a11 > c2a21, c2a22 > c1a12. Thus, condition (i) of Lemma 2.9 is satisfied.

Let {x1(n), x2(n)} be any positive solution of system (1.1). We show below that

a11x1(n + 1) ≤ 1, a22x2(n + 1) ≤ 1 (3.39)

for all large n. By Theorem 3.4, we know that (x∗
1, x

∗
2) = (D1/D,D2/D) is globally attractive.

That is

lim
n→∞

x1(n) =
D1

D
, lim

n→∞
x2(n) =

D2

D
. (3.40)

From (3.38) we first select ε > 0, such that

D1

D
+ ε <

1
a11

,
D2

D
+ ε <

1
a22

. (3.41)

Further from (3.40), we know that there exists N1 and N2, such that

x1(n + 1) <
D1

D
+ ε, for n ≥N1,

x2(n + 1) <
D2

D
+ ε, for n ≥N2,

(3.42)

respectively. Then denote N = max{N1,N2}, we get

x1(n + 1) <
D1

D
+ ε <

1
a11

, x2(n + 1) <
D2

D
+ ε <

1
a22

(3.43)

for n ≥ N from (3.41). That is, (3.39) is true for all sufficiently large n. Therefore, condition
(iii) of Lemma 2.9 is satisfied. The proof is completed by applying Lemma 2.9.
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Theorem 3.6. Assume that (2.6), and (3.8) hold, the coefficients of (1.1) satisfy ri ≥ 1 (i = 1, 2) and

D1

D
<
a22

D
<

r1

a21
,

D2

D
<
a11

D
<

r2

a12
, (3.44)

a22

D
exp

(
D1

a22
− 1

)
<

1
a11

,
a11

D
exp

(
D2

a11
− 1

)
<

1
a22

, (3.45)

then the positive equilibrium of system (1.1) is globally asymptotically stable.

Proof. From the proof of Theorem 3.4, we know that (L1, L2) lies in domain G1. Therefore, we
obtain

lim sup
n→∞

x1(n) ≤ a22

D
exp

(
D1

a22
− 1

)
<

1
a11

, lim sup
n→∞

x2(n) ≤ a11

D
exp

(
D2

a11
− 1

)
<

1
a22

(3.46)

from Lemma 2.2. That is, condition (iii) of Lemma 2.9 is satisfied. Conditions (i) and (ii)
of Lemma 2.9 are also satisfied. Then the positive equilibrium of system (1.1) is globally
asymptotically stable by applying Lemma 2.9.

4. Numerical Examples

In this section, we give two numerical examples to show the feasibility of the assumptions of
the results. The first example also shows that system (1.1) can be globally attractive when the
intrinsic growth rates of the two species are greater than 1 + ln 2 .= 1.6931, and this result can
be obtained by Theorem 3.4.

Example 4.1. Consider the following case of system (1.1):

r1 = 1.95, r2 = 1.8, a11 = 0.5, a12 = 0.1, a22 = 0.5, a21 = 0.09, (4.1)

then

D1 = 0.7950, D2 = 0.7245,

D1

D
= x∗

1 = 3.2988,
D2

D
= x∗

2 = 3.0062,

1
a11

exp(r1 − 1) = 5.1714,
1
a22

exp(r2 − 1) = 4.4511,

r2

a21
= 20.0000,

r1

a12
= 19.5000,

1
a11

=
1
a22

= 2.0000,

r2

a21
exp

(
r1 − a11

r2

a21

)
= 0.0064,

r1

a12
exp

(
r2 − a22

r1

a12

)
= 0.0069.

(4.2)

We see that the conditions of Theorem 3.4 are satisfied. Therefore, the positive
equilibrium of system (1.1) is globally attractive (see Figure 1). But this result cannot be
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Figure 1: Solutions of system (1.1) with initial values (x1(0), x2(0)) =(10,9), (1,10), (0.01,0.09), (9,0.1), and
r1 = 1.95, r2 = 1.8.
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Figure 2: Solutions of system (1.1) with initial values (x1(0), x2(0)) = (50, 45), (1, 47), (0.1, 0.09), (48, 0.1),
and r1 = 1.1, r2 = 1.2.

obtained by [3, Theorem 3] when consider the autonomous case of this theorem(the model
studied in [3] is nonautonomous). In fact, the condition of [3, Theorem 3] must satisfy
exp(ri − 1) − 1 < 1 (i = 1, 2) when ri > 1, that is, ri < 1 + ln 2 .= 1.6931 (i = 1, 2). In Example 4.1,
ri > 1 + ln 2 (i = 1, 2).

The following example shows that system (1.1) can be globally asymptotically stable
when the intrinsic growth rates of the two species are greater than 1, and this result can be
obtained by Theorem 3.6.

Example 4.2. Consider the following case of system (1.1):

r1 = 1.1, r2 = 1.2, a11 = 0.05, a12 = 0.02, a22 = 0.06, a21 = 0.015, (4.3)
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then

D1 = 0.0420, D2 = 0.0435,

x∗
1 = 15.5556, x∗

2 = 16.1111,

1
a11

exp(r1 − 1) = 22.1034,
1
a22

exp(r2 − 1) = 20.3567,

r2

a21
= 80.0000,

r1

a12
= 55.0000,

r2

a21
exp

(
r1 − a11

r2

a21

)
= 4.4019,

r1

a12
exp

(
r2 − a22

r1

a12

)
= 6.7351,

a22

D
exp

(
D1

a22
− 1

)
= 16.4626,

a11

D
exp

(
D2

a11
− 1

)
= 16.2610,

1
a11

= 20.0000,
1
a22

= 16.6667.

(4.4)

It is clear that the conditions of Theorem 3.6 are satisfied. Thus by Theorem 3.6 the
positive equilibrium of system (1.1) is globally asymptotically stable (see Figure 2).

Example 4.2 shows that our results improve [12, Theorem 3] by providing estimates
for the smallness of r1, r2. The work in [10, Theorem 2] states that if D1 > 0, D2 > 0, ri ≤ 1 (i =
1, 2), then the positive equilibrium (x∗

1, x
∗
2) is globally asymptotically stable. Thus the global

asymptotical stability of system (1.1) in the case of Example 4.2 cannot be obtained by [10,
Theorem 2] because of ri > 1 (i = 1, 2).

5. Conclusion

In this paper, we further discuss the global dynamics of a discrete autonomous competitive
model of Lotka-Volterra type. Sufficient conditions are obtained to guarantee the perma-
nence, global attractivity, and global asymptotical stability of the system. These conditions
are expressed by the coefficients of the model and can be easily verified. Numerical examples
are also given to show the feasibility of the conditions.

Earlier works have shown that the system of this type can be globally attractive when
the intrinsic growth rates of the two species are less than 1+ln 2 ([3], for single-species system
see [18]). It is shown in [10] that the system can be globally asymptotically stable when the
intrinsic growth rates of the two species are less than 1. In [16], it is shown that the system
can exhibit chaotic behavior when the intrinsic growth rates of the two species are equal
and greater than 3.13. But the global dynamics of the system is not clear enough when the
intrinsic growth rates of the two species are greater than 1 and less than 3.13. We obtain that
the system can also be globally asymptotically stable when the intrinsic growth rates of the
two competitive species are greater than 1 and globally attractive when the intrinsic growth
rates of the two competitive species are greater than 1 + ln 2.
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For the global stability of the system, the following condition in Theorem 3.5:

D1

D
<

1
a11

,
D2

D
<

1
a22

, (5.1)

can be reduced to the following by direct computation:

r1 < 1 +
a12

a22
, r2 < 1 +

a21

a11
. (5.2)

And the above inequalities imply that ri (i = 1, 2) can be greater than 1 while the system is
globally asymptotically stable.
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