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We consider a discrete mutualism model with feedback controls. Assuming that the coefficients in

the system are almost periodic sequences, we obtain the existence and uniqueness of the almost
periodic solution which is uniformly asymptotically stable.

1. Introduction

Two species cohabit a common habitat and each species enhances the average growth rate
of the other; this type of ecological interaction is known as facultative mutualism [1]. A two
species mutualism model can be described in the following form:

d]\cfllt(t) = Ni(8) (N1 (), Na (1)), (1.1)
dl\cfé(t) = Ni(t) (N1 (t), Na(t)), |
where fi, f> are continuously differentiable such that
Oft o 92y (12)

ON, =7 ON; ~

One of the simplest models which satisfies the above assumption is the traditional Lotka-
Volterra two species mutualism model, which takes the form

dNi(t)
dt

dN>(t)
dt

= N(t)(ar — b1 N1(t) + c1Na(t)),
(1.3)
= Ny(t)(az — baNa(t) + caNq (t)).
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Since the above system could exhibit unbounded solutions [2, 3] and it is well known that in
nature, with the restriction of resources, it is impossible for one species to survive if its density
is too high. Thus, the above model is not so good in describing the mutualism of two species.
Gopalsamy [4] has proposed the following model to describe the mutualism mechanism:

d
]\Cfl;(t) =11 N1(t) —Kllip;\lé\(]:)(t) _Nl(t)]/
(1.4)
d
]\(;i(t) =r2Na(t) —Kzlit;\zfll\(];)(t) —Nz(t)],

where r; denotes the intrinsic growth rate of species N; and a; > Kj,i = 1,2. The carrying
capacity of species N; is K; in the absence of other species, while with the help of the
other species, the carrying capacity becomes (K; + a;N3-;)/(1 + N3-;),i = 1,2. The above
mutualism can be classified as facultative, obligate, or a combination of both. For more details
of mutualistic interactions, we refer to [5-9]. Realistic models require the inclusion of the
effect of changing environment. This motivate us to consider the following nonautonomous
model:

T = none [FEER0E0 N,
(15)
T = N | 20RO - ).

Since many authors [10, 11] have argued that the discrete time models governed by difference
equations are more appropriate than the continuous ones when the populations have
nonoverlapping generations, then, discrete-timemodels can provide efficient computational
types of continuous models for numerical simulations. It is reasonable to study the
discrete-time mutualism model governed by difference equations. One of the ways of
deriving difference equations modeling the dynamics of populations with nonoverlapping
generations is based on appropriate modifications of the corresponding models with
overlapping generations [4, 12]. In this approach, differential equations with piecewise
constant arguments have been proved to be useful. Following the same idea and the same
method in [4, 12], one can easily derive the following discrete analog of (1.5), which takes the
form of

Ki(n) + ay(n)xz(n)
1+ xy(n)

x1(n+1) =x1(n) exp{rl(n) -x1(n) - bl(n)ul(n)] },

(1.6)
K> (n) + ax(n)x1(n)
1+ x1(n)

xa(n 4 1) = xa(m) exp ra(n) - (o) - oty }

The exponential form of (1.6) is more biologically reasonable than that directly derived by
replacing the differential by difference in (1.5). Feedback control is the basic mechanism by
which systems, whether mechanical, electrical, or biological, maintain their equilibrium or
homeostasis. During the last decade, a series of mathematical models have been established
to describe the dynamics of feedback control systems [13-17].
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In this paper, we are concerned with the following discrete mutualism model with
feedback controls:

Ki(n) + ay(n)xz(n)
1+ x2(n)

x1(n+1) =x1(n) exp{rl(n) - x1(n) - b1(n)u1(n)] },

K> (n) + ax(n)x1(n)
1+ x1(n)

—x3(n) — by(n)uy(n)

X (n+1) = x2(n) eXP{rz(n) } (17)

Aui(n) = —a1(n)uy(n) + c1(n)x1(n),

Aup(n) = —ax(n)uz(n) + c2(n)x2(n).

To the best of our knowledge, though many works have been done for the population
dynamic system with feedback controls, most of the works dealt with the continuous time
model. For more results about the existence of almost periodic solutions of a continuous
time system, we can refer to [18-22] and the references cited therein. There are few works
that consider the existence of almost periodic solutions for discrete time population dynamic
model with feedback controls. So, our main purpose of this paper is to study the existence
and uniqueness of almost periodic solutions for the model (1.7).
Throughout this paper, we assume that

(H) {ri(n)}, (Ki(n)}, {ai(n)}, {ai(n)}, {bi(n)}, and {c;(n)} for i = 1,2 are bounded non-
negative almost periodic sequences such that

O<r}§ri(n) <rf, 0<Kf§Ki(n)§K}‘, O<af§ai(n) <af,
(1.8)
0O<al<aj(n)<a‘<l, 0 < bl <b;(n) <bY, 0<ci<ci(n)<cl,

and a; > k; fori=1,2.

Here, for any bounded sequence {a(n)}, a* = sup, .y {a(n)} and al = inf,en{a(n)}. By the
biological meaning, we focus our discussion on the positive solution of the system (1.7). So it
is assumed that the initial conditions of (1.7) are of the form

x:(0)>0, w(0)>0, i=1,2. (1.9)

One can easily show that the solutions of (1.5) with the initial condition (1.9) are defined and
remain positive foralln € Z* = {0,1,2,...}.

2. Preliminaries

In this section, we will introduce two definitions and a useful lemma.

Definition 2.1 (see [23]). A sequence x : Z — R is called an almost periodic sequence if the
¢- translation set of x:

E{e,x} ={reZ:|x(n+71)-x(n)| <e}, (2.1)
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foralln € Zis arelatively dense setin Z for all € > 0, that is, for any given € > 0, there exists an
integer | > 0 such that each discrete interval of length I contains an integer 7 = 7(¢) € E{¢, x}
such that

|[x(n+7) —x(n)| <eg, (2.2)

for all n € Z, T is called the ¢-translation number of x(n).

Definition 2.2 (see [23]). Let f : Zx D — Rk, where D is an open set in R¥, f(n, x) is said to
be almost periodic in n uniformly for x € D, or uniformly almost periodic for short, if for any
€ > 0 and any compact set S in D, there exists a positive integer I(g, S) such that any interval
of length I(g, S) contains an integer 7 for which

|f(n+7,x) = f(n,x)| <e (2.3)

foralln € Zand x € S. 7 is called the e-translation number of f(n, x).

Lemma 2.3 (see [23]). {x(n)} is an almost periodic sequence if and only if for any sequence {h, } C
Z there exists a subsequence {hi} C {h}} such that x(n + hy) converges uniformly on n € Z as
k — oo. Furthermore, the limit sequence is also an almost periodic sequence.

3. Persistence
In this section, we establish a persistence result for model (1.7).
Proposition 3.1. Assume that (H) holds. For every solution (x1(n), x2(n), u1(n), u2(n)) of (1.7)

limsup xi(n) < xj, limsupx;(n) <x3, limsupui(n)<uj, limsupuy(n) <uj, (3.1)
n— oo n— oo n— oo n— oo :

where
=GRl (D) xi=Geplti-nl w= T w=BE G
Proof. We first present two cases to prove that
lim sup x1(n) < x7. (3.3)

n—oo
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Case 1. By the first equation of model (1.7), (H) and (1.9), we have

Ki(n) + s (m)xa(n) x1(n) — by (n)u1 (1)

}

x1(n+1) =x1(n) exp{rl(n) [

1+ xy(n)
<xi(m) exp(ri(m)]m (n) - x1(n) = by (W (m)]) (34)
wnimes{rino - 365 i)

Then there exists an Iy € N such that x1(lp + 1) > xi1(lp). So, 1 — x1(lp)/a1(ly) —
(b1 (lo)u1(Io) /a1 (lp)) > 0. Hence, x1(lp) < a1 (lp) < af < x}, and

x1(lo +1) < x1(Io) exp{ﬁ(lo)m(lo) [1 - 282; -2 (iol)(l;;)(l(’) }
l
cotosf(e 20

@ o (1 20Y] N

< — explaf (r - 1)]
ry

= x].

Here we used maxyerxexp(r(1 - x)) = exp(r —1)/r for r > 0. We claim that x;(n) < xj for
n> lo.

In fact, if there exists an integer m > ng + 2 such that x;(m) > xj, and letting m; be
the least integer between ny and m such that x;(m1) = max,,<p<m, {x1(n)}, then my > nyp + 2
and x1(m1) > x1(my — 1) which implies x1(m1) < x] < x1(m). This is impossible. The claim is
proved.

Case 2 (x1(n) > x1(n + 1) for n € N). In particular, lim,_, ,x;(n) exists, denoted by x;.
We claim that x; < x]. By way of contradiction, assume that x; > x}. Taking lim, (1 -
x1(n)/ai1(n) —bi(n)ui(n)/a1(n)) = 0. Noting that af < x*, hence

B x1(n) B by (n)uy(n) <1 x1(n) <1

x1
wm am S mm e <Y (3.6

for n € N, which is a contradiction. This proves the claim.

We can prove that limsup, | _ x»(n) < xJ in the similar way. Therefore, for each £ > 0,
there exists a large enough integer ng such that x;(n) < x} +¢,i = 1,2 whenever n > ng. The
proof of limsup, _, u;(n) < u;(i = 1,2) is very similar to that of Proposition 1 in [11]. Here
we omit the details here. O
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Proposition 3.2. Assume that (H) and (1.6) hold; furthermore, Ki - biu; > 0and Ké - bju; >0,
where u} and w} are the same as those in Proposition 3.1. Then

liminfx;(n) > x1., liminfxy(n) > x2., liminfug(n) > uy., liminfuy(n) > uz, (3.7)
n— oo n— oo n— oo n— oo
where x1, = (Ki - bj'uy) exp[r{(Ki - x] = bluj)], x2, = (Ké - bjus) exp[ré(Kl2 - x5 - bju3)],
Ui, = X1,/ A, e = Cyx0./ df.

Proof. We also present two cases to prove that liminf,, _, ,x1 (1) > x1..
For any € > 0 which satisfies K| - b“u} > 0, according to Proposition 3.1, there exists
ny € N such that

xi1(n) <xj+e, xMm)<xy+e, wmn) <uj+e, wn) <u;+e, (3.8)
for n > ny.
Case 1. There exists a positive integer Iy > 1y such that x; (Ip + 1) < x1(lp). Note that for n > I,

Ky (n) + ai(n)xa(n)
1+ x2(n)

x1(n+1) =x1(n) exp{rl (n) [ —x1(n) - by(n)uy (n)] }

> 1 (m) exp 1 (m) [Ki (1) = x1 (1) = by (n)uas (m)]
xi(n)  bi(m)u(n) } (3.9)
Ki(n) ~ Ki(n)

xi(n) ba‘(u:+s>]}.

Ky (n) Ky (n)

= x1(n) exp{rl (n)K1(n) [1 -

> x1(n) exp{fl (n)Ky(n) [1 -

In particular, with n = Iy, we get

xi(lo) by(uj+e)

_ <0, (3.10)
K (lo) K (lo)
which implies that x; (Ip) > Ki - b} (u} +¢). Then
TV I el xj+e  bi(uj+e)
xi1(lp+1) > [K1 - b (u] + 5)] exp|r K| 1- T . (3.11)
1 1

Let x1, = [Ki - bl (uj +¢)] exp[r{Ki(l = (x] + 5)/K§ - by (u] + E)/Ki)]. We claim that
x1(n) > x1, for n > I.

By a way of contradiction, assume that there exists a pg > Iy such that x1(pg) < x1.. Then
po > lo +2, let p1 > Iy + 2 be the smallest integer such that x1(p1) < x1.. Then x(p; — 1) < x(p1).
The above argument produces that x;(p1) > x1,, a contradiction. This proves the claim.



Discrete Dynamics in Nature and Society 7

Case 2. We assume that x1(n+1) > x;(n) for all large n. Then lim,,_, ,,x1(n) exists, denoted by
x,. We claim that x; > K i —bf (uj+¢). By way of contradiction, assume that x; < K i -b (uj+e).
Taking lim,, . o (1 — x1(n) / K1 (n) — b1 (n)uq(n) / K1(n)) = 0, which is a contradiction, since

TUNLICTIC) R bi(ui+e)

Ki(n) ~~ Ki(n) Kl K|

liminf (1 -

n—oo

(3.12)

Noting that x] > K{ > Kll, we see that Kl1 —b} (u]+¢) > x1,,and lim, _,gx1, = x1.. We can
easily see that liminf, _, ,x1 (1) > x1, holds. Similarly, we can prove that liminf,,_, ,xp(n) >
X2.. Thus for any € > 0 small enough, there exists a positive integer ng, such that x;(n) >
Xix — € > 0 for n > ny.

The proof of liminf,_, ,u;(n) > u;,i = 1,2 is very similar to that of Proposition 2 in
[11]. Here we omit the details. O

4. Main Results

For our purpose, we first introduce the following results which are given in Persistence.

Lemma 4.1. Assume that (1.9), (H), K} — b*u! > 0, and K', — b4 > 0 hold, then

xi, <liminfx;(n) < limsup x;(n) < x}, w;, <liminfu;(n) <limsup u;(n) < u;, (4.1)

n—oo n—oo n— oo

where x7 = (aj /1!*) explat(r} = 1)],u} = x:.‘c:.‘/aﬁ,xi* = (Kf—bfu;‘) exp[rl.l(Kl’.—x;.“ =biu})], ui =
cﬁxi*/a?,i =1,2.

In [24], Zhang considered the following almost periodic difference system
x(n+1)=f(n,x(n)), neZt, (4.2)

where f : ZxSp — RK,Sp = {x € RF: ||x|| < B}, and f(n, x) is almost periodic in 7 uniformly
for x € Sp and is continuous in x. Related to system (4.2), he also considered the following
product system:

x(n+1) = f(n,x(n)), y(n+1) = f(n,yn)) (4.3)

and obtained the following theorem.

Theorem 4.2 (see [24]). Suppose that there exists a Lyapunov functional V (n,x,y) defined for
ne€ Z*,||x|| < B, ||y|| < B satisfying the following conditions:

() a(llx - yll) £ V(n,x,y) <b(||x - y||), where a,b € x withk = {a € C(R*,R*) : a(0) =
Oand a is increasing},
(ii) [V(n, x1,y1) = V(n,x2, y2)| < L(|lx1 = x2|| + |ly1 — y2ll), where L > 0 is a constant,

(iii) AV (n,x,y) < —aV(n,x,y), where 0 < a < 1is a constant and AVy3(n,x,y) =
V(Tl + 1/f(n/x)rf(nry)) - V(n/x/y)'
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Moreover, if there exists a solution ¢(n) of (4.2) such that ||¢(n)|| < B* < B for n € Z*, then there
exists a unique uniformly asymptotically stable almost periodic solution p(n) of system (4.2) which is
bounded by B*. In particular, if f(n,x) is periodic of period w, then there exists a unique uniformly
asymptotically stable periodic solution of (4.2) of period cw.

According to Theorem 4.2, we first prove that there exists a bounded solution of (1.7)
and then construct an adaptive Lyapunov functional for (1.7).

We denote by Q the set of all solutions X(n) = (x1(n), x2(n), ui(n), uz(n)) of system
(1.7) satistying xi« < x;(n) < x7,u; <ui(n) <uf (i=1,2) foralln € Z*.

Lemma 4.3. Assume that (H) and the conditions of Lemma 4.1 hold, then Q # (.

Proof. It is now possible to show by an inductive argument that system (1.7) leads to

x,'(Tl) = xi(o) exp ; 1+ Xj(l)

S {n(l) [Ki(” DL 1O N bia)ui(l)] }

(4.4)

—

n—

ui(n) = u;(0) = > {ai(Yu() - ci()xi(D)},

=0

fori,j = 1,2,i#j. From Lemma 4.1, for any solution X(n) = (x1(n), x2(n), u1(n), us(n)) of
(1.7) with initial condition (1.9) satisfies (4.2). Hence, for any ¢ > 0, there exist ny, if ng is
sufficiently large, we have

Xis —€ < x;(n) <X +¢€, un—esui(n)<ui+e, Vn>ng, i=1,2. (4.5)

Let {7,} be any integer-valued sequence such that 7, — oo as a — oo, we claim that
there exists a subsequence of {7,}, we still denote by {7,}, such that

xi(n+7,) — x;(n) (4.6)

uniformly in 7 on any finite subset B of Z as « — oo, where B = {ay, ay,...,an}, an € Z(h =
1,2,...,m) and m is a finite number.

In fact, for any finite subset B C Z, when a is large enough, 7, +a, > ng,h =1,2,...,m.
So

Xi, —e<xi(n+7,) <X +¢e, u,—e<u(n+7,) <u;+e. (4.7)

That is, {x;(n + 7a)}, {ui(n + 7,)} are uniformly bounded for large enough a.

Now, for a; € B, we can choose a subsequence {Tc(,l)} of {T,} such that {x;(a; + Tc(tl)) },
{ui(ar + ")} uniformly converges on Z* for a large enough.

Similarly, for a, € B, we can choose a subsequence {T,,(CZ)} of {Tf,l)} such that {x;(a; +
T, )) }, {ui(ax + Téz))} uniformly converges on Z* for a large enough.

Repeating this procedure, for a,, € B, we obtain a subsequence () of (7"} such

that {x;(a;, + Tlim)) }, {ui(am + Tf,m))} uniformly converges on Z* for a large enough.
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Now pick the sequence {Tbﬁ"” } which is a subsequence of {7, }, we still denote it as {7,},
then for all n € B, we have x;(n + 7,) — x}(n), ui(n +7,) — u}(n) uniformly in n € B as
a — co.

By the arbitrariness of B, the conclusion is valid.

Since {ri(n)}, {Ki(n)}, {ai(n)}, {ai(n)}, {bi(n)}, and {ci(n)} are almost periodic
sequences, for above sequence {7,}, T, — o0 as @ — oo, there exists a subsequence still
denote by {7,} (if necessary, we take subsequence), such that

rin+1,) —ri(n), Kin+t,) — Ki(n), ai(n+7,)— ai(n),
4.8
ai(n+7t,) — ai(n), bn+t,) —bi(n), cin+t,) — ci(n), (48)

as a — oo uniformly on Z*.
For any o € Z, we can assume that 7, +0 > ng for a large enough. Letn > 0and n € Z*,
by an inductive argument of (1.7) from 7, + 0 to n + 7, + 0 leads to

Xi(n+ Ty + 0) = xi(T, + O) eXp Z

n+Ta+0—1{ri(l) I:Kl(l) + cxl(l)x](l) : xi(l) : bl(l)ul(l)] },

=, 1+ x;(I)
(4.9)
N+Tp+0—1
ui(n+ 7, +0) = ui(1, + 0) - Z {ai(Dui() + c;(D)xi(1) }.
I=T,+0

Then, fori,j =1,2,i#j, we have

ol Ki(l+7a) + ai (1 + Ta)xj (1 + )
xi(n+ 7Ty +0) = xi(T, + 0) exp g {ri(l +T,,,)[ Trx,0+m)

—xi(l +7Ty) = b;(l + T)u; (1 + Tu):l }, (4.10)

n+o-1
U(n+ 7T, +0) =ui(t, +0) - Z {ai(l + To)ui(l + 7o) — ci(l + To)xi (L + T4) ).
I=0

Leta — oo, foranyn >0,

red [ TKD) +a(x()
x;(n+0) = x;(0) exp Z {ri(l)[ T+ 20
j

I=0

-x;(I) - bi(l)”i(l)] ,
(4.11)

n+o-1

u(n+o)=u:(o) - Z {ai(Dui (1) - ci(Dxi (1)}

I=0

By the arbitrariness of o, X*(n) = (x](n), x5(n), uj(n),u5(n)) is a solution of model (1.7) on
Z*. Itis clear that 0 < xj* < x}(n) < x7,0 <ujx <ui(n) <uj, foralln € Z%,i =1,2.S0 Q#0.
Lemma 4.3 is valid. O
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Theorem 4.4. Suppose that the conditions of Lemma 4.3 are satisfied, moreover, 0 < < 1, where

p= mm{n], 1]}

rij = 27‘1?361'* _ (1" x* +Tu2x*x*>< _ Kl> uZx*Z Cu2 *2 — byt u2 ubf’ ot *<1 a>

j i i i i Xi T
12_s2( u 1 u2 x ¥ u 1 Uy u2 u )
1 X; <LX]~ k].> <r] x; +1; x]xl>(a]. k].> b] ir <tx]. kj>,
Ut u2 u 1 uyu Uy u2 ripH U,k 1
= -bixjr; <zxi —Ki> -r{°b - al” - 2a - b!x;r!'” —r/'b} - cl'x; <1—ai>,

(4.12)

i,j = 1,2,i#], then there exists a unique uniformly asymptotically stable almost periodic solution
X(n) = (x1(n), x2(n), ui(n), uz(n)) of (1.7) which is bounded by Q for all n € Z*.

Proof. Let p1(n) = Inx;(n),p2(n) = Inx,(n). From (1.7), we have

Ki(n) + ai(n) exp pj(n)
1+exppj(n)

pi(n+1) = pi(n) + ri(n) [ —exppi(n) - bi(n)ui(n)],

(4.13)

Aui(n) = —a;(n)u;(n) + ci(n) exp pi(n),

where i,j = 1,2,i#j. From Lemma 4.3, we know that system (4.13) has bounded solution
Y (n) = (p1(n), p2(n), us (n), ux(n)) satisfying

Inx; <pi(n) <Inx}, uu<un)<u;, i=1,2 neZ". (4.14)
p 1 1

Hence, |p;(n)| < A;, lui(n)| < B;, where A; = max{|In x|, [Inx][}, B; = max{u;, u}},i=1,2.
For (X,U) € R**2, we define the norm ||(X,U)|| = 37, |xi| + 32, |uil.
Consider the product system of system (4.13)

Ki(n) + ai(n) exp pj(n)
1+exppj(n)

pi(n+1) =pi(n) + Ti(")[ - exppi(n) - bi(")”i(")],

Aui(n) = —a;(n)ui(n) + ci(n) exp pi(n),
(4.15)
Ki(n) + ai(n) exp g;(n)
1 +expg;(n)

gi(n+1) = gi(n) +ri(n) [ —expgi(n) - bi(n)wi(n)],

Aw;i(n) = —a;(n)w;(n) + c;(n) exp pi(n).
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Suppose Z = (p1(n), p2(n), u1(n), uz(n)), W = (q1(n), g2(n), wi(n), w>(n)) are any two
solutions of system (4.15) defined on Z* x S* x S*, then || Z|| < B, ||W|| < B, where

2
B=){Ai+Bj)
i=1
S = {(p1(n), p2(n), u1(n), uz(n)) | Inx; < pi(n) <Inxj,up <wi(n) <ui,i=1,2,neZ"}.
(4.16)
Consider a Lyapunov function defined on Z* x 5* x §* as follows:
2 5 ,
Vin, Z,W) = 3 (pi(n) - gi(m))” + (i (n) - wi(m))*}. (4.17)
i=1

It is easy to see that the norm ||Z - W]|| = Zizzl {lpi(n) — gi(n)| + |u;(n) — wi(n)|} and the norm
1Z-W], = {(ZZ,{(pi(n) - qi(n))2 + (ui(n) —wi(n))?} 1% are equivalent that is, there exist two
constants C; > 0, C, > 0, such that

CllZ-W[<Z-W]|, <CllZ-W]|, (4.18)
then
(CIZ-W|)? <V (n,Z,W) < (Co||Z - W)~ (4.19)

Let a € C(R',R"), a(x) = Ci>x%, b € C(R',R"),b(x) = C,2x2, thus condition (i) in
Theorem 4.2 is satisfied.
In addition,

|V(n, Zw)-v(nZ, W)(

2
{(n(n) —ai(m)” + (ui(m) ~wi(m))’ | = 3 { (i(m) = Gi(m)” + (a(m) - fr)xn))z}‘

i=1

HMN

2
|<pi<n> —qim)? = (Bi(m) = Gi(m)*| + X | @uim) = cwon(m))? = (@i (m) = u(m))’|
i=1

™Mw TfMI\J

{|(Pz(”) 6]1(”)) (Pz(”) ﬁi("))”(}?i(") - Qi(”)) - (ﬁi(”) - 171'(71)) |}

I
—_

2

D (wi(n) = wi(m) + (@i(n) — @;(m)) || (wi(n) = wi(n)) = ({i(n) - @i(n))|}

i=1

+

2
< D AUpim| + |aim]| + [Bi)| + G m)|) ([pi(n) = pim)| + |gi(n) = Gi(n)]) )
i=1
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2
+ D (i) + e ()| + |1 ()| + @i (m)]) (Jui () = i (m)| + |ewi(n) = @i(m)])}
i=1

1

2 2
L{Z |pi(n) = pi(n)| + |ui(n) — iii(n)|} +Z{Iqi<n>—fii<n>|+|wz-<n>—cr)i<n>|}}
i=1

L2+ | -

L (4.20)

where L = 4max{A;, B;} (i = 1,2). Hence the condition (ii) of Theorem 4.2 is satisfied. Finally,
calculate the AV of V(n) along the solutions of (4.15), we can obtain

AV(4,15)(1’1) = V(n + 1) - V(Tl)

MN

{(pin+1) - qtn+1))* + (win +1) = win +1))*}

I
[

i

2
= S i) - a:(m)* + (i) - wim))?

i=1

MN

= S {(pitn+ D = qi(n+ 1) = (pin) - qu(m))?

1]
—_

i

+i(n+ 1) —wi(n+1))% - (w;(n) - wi(n))z}

- (ai(n) = Ki(n)) (eP1) — &™)
= ;{ [(Pi(n) - gi(n)) +ri(n) (T P (1 + )

~ri(m) (4 — 1) — ry(m)bi(m) () ~ wi(m))]
= (pi(n) - gi(n))” + [(1 - ai(n)) (ui(n) - wi(n)) +ci(n) (epi(") - e‘“’”)]z
~(ui(m) - wi(m))*}

- i{ r2(n )(“1 (n) — K(n))*(eri™ —e%(n))

i=1 (1+eri™)?(1 4 em)?

(ai(n) = Ki(m)) (e"™ — ™) (pi(n) - qi(n))

+ Zri(n) (1 N ep]_(n)) (1 4 eqj(n))

+72(m) () — 4™ 4 2(m)b? () (1 () ~ wi(m))?
+2bi(m)r (m) (&M = &5 (us(m) = wi(m)) = 2r;(m)

x (pi(n) - gi(n)) (e"’i(") - efﬁ(n))



AViy15(n) = Z
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= 2bi(n)ri(n) (pi(n) — qi(n)) (ui(n) - wi(n))

(ai(n) = Ki(m)) (eP™ — e4™) (eP) — e™)
(1+eP™)(1+en™)

- 2rl.2(n)

(ai(n) — Ki(n)) (ePi™ — &™) (u;(n) — wi(n))

. 2
— Zbl(n)ri (Tl) (1 + epj(n)) (1 + eflj("))

- (1= ai(n))*(ui(n) — w;(n))* + c(n) (e""‘(") - eq"(")>2

+2¢(n) (1 - a;(m)) (us(n) = oi(n)) (™ = e#) — (us(m) - wi(n))z}-

Using the mean value theorem, we get

eP M — et = & (n) (pi(n) — qi(n)), i=1,2,

where ¢;(n) lies between e?i™ and e%™ i = 1,2. From (4.21), (4.22), we have

(pj(n) - gj(n))’
(1+ e”J‘(”))z(l + e‘ﬁ("))2

(pi(n) = qi(n)) (pj(n) - q;(n))
(1+ePim) (1 +en™)

{r? ()& (n) (ai(n) - Ki(n))?

+2r;(n)¢j(n)(ai(n) - Ki(n))

+ 12 (W& () (pi(n) = qi(n))” + 7 (Wb} () (i (m) = i ()
+ 2bi(n)& ()7 (m) (pi(n) = Gs(n)) (1 () — wi(n))

= 2ri(m)&i(m) (pi(n) - qi ()’

= 2by(n)ri(m) (ps(n) - 4s(n)) (1 () — wi(n))

(pj(n) - q;(n)) (pi(n) - qi(n))
(1+ePi™) (1 + i)

(ui(n) — wi(n)) (pj(n) - q;(n))

— 17 (n)&i(n)é(n) (ai(n) ~ Ki(n))

—2bi(n)¢;(n)r} (n)(a;(n) - Ki(n))

(1+ePim) (1 +en™)

+ (1 - a;(n)* (ui(n) - wi(n))* + ¢ (n)& (n) (pi(n) - %(”))2
+2¢i(n)(1 - ai(n)) (ui(n) — wi(n))éi(n)

x(pi(n) = qi(n)) = (ui(n) - wi(n))z}

13

(4.21)

(4.22)
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(pi(n) - q;(m))’
(1+ePi™)*(1+ et ™)?

2
= Zl {r? ()&} (n)(ai(n) - Ki(n))?

+2[ri(mé; () (@i (n) = Ki(m) = r2(m&i(m)& (m) (as(m) = Ki(m)

. (pim) —i(m)) (p; () — g;(m))
(1+ePim) (1 +en™)

(ui(n) - wi(n)) (pj(n) - g;(n))

203 ) ) = Ki) ==

+ [P E M) - 2rimg(n) + E M| (pitm) - i(m))?
+ [P + (1= ai(m)? = 1] (wi(m) - wi(m)?

+ Z[bi (n)é&i(n)r? (n) — bi(n)ri(n) + ci(n)&(n)(1 - ai("))]
x(uj(n) - wi(n)) (pi(n) - gi(n)) }

(pi(m) - q;(m))”
(1+ePi™)* (1 + 1 ™)?

2
<2 {T? ()& () (@:(n) ~ Ki(m))*
i=1

1

+2

[ri (n)¢j(n)(ai(n) - Ki(n))

(n) - qi(n)) (pj(n) - q;(n))
(1+ePi™) (1 +et™)

)i () ) — Ko

(ui(n) — wi(n)) (pj(n) - qj(n))

2 (1+ePim) (1 + et

bi(n)&;(n)r} (n) (ai(n) - Ki(n))

+| [P & ) - 2ri(m&m) + EmE )] (pi(m) - qu(m))?|
+ [ + (1 - aim)? - 1) (ui(n) - wi(n))?|

+2| [Bim&mr2(n) = bimri(n) + i ()& (m) (1 - ai(m)]

x(ui(n) — w;i(n)) (pi(n) — gi(n)) | }, (4.23)
we get

2
AVigas)(n) < D {Viij + Vaij + Vaij + Viij + Vsij + Veij ), j=1,2, (4.24)
in1
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where

(pj(n) - gj(m))?

5 = P2 () (@ (n) - Ki(m)?
Viij rl(n)éj(n)(“z(n) Ki(n)) (1+ep,-(n))2<1+eqf(n>>2

2
<ri? (at = K1) x5 (py(m) - q;(m)”,

Vaij = 2| [ritm () (i () = Ki(n)) = r2(m)&i(m)& () avi(m) = K ()]

y (pi(n) - gi(n)) (pj(n) — q;(n))
(T+eP ™) (1+e™)

< [(rixs + rigs ) (e = KD [0 = i) + (i () = q5m)) 7],

(ui(n) - wi(n)) (pj(n) - g;(n))
(1+ePim)(1+e1M)

Vaij = 2|bi(n)é;(n)r? (n) (ai(n) — Ki(n))

(4.25)
< b (ak = K [ (m) = i (m)® + (py(m) = g;(m)°]
Vi = | [rRm& ) - 2rimi(n) + EmE )| (pitm) - i)’
< [r12x = 2rbxis + 2] (pilm) - qu(m))?,
Vaig = |[rRmb2 (m) + (1= ai(m))? = 1] (us(m) - wi(m)|
< (r2b + @t + 202 ) (wi(n) - wi(m))?,
Vaig = 2|[bim (m)r2(n) = bimyri(n) + ci(m)&(m) (1 - ai(m)]
x(ui(n) = wi(n)) (pi(n) = g:(n))|
< [prxiri® 4 vt + i (1= al), (i) = woi(m)* + (pi(n) = qi(m))°)-

Hence,

2
AV(4,15)(71) < Z{ [(T‘qu; + rl?‘zx;x;> (D{? - K:) + riuzx;tz _ 2rfxi*
i=1

reia? o bt bt + e (1 al)| (i) - qi(m)®

2
ri? (al-‘ - K!> x4 <r?‘x”f + r?‘zxf‘x’f> (a;‘ - Kf)

17 i i) 7j (2t I Bt B |

* 2
byt (at = KD (py(m) - g;(m)
+ [ (at = KL) + 7262 + @t + 20 + b

iyl it

+1{'b} + ¢} x} <1 - aﬁ)] (ui(n) — w; (n))z}
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2
1 u k. x u 1 u2  x2
—Z{ [Zrl.xi* - <r x] +177°x; x])<ai —Ki> - 17X,
i=1

uZ *2 Uk u2 ripH Uk 1
- ¢l ;" = bix]r; bi+cixl.<1—ai>

- T;[Z <lx}l - k;>2x (r] xF+ r]”‘zx:‘x;‘> (a;‘ - kﬁ)
~bjix; 72 <a}‘ - kﬁ)] (pi(n) - gi(n))’

[ bl x* u2< >_r;42b;42_a?2 — blx* uZ

]1 i Xi T

-1{'b} - ¢}’ x} <1 - aé)] (ui(n) - wi(n))z}
2

< _Z{rij (pi(n) - Qi(n))z + ri*j(ui(n) - wi("))z}

i=1

2
< B2 { (pitm) = qi(m)* + (ws(m) - wi(m))*}
i=1
=-pV(n),
(4.26)

where f = {rij,r;‘].},i, j = 1,2,i#j. That is, there exists a positive constant 0 < < 1 such
that AV(415)(n) < —pV(n). From 0 < f < 1, condition (iii) of Theorem 4.2 is satisfied. So,
from Theorem 4.2, there exists a uniqueness uniformly asymptotically stable almost periodic
solution X(n) = (p1(n), p2(n),u1(n), ux(n)) of (4.13) which is bounded by S* for all n € Z*.
Which means that there exists a uniqueness uniformly asymptotically stable almost periodic
solution X (n) = (x1(n), x2(n),u1(n), ux(n)) of (1.7) which is bounded by Q for all n € Z*.
This completed the proof. O

5. An Example

In this section, we give an example to illustrate that our results are feasible.
In system (1.7), if we take i = 1,2 and

r(n) = 1.1+04cos(n), r(n)=08+02sin(n), Ki(n)=6+cos(n),
Ky(n) =5+cos(n), aj(n)=12+sin(n), ay(n)=1.6+cos(n),
bi(n) =0.5+0.1sin(n), by(n) =0.3+0.1cos(n), a(n)=0.9+02sin(n), oy
ay(n) = 0.6 +03sin(n), c(n) =0.5+03sin(n), ca2(n) = 0.6+ 0.2 cos(n).

Then it is easy to see that {r;(n)}, {Ki(n)}, {ai(n)}, {ai(n)}, {bi(n)}, and {c;(n)} fori=1,2 are
bounded nonnegative almost periodic sequences. By calculation, we get
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x} =44062, u}=50357, K!-b'u;=19775>0, xi, =0.3612, wu;, =0.0903,
x;=2.6000, u;=69333, K,-blu;=12267>0, xp =04997, up =02498, (5.2)

2 =0.6313, 7y =03583, 1, =06380, 7} =0.1025 0<p=01025<1.

Then we can see that all conditions of Theorem 4.4 hold. According to Theorem 4.4, system
(1.7) has a unique uniformly asymptotically stable almost periodic solution which is bounded
by Qforalln e Z*.

6. Conclusions

In this paper, we consider a discrete mutualism model with feedback controls. Assuming that
the coefficients in the system are almost periodic sequences, first, we establish a persistence
result for the model under consideration, then based on the persistence result we obtain the
existence and uniqueness of the almost periodic solution of the system which is uniformly
asymptotically stable. Finally, an example is given to illustrate the feasibility of our results.
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